Skip to main content

Advertisement

Log in

Molecular mechanism of sarcopenia and cachexia: recent research advances

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Skeletal muscle provides a fundamental basis for human function, enabling locomotion and respiration. Muscle loss occurs as a consequence of several chronic diseases (cachexia) and normal aging (sarcopenia). Although many negative regulators (atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.) have been proposed to enhance protein degradation during both sarcopenia and cachexia, the adaptation of these mediators markedly differs within both conditions. Sarcopenia and cachectic muscles have been demonstrated to be abundant in myostatin-linked molecules. The ubiquitin-proteasome system (UPS) is activated during rapid atrophy model (cancer cachexia), but few mediators of the UPS change during sarcopenia. NF-κB signaling is activated in cachectic, but not in sarcopenic, muscle. Recent studies have indicated the age-related defect of autophagy signaling in skeletal muscle, whereas autophagic activation occurs in cachectic muscle. This review provides recent research advances dealing with molecular mediators modulating muscle mass in both sarcopenia and cachexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agusti A, Morla M, Sauleda J, Saus C, Busquets X (2004) NF-kappaB activation and iNOS upregulation in skeletal muscle of patients with COPD and low body weight. Thorax 59:483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen DL, Unterman TG (2007) Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Physiol Cell Physiol 292:C188–C199

    Article  CAS  PubMed  Google Scholar 

  3. Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B (2010) Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 285:39597–39608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anker SD (2002) Imbalance of catabolic and anabolic pathways in chronic heart failure: implications for the treatment of cardiac cachexia. Scand J Nutr 46:3–10

    Article  Google Scholar 

  5. Aoi W, Sakuma K (2011) Oxidative stress and skeletal muscle dysfunction with aging. Curr Aging Sci 4:101–109

    Article  CAS  PubMed  Google Scholar 

  6. Argilés JM, Busquets S, Toledo M, López-Soriano FJ (2009) The role of cytokines in cancer cachexia. Curr Opin Support Palliat Care 3:263–268

    Article  PubMed  Google Scholar 

  7. Argilés JM, Busquets S, Stemmler B, Lopez-Soriano FJ (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14:754–762

    Article  PubMed  CAS  Google Scholar 

  8. Asp ML, Tian M, Wendel AA, Belury MA (2010) Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int J Cancer 126:756–763

    Article  CAS  PubMed  Google Scholar 

  9. Aukrust P, Ueland T, Lien E, Bendtzen K, Müller F, Andreassen AK, Nordøy I, Aass H, Espevik T, Simonsen S, Frøland SS, Gullestad L (1999) Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 83:376–382

    Article  CAS  PubMed  Google Scholar 

  10. Baehr LM, Furlow JD, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589:4759–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baehr LM, Tunzi M, Bodine SC (2014) Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Front Physiol 5:69

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baracos VE, DeVivo C, Hoyle DH, Goldberg AL (1995) Activation of the ATP ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol 268:E996–E1006

    CAS  PubMed  Google Scholar 

  13. Bar-Shai M, Carmeli E, Coleman R, Rozen N, Perek S, Fuchs D, Reznick AZ (2005) The effect of hindlimb immobilization on acid phosphatase, metalloproteinase and nuclear factor-kappaB in muscles of young and old rats. Mech Ageing Dev 126:289–297

    Article  CAS  PubMed  Google Scholar 

  14. Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O, STEADY Group (2015) Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3:948–957

    Article  CAS  PubMed  Google Scholar 

  15. Bodine SC, Baehr LM (2013) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307:E469–E484

    Article  CAS  Google Scholar 

  16. Bossola M, Muscaritoli M, Costelli P, Grieco G, Bonelli G, Pacelli F, Rossi Fanelli F, Doglietto GB, Baccino FM (2003) Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann Surg 237:384–389

    PubMed  PubMed Central  Google Scholar 

  17. Bowen TS, Schuler G, Adams V (2015) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle 6:197–207

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bowser M, Herberg S, Arounleut P, Shi X, Fulzele S, Hill WD, Isales CM, Hamrick MW (2013) Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells. Exp Gerontol 48:290–297

    Article  CAS  PubMed  Google Scholar 

  19. Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and notch induces CDK inhibitors is old muscle stem cells. Nature 454:528–532

    Article  CAS  PubMed  Google Scholar 

  20. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, Blaauw B, Friguet B, Bottinelli R, Rudolf R, Sandri M (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8:1509–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, Dhir R, Landreneau RJ, Schuchert MJ, Yousem SA, Nakahira K, Pilewski JM, Lee JS, Zhang Y, Ryter SW, Choi AM (2008) Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One 3:e3316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8:18–30

    Article  CAS  PubMed  Google Scholar 

  23. Clavel S, Coldefy AS, Kurkdjian E, Salle J, Margaritis I, Derijard B (2006) Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat tibialis anterior muscle. Mech Ageing Dev 127:794–801

    Article  CAS  PubMed  Google Scholar 

  24. Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2006) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20:190–192

    CAS  PubMed  Google Scholar 

  25. Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185:1083–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Combaret L, Dardevet D, Béchet D, Taillandier D, Mosoni L, Attaix D (2009) Skeletal muscle proteolysis in aging. Curr Opin Clin Nutr Metab Care 12:37–41

    Article  PubMed  Google Scholar 

  27. Cornwell EW, Mirbod A, Wu CL, Kandarian SC, Jackman RW (2014) C26 cancer-induced muscle wasting is IKKβ-dependent and NF-κB-independent. PLoS One 9:e87776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Costelli P, Muscaritoli M, Bossola M, Penna F, Reffo P, Bonetto A, Busquets S, Bonelli G, Lopez-Soriano FJ, Doglietto GB, Argilés JM, Baccino FM, Rossi Fanelli F (2006) IGF-I is downregulated in experimental cancer cachexia. Am J Physiol Regul Integr Comp Physiol 291:R674–R683

    Article  CAS  PubMed  Google Scholar 

  29. Costelli P, Muscaritoli M, Bonetto A, Penna F, Reffo P, Bossola M, Bonelli G, Doglietto GB, Baccino FM, Rossi Fanelli F (2008) Muscle myostatin signaling is enhanced in experimental cancer cachexia. Eur J Clin Investig 38:531–538

    Article  CAS  Google Scholar 

  30. Crul T, Spruit MA, Gayan-Ramirez G, Quarck R, Gosselink R, Troosters T, Pitta F, Decramer M (2007) Markers of inflammation and disuse in vastus lateralis of chronic obstructive pulmonary disease patients. Eur J Clin Investig 37:897–904

    Article  CAS  Google Scholar 

  31. Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140

    Article  PubMed  Google Scholar 

  32. De Paepe B, Brusselle GG, Maes T, Crues KK, D’Haese N, Bracke KR, D’hulst AI, Joos GF, De Bleecker JL (2008) TNF alpha receptor genotype influences smoking-induced muscle-fibre-type shift and atrophy in mice. Acta Neuropathol 115:675–681

    Article  PubMed  CAS  Google Scholar 

  33. De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V, Vezzoli M, Rovere-Querini P, Moggio M, Ripolone M, Francolini M, Sandri M, Clementi E (2012) Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 3:e418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Demontis F, Perrimon N (2009) Integration of insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 136:983–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DeRuisseau KC, Kavazis AN, Powers SK (2005) Selective downregulation of ubiquitin conjugation cascade mRNA occurs in the senescent rat soleus muscle. Exp Gerontol 40:526–531

    Article  CAS  PubMed  Google Scholar 

  37. Deval C, Mordier S, Obled C, Bechet D, Combaret L, Attaix D, Ferrara M (2001) Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 360:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Doucet M, Russell AP, Léger B, Debigaré R, Joanisse DR, Caron MA, LeBlanc P, Maltais F (2007) Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 176:261–269

    Article  CAS  PubMed  Google Scholar 

  39. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587:1535–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eagan TM, Gabazza EC, D’Alessandro-Gabazza C, Gil-Bernabe P, Aoki S, Hardie JA, Bakke PS, Wagner PD (2012) TNF-α is associated with loss of lean body mass only in already cachectic COPD patients. Respir Res 13:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Edström E, Altun M, Hägglund M, Ulfhake B (2006) Atrogin-1/MAFbx and MuRF1 are downregulated in ageing-related loss of skeletal muscle. J Gerontol Series A Biol Sci Med Sci 61:663–674

    Article  Google Scholar 

  42. Emery PW, Edwards RH, Rennie MJ, Souhami RL, Halliday D (1984) Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br Med J (Clin Res Ed) 289:584–586

    Article  CAS  Google Scholar 

  43. Esposito A, Criscitiello C, Gelao L, Pravettoni G, Locatelli M, Minchella I, Di Leo M, Liuzzi R, Milani A, Massaro M, Curigliano G (2015) Mechanisms of anorexia-cachexia syndrome and rationale for treatment with selective ghrelin receptor agonist. Cancer Treat Rev 41:793–797

    Article  CAS  PubMed  Google Scholar 

  44. Favier FB, Costes F, Defour A, Bonnefoy R, Lefai E, Baugé S, Peinnequin A, Benoit H, Freyssenet D (2010) Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia. Am J Physiol Regul Integr Comp Physiol 298:R1659–R1666

    Article  CAS  PubMed  Google Scholar 

  45. Fernández-Celemín L, Pasko N, Blomart V, Thissen JP (2002) Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab 283:E1279–E1290

    Article  PubMed  Google Scholar 

  46. Foletta VC, White LJ, Larsen AE, Léger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflügers Arch 461:325–335

    Article  CAS  PubMed  Google Scholar 

  47. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Dhanani S, Volpi E, Rasmussen BB (2011) Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle 1:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Funai K, Parkington JD, Carambula S, Fielding RA (2006) Age-associated decrease in contraction-induced activation of downstream targets of Akt/mTOR signaling in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 290:R1080–R1086

    Article  CAS  PubMed  Google Scholar 

  49. Gan B, Yoo Y, Guan JL (2006) Association of focal adhesion kinase with tuberous sclerosis complex 2 in the regulation of s6 kinase activation and cell growth. J Biol Chem 281:37321–37239

    Article  CAS  PubMed  Google Scholar 

  50. Gaugler M, Brown A, Merrell E, DiSanto-Rose M, Rathmacher JA, Reynolds TH 4th (2011) PKB signaling and atrogene expression in skeletal muscle of aged mice. J Appl Physiol 111:192–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gomes AV, Waddell DS, Siu R, Stein M, Dewey S, Furlow JD, Bodine SC (2012) Upregulation of proteasome activity in muscle RING finger 1-null mice following denervation. FASEB J 26:2986–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, Maraldi NM, Bernardi P, Sandri M, Bonaldo P (2010) Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 16:1313–1320

    Article  CAS  PubMed  Google Scholar 

  53. Guo Y, Gosker HR, Schols AM, Kapchinsky S, Bourbeau J, Sandri M, Jagoe RT, Debigaré R, Maltais F, Taivassalo T, Hussain SN (2013) Autophagy in locomoter muscles of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 188:1313–1320

    Article  CAS  PubMed  Google Scholar 

  54. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–2366

    Article  CAS  PubMed  Google Scholar 

  55. Haddad F, Adams GR (2006) Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol 100:1188–1203

    Article  CAS  PubMed  Google Scholar 

  56. Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winker S, Yu J, Kratzsch JJ, Baldauf G, Busse MW, Schubert A, Adams V, Schuler G (2002) Reduction of insulin-like growth factor-I expression in the skeletal muscle of noncachectic patients with chronic heart failure. J Am Coll Cardiol 39:1175–1181

    Article  CAS  PubMed  Google Scholar 

  57. Hayot M, Rodriguez J, Vernus B, Carnac G, Jean E, Allen D, Goret L, Obert P, Candau R, Bonnieu A (2011) Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli. Mol Cell Endocrinol 332:38–47

    Article  CAS  PubMed  Google Scholar 

  58. He WA, Berardi E, Cardillo VM, Acharyya S, Aulino O, Thomas-Ahner J, Wang J, Bloomston M, Muscarella P, Nau P, Shan N, Butchbach ME, Ladner K, Adamo S, Rudnicki MA, Keller G, Coletti D, Montanaro F, Guttridge DC (2013) NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest 123:4821–4835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, Molkentin JD (2010) Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation 121:419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Höllriegel R, Beck EB, Linke A, Adams V, Möbius-Winkler S, Mangner N, Sandri M, Gielen S (2013) Anabolic effects of exercise training in patients with advanced chronic heart failure (NYHA IIIb): impact on ubiquitin-protein ligases expression and skeletal muscle size. Int J Cardiol 167:975–980

    Article  PubMed  Google Scholar 

  61. Hornberger TA, McLoughlin TJ, Leszczynski JK, Armstrong DD, Jameson RR, Bowen PE, Hwang ES, Hou H, Moustafa ME, Carlson BA, Hatfield DL, Diamond AM, Esser KA (2003) Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth. J Nutr 133:3091–3097

    CAS  PubMed  Google Scholar 

  62. Hunter RB, Kandarian SC (2004) Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 114:1504–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hussain SNA, Sandri M (2013) Muscle dysfunction in COPD. Role of autophagy in COPD skeletal muscle dysfunction. J Appl Physiol 114:1273–1281

    Article  CAS  PubMed  Google Scholar 

  64. Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC (2014) Maintenance of muscle mass and load-induced growth in muscle RING finger 1 null mice with age. Aging Cell 13:92–101

    Article  CAS  PubMed  Google Scholar 

  65. Jagoe RT, Redfern CP, Roberts RG, Gibson GJ, Goodship TH (2002) Skeletal muscle mRNA levels for cathepsin B, but not components of the ubiquitin-proteasome pathway, are increased in patients with lung cancer referred for thoracotomy. Clin Sci 102:353–361

    CAS  PubMed  Google Scholar 

  66. Jankowska EA, Ponikowski P, Piepoli MF, Banasiak W, Anker SD, Poole-Wilson PA (2006) Autonomic imbalance and immune activation in chronic heart failure-pathophysiological links. Cardiovasc Res 70:434–445

    Article  CAS  PubMed  Google Scholar 

  67. Jannig PR, Moreira JB, Bechara LR, Bozi LH, Bacurau AV, Monteiro AW, Dourado PM, Wisløff U, Brum PC (2014) Autophagy signaling in skeletal muscle of infarcted rats. PLoS One 9:e85829

    Article  CAS  Google Scholar 

  68. Jatoi A, Ritter HL, Dueck A, Nguyen PL, Nikcevich DA, Luyun RF, Mattar BI, Loprinzi CL (2010) A placebo-controlled double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68:234–239

    Article  PubMed  Google Scholar 

  69. Jogo M, Shiraishi S, Tamura TA (2009) Identification of MAFbx as a myogenin-engaged F-box protein in SCF ubiquitin ligase. FEBS Lett 583:2715–2719

    Article  CAS  PubMed  Google Scholar 

  70. Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7:310–315

    Article  CAS  PubMed  Google Scholar 

  71. Judge AR, Koncarevic A, Hunter RB, Liou HC, Jackman RW, Kandarian SC (2007) Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol 292:C372–C382

    Article  CAS  PubMed  Google Scholar 

  72. Kawamura I, Morishita R, Tomita N, Lacey E, Aketa M, Tsujimoto S, Manda T, Tomoi M, Kida I, Higaki J, Kaneda Y, Shimomura K, Ogihara T (1999) Intratumoral injection of oligonucleotides to the NF-kappa B binding site inhibits cachexia in a mouse tumor model. Gene Ther 6:91–97

    Article  CAS  PubMed  Google Scholar 

  73. Kemppainen J, Tsuchida H, Stolen K, Karlsson H, Björnholm M, Heinonen OJ, Nuutila P, Krook A, Knuuti J, Zierath JR (2003) Insulin signaling and resistance in patients with chronic heart failure. J Physiol 550(1):305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Khal J, Wyke SM, Russell ST, Hine AV, Tisdale MJ (2005a) Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer cachexia. Br J Cancer 93:774–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khal J, Hine AV, Fearon KCH, Dejong CHC, Tisdale MJ (2005b) Increased expression of proteasome subunits in skeletal muscle of cancer patients with weight loss. Int J Biochem Cell Biol 37:2196–2206

    Article  CAS  PubMed  Google Scholar 

  76. Kim HP, Wang X, Chen ZH, Lee SJ, Huang MH, Wang Y, Ryter SW, Choi AM (2008) Autophagic proteins regulate cigarette smoke-induced apoptosis: protective role of heme oxygenase-1. Autophagy 4:887–895

    Article  CAS  PubMed  Google Scholar 

  77. Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan KL (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kimball SR, O’Malley JP, Anthony JC, Crozier SJ, Jefferson LS (2004) Assessment of biomarkers of protein anabolism in skeletal muscle during the life span of the rat: sarcopenia despite elevated protein synthesis. Am J Physiol Endocrinol Metab 287:E772–E780

    Article  CAS  PubMed  Google Scholar 

  79. Klimek MEB, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA (2010) Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun 391:1548–1554

    Article  CAS  Google Scholar 

  80. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med 82:434–448

    Article  CAS  PubMed  Google Scholar 

  82. Kythreotis P, Kokkini A, Avgeropoulou S, Hadjioannou A, Anastasakou E, Rasidakis A, Bakakos P (2009) Plasma leptin and insulin-like growth factor I levels during acute exacerbations of chronic obstructive pulmonary disease. BMC Pulm Med 9:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA (2008) The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27:1266–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lagirand-Cantaloube J, Cornille K, Csibi A, Batonet-Pichon S, Leibovitch MP, Leibovitch SA (2009) Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS One 4:e4973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. LeBrasseur NK, Schelhorn TM, Bernardo BL, Cosgrove PG, Loria PM, Brown TA (2009) Myostatin inhibition enhances the effects on performance and metabolic outcomes in aged mice. J Gerontol Series A Biol Sci Med Sci 64:940–948

    Article  CAS  Google Scholar 

  86. Lee SJ (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20:61–86

    Article  CAS  PubMed  Google Scholar 

  87. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN, Wright JF, Zhao L, Sebald SM, Greenspan DS, Lee SJ (2005) Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci U S A 102:18117–18122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Léger B, Derave W, De Bock K, Hespel P, Russell AP (2008) Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res 11:163–175

    Article  PubMed  CAS  Google Scholar 

  89. Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–241

    Article  CAS  PubMed  Google Scholar 

  90. Lewis MI, Fournier M, Storer TW, Bhasin S, Porszasz J, Ren SG, Da X, Casaburi R (2007) Skeletal muscle adaptations to testosterone and resistance training in men with COPD. J Appl Physiol 103:1299–1310

    Article  CAS  PubMed  Google Scholar 

  91. Li P, Waters RE, Redfern SI, Zhang M, Mao L, Annex BH, Yan Z (2007) Oxidative phenotype protects myofibers from pathological insults induced by chronic heart failure in mice. Am J Pathol 170:599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med 86:1113–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Llovera M, Carbó N, García-Martínez C, Costelli P, Tessitore L, Baccino FM, Agell N, Bagby GJ, López-Soriano FJ, Argilés JM (1996) Anti-TNF treatment reverts increased muscle ubiquitin gene expression in tumor-bearing rats. Biochem Biophys Res Commun 221:653–655

    Article  CAS  PubMed  Google Scholar 

  94. Lokireddy S, McFarlane C, Ge X, Zhang H, Sze SK, Sharma M, Kambadur R (2011) Myostatin induces degradation of sarcomeric proteins through a Smad3 signaling mechanism during skeletal muscle wasting. Mol Endocrinol 25:1936–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lokireddy S, Wijesoma JW, Bonala S, Wei M, Sze SK, McFarlane C, Kambadur R, Sharma M (2012) Myostatin is a novel tumoral factor that induces cancer cachexia. Biochem J 446:23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Malik ST, Naylor MS, East N, Oliff A, Balkwill FR (1990) Cells secreting tumour necrosis factor show enhanced metastasis in nude mice. Eur J Cancer 26:1031–1034

    Article  CAS  PubMed  Google Scholar 

  97. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458–471

    Article  CAS  PubMed  Google Scholar 

  98. Markofski MM, Dickinson JM, Drummond MJ, Fry CS, Fujita S, Gundermann DM, Glynn EL, Jennings K, Paddon-Jones D, Reidy PT, Sheffield-Moore M, Timmerman KL, Rasmussen BB, Volpi E (2015) Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol 65:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Martins T, Vitorino R, Moreira-Goncalves D, Amado F, Duarte JA, Ferreira R (2014) Recent insights on the molecular mechanisms and therapeutic approaches for cardiac cachexia. Clin Biochem 47:8–15

    Article  CAS  PubMed  Google Scholar 

  100. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10:507–515

    Article  CAS  PubMed  Google Scholar 

  101. Massagué J, Cheifetz S, Endo T, Nadal-Ginard B (1986) Type beta transforming growth factor is an inhibitor of myogenic differentiation. Proc Natl Acad Sci U S A 83:8206–8210

    Article  PubMed  PubMed Central  Google Scholar 

  102. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209:501–514

    Article  CAS  PubMed  Google Scholar 

  103. McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G (2012) Myostatin is associated with age-related human muscle stem cell function. FASEB J 26:2509–2521

    Article  CAS  PubMed  Google Scholar 

  104. McMullen CA, Ferry AL, Gamboa JL, Andrade FH, Dupont-Versteegden EE (2009) Age-related changes of cell death pathways in rat extraocular muscle. Exp Gerontol 44:420–425

    Article  CAS  PubMed  Google Scholar 

  105. Melton LJ 3rd, Khosla S, Crowson CS, O’Connor MK, O’Fallon WM, Riggs BL (2000) Epidemiology of sarcopenia. J Am Geriat Soc 48:625–630

    Article  PubMed  Google Scholar 

  106. Meng SJ, Yu LY (2010) Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 11:1509–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mercken EM, Hageman GJ, Langen RC, Wouters EF, Schols AM (2011) Decreased exercise-induced expression of nuclear factor-kappaB-regulated genes in muscle of patients with COPD. Chest 139:337–346

    Article  CAS  PubMed  Google Scholar 

  108. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  109. Morissette MR, Cook SA, Buranasombati C, Rosenberg MA, Rosenzweig A (2009) Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt. Am J Physiol Cell Physiol 297:C1124–C1132

    Article  CAS  PubMed  Google Scholar 

  110. Murphy KT, Koopman R, Naim T, Léger B, Trieu J, Ibebunjo C, Lynch GS (2010) Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J 24:4433–4442

    Article  CAS  PubMed  Google Scholar 

  111. Natanek SA, Riddoch-Contreras J, Marsh GS, Hopkinson NS, Moxham J, Man WD, Kemp PR, Polkey MI (2013) MuRF-1 and atrogin-1 protein expression and quadriceps fiber size and muscle mass in stable patients with COPD. COPD 10:618–624

    Article  PubMed  PubMed Central  Google Scholar 

  112. Neel BA, Lin Y, Pessin JE (2013) Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab 24:635–643

    Article  CAS  PubMed  Google Scholar 

  113. Neibauer J, Pflaum CD, Clar AL, Strasburger CJ, Hooper J, Poole-Wilson PA, Coats AJ, Anker SD (1998) Deficient insulin-like growth factor I in chronic heart failure predicts altered body composition, anabolic deficiency, cytokine and neurohumoral activation. J Am Coll Cardiol 32:393–397

    Article  Google Scholar 

  114. Nussbaumer-Ochsner Y, Rabe KF (2011) Systemic manifestation of COPD. Chest 139:165–173

    Article  PubMed  Google Scholar 

  115. Op den Kamp C, Langen RC, Snepvangers FJ, de Theije CC, Schellekens JM, Laugs F, Dingemans AM, Schols AM (2013) Nuclear transcription factor κB activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia. Am J Clin Nutr 98:738–748

    Article  CAS  PubMed  Google Scholar 

  116. Park C, Cuervo AM (2013) Selective autophagy: talking with the UPS. Cell Biochem Biophys 67:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Parkington JD, LeBrasseur NK, Siebert AP, Fielding RA (2004) Contraction-mediated mTOR, p70S6K, and ERK1/2 phosphorylation in aged skeletal muscle. J Appl Physiol 97:243–248

    Article  CAS  PubMed  Google Scholar 

  118. Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A (2010) Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 191:1395–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto EM, Cavallini G, Bonelli G, Baccino FM, Costelli P (2013) Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol 182:1367–1378

    Article  CAS  PubMed  Google Scholar 

  120. Petraglia F, Florio P, Luisi S, Gallo R, Gadducci A, Viganó P, Di Blasio AM, Genazzani AR, Vale W (1998) Expression and secretion of inhibin and activin A in normal and neoplastic uterine tissues. High levels of serum activin A in women with endometrial and cervical carcinoma. J Clin Endocrinol Metab 83:1194–1200

    CAS  PubMed  Google Scholar 

  121. Phillips T, Leeuwenburgh C (2005) Muscle fiber-specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J 19:668–670

    CAS  PubMed  Google Scholar 

  122. Piehl-Aulin K, Jones I, Lindvall B, Magnuson A, Abdel-Halim SM (2009) Increased serum inflammatory markers in the absence of clinical and skeletal muscle inflammation in patients with chronic obstructive pulmonary disease. Respiration 78:191–196

    Article  CAS  PubMed  Google Scholar 

  123. Plant PJ, Brooks D, Faughnan M, Bayley T, Bain J, Singer L, Correa J, Pearce D, Binnie M, Batt J (2010) Cellular markers of muscle atrophy in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 42:461–471

    Article  CAS  PubMed  Google Scholar 

  124. Prado CM, Bekaii-Saab T, Doyle LA, Shrestha S, Ghosh S, Baracos VE, Sawyer MB (2012) Skeletal muscle anabolism is a side effect of therapy with the MEK inhibitor: selumetinib in patients with cholangiocarcinoma. Brit J Cancer 106:1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rahnert JA, Luo Q, Balog EM, Sokoloff AJ, Burkholder TJ (2011) Changes in growth-related kinases in head, neck and limb muscles with age. Exp Gerontol 46:282–291

    Article  CAS  PubMed  Google Scholar 

  126. Ratkevicius A, Joyson A, Selmer I, Dhanani T, Grierson C, Tommasi AM, DeVries A, Rauchhaus P, Crowther D, Alesci S, Yaworsky P, Gilbert F, Redpath TW, Brady J, Fearon KC, Reid DM, Greig CA, Wackerhage H (2011) Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J Gerontol A Biol Sci Med Sci 66:620–626

    Article  CAS  PubMed  Google Scholar 

  127. Rieu I, Magne H, Savary-Auzeloux I, Averous J, Bos C, Peyron MA, Combaret L, Dardevet D (2009) Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J Physiol 587:5483–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rivas DA, Morris EP, Haran PH, Pasha EP, Morais Mda S, Dornikowski GG, Phillips EM, Fielding RA (2012) Increased ceramide content and NFκB signaling may contribute to the attenuation of anabolic signaling after resistance exercise in aged males. J Appl Physiol 113:1727–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B, Bonnieu A (2014) Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci 71:4361–4371

    Article  CAS  PubMed  Google Scholar 

  130. Rom O, Reznick AZ (2016) The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle. Free Radic Biol Med 98:218–230

    Article  CAS  PubMed  Google Scholar 

  131. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013

    Article  CAS  PubMed  Google Scholar 

  132. Ryter SW, Chen ZH, Kim HP, Choi AMK (2009) Autophagy in chronic obstructive pulmonary disease. Autophagy 5:235–237

    Article  CAS  PubMed  Google Scholar 

  133. Sakuma K, Yamaguchi A (2010) Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 3:90–101

    Article  CAS  PubMed  Google Scholar 

  134. Sakuma K, Yamaguchi A (2011a) Inhibitors of myostatin- and proteasome-dependent signaling for attenuating muscle wasting. Recent Pat Regen Med 1:284–298

    CAS  Google Scholar 

  135. Sakuma K, Yamaguchi A (2011b) Sarcopenia: molecular mechanisms and current therapeutic strategy. In: Perloft JW, Wong AH (eds) Cell Aging. Nova, Commack, pp 93–152

    Google Scholar 

  136. Sakuma K, Yamaguchi A (2012) Sarcopenia and cachexia: the adaptation of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle 3:77–94

    Article  PubMed  PubMed Central  Google Scholar 

  137. Sakuma K, Yamaguchi A (2013) An overview of the therapeutic strategies for preventing sarcopenia. In: Sakuma K (ed) Basic biology and current understanding of skeletal muscle. Nova, Commack, pp 87–123

    Google Scholar 

  138. Sakuma K, Watanabe K, Sano M, Kitajima S, Sakamoto K, Uramoto I, Totsuka T (2000) The adaptive response of transforming growth factor-beta 2 and -beta RII in the overloaded, regenerating, and denervated muscle of rats. Acta Neuropahol 99:177–185

    Article  CAS  Google Scholar 

  139. Sakuma K, Watanabe K, Hotta N, Koike T, Ishida K, Katayama K, Akima H (2009) The adaptive response in several mediators linked with hypertrophy and atrophy of skeletal muscle after lower limb unloading in humans. Acta Physiol (Oxf) 197:151–159

    Article  CAS  Google Scholar 

  140. Sakuma K, Aoi W, Yamaguchi A (2014) Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflügers Arch 467:213–229

    Article  PubMed  CAS  Google Scholar 

  141. Sakuma K, Kinoshita M, Ito Y, Aizawa M, Aoi W, Yamaguchi A (2016) p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice. J Cachexia Sarcopenia Muscle 7:204–212

    Article  PubMed  Google Scholar 

  142. Sandri M (2011) New findings of lysosomal proteolysis in skeletal muscle. Curr Opin Clin Nutr Metab Care 14:223–229

    Article  CAS  PubMed  Google Scholar 

  143. Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, Mammucari C, Meskers CG, Pallafacchina G, Paoli A, Pion D, Roceri M, Romanello V, Serrano AL, Toniolo L, Larsson L, Maier AB, Muñoz-Cánoves P, Musarò A, Pende M, Reggiani C, Rizzuto R, Schiaffino S (2013) Signaling pathways regulating muscle maqss in ageing skeletal muscle. The role of IGF-1-Akt-mTOR-FoxO pathway. Biogerontology 14:303–323

    Article  CAS  PubMed  Google Scholar 

  144. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296:C1248–C1257

    Article  CAS  PubMed  Google Scholar 

  145. Sartori R, Gregorevic P, Sandri M (2014) TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 25:469–471

    Article  CAS  Google Scholar 

  146. Schaap LA, Pluijim SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB, Colbert LH, Pahor M, Rubin SM, Tylavsky FA, Visser M, Health ABC Study (2009) Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol Series A Biol Sci Med Sci 64A:1183–1189

    Article  CAS  Google Scholar 

  147. Schulze PC, Gielen S, Adams V, Linke A, Möbius-Winkler S, Erbs S, Kratzsch J, Hambrecht R, Schuler G (2003) Muscular levels of proinflammatory cytokines correlate with a reduced expression of insulin-like growth factor-I in chronic heart failure. Basic Res Cardiol 98:267–274

    Article  CAS  PubMed  Google Scholar 

  148. Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20:21–30

    Article  CAS  PubMed  Google Scholar 

  149. Sharma M, Kambadur R, Matthews KG, Somers WG, Devlin GP, Conaglen JV, Fowke PJ, Bass JJ (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180:1–9

    Article  CAS  PubMed  Google Scholar 

  150. Short KR, Vittone JL, Bigelow ML, Proctor DN, Nair KS (2004) Age, and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab 286:E92–E101

    Article  CAS  PubMed  Google Scholar 

  151. Shyu KG, Lu MJ, Wang BW, Sun HY, Chang H (2006) Myostatin expression in ventricular myocardium in a rat model of volume-overload heart failure. Eur J Clin Investig 36:713–719

    Article  CAS  Google Scholar 

  152. Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M (2006) Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209:866–873

    Article  CAS  PubMed  Google Scholar 

  153. Smith KL, Tisdale MJ (1993) Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia. Br J Cancer 67:680–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sriram S, Subramanian S, Sathiakumar D, Venkatesh R, Salerno MS, McFarlane CD, Kambadur R, Sharma M (2011) Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB. Aging Cell 10:931–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Takabatake N, Nakamura H, Abe S, Inoue S, Hino T, Saito H, Yuki H, Kato S, Tomoike H (2000) The relationship between chronic hypoxemia and activation of the tumor necrosis factor-alpha system in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161:1179–1184

    Article  CAS  PubMed  Google Scholar 

  156. Tang K, Wagner PD, Breen EC (2010) TNF-alpha-mediated reduction in PGC-1alpha may impair skeletal muscle function after cigarette smoke exposure. J Cell Physiol 222:320–327

    Article  CAS  PubMed  Google Scholar 

  157. Tardif N, Klaude M, Lundell L, Thorell A, Rooyackers O (2013) Autophagic-lysosomal pathway is the main proteolytic system modified in the skeletal muscle of esophageal cancer patients. Am J Clin Nutr 98:1485–1492

    Article  CAS  PubMed  Google Scholar 

  158. Temparis S, Asensi M, Taillandier D, Aurousseau E, Larbaud D, Obled A, Béchet D, Ferrara M, Estrela JM, Atttaix D (1994) Increased ATP-ubiquitin-dependent proteolysis in skeletal muscle of tumor-bearing rats. Cancer Res 54:5568–5573

    CAS  PubMed  Google Scholar 

  159. Terman A, Brunk UT (2006) Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 8:197–204

    Article  CAS  PubMed  Google Scholar 

  160. Tessitore L, Costelli P, Baccino FM (1993) Cancer cachexia, malnutrition, and tissue protein turnover in experimental animals. Arch Biochem Biophys 306:52–58

    Article  CAS  PubMed  Google Scholar 

  161. Testelmans D, Crul T, Maes K, Agten A, Comach M, Decramer M, Gayan-Ramirez G (2010) Atrophy and hypertrophy signaling in the diaphragm of patients with COPD. Eur Respir J 35:549–556

    Article  CAS  PubMed  Google Scholar 

  162. Thomson DM, Gordon SE (2006) Impaired overload-induced muscle growth is associated with diminished translational signaling in aged rat fast-twith skeletal muscle. J Physiol 574:291–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from studies of left ventricular dysfunction (solvd). J Am Coll Cardiol 27:1201–1206

    Article  CAS  PubMed  Google Scholar 

  164. Toth MJ, Ades PA, LeWinter MM, Tracy RP, Tchernof A (2006) Skeletal muscle myofibrillar mRNA expression in heart failure: relationship to local and circulating hormones. J Appl Physiol 100:35–41

    Article  CAS  PubMed  Google Scholar 

  165. Toth MJ, Ward K, van der Velden J, Miller MS, VanBuren P, LeWinter MM, Ades PA (2011) Chronic heart failure reduces Akt phosphorylation in human skeletal muscle: relationship to muscle size and function. J Appl Physiol 110:892–900

    Article  CAS  PubMed  Google Scholar 

  166. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296:C1258–C1270

    Article  CAS  PubMed  Google Scholar 

  167. Tsutamoto T, Wada A, Ohnishi M, Tsutsui T, Ishii C, Ohno K, Fujii M, Matsumoto T, Yamamoto T, Takayama T, Dohke T, Horie M (2004) Transcardiac increase in tumor necrosis factor-alpha and left ventricular end-diastolic volume in patients with dilated cardiomyopathy. Eur J Heart Fail 6:173–180

    Article  CAS  PubMed  Google Scholar 

  168. Vainshtein A, Grumati P, Sandri M, Bonaldo P (2014) Skeletal muscle, autophagy, and physical activity: the ménage á trois of metabolic regulation in health and disease. J Mol Med 92:127–137

    Article  CAS  PubMed  Google Scholar 

  169. Van Gammeren D, Damrauer JS, Jackman RW, Kandarian SC (2009) The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophy. FASEB J 23:362–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Vanfleteren LE, Spruit MA, Groenen M, Gaffron S, van Empel VP, Bruijnzeel PL, Rutten EP, Op ’t Roodt J, Wouters EF, Franssen FM (2013) Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187:728–735

    Article  PubMed  Google Scholar 

  171. Vogiatzis I, Simoes DC, Stratakos G, Kourepini E, Terzis G, Manta P, Athanasopoulos D, Roussos C, Wagner PD, Zakynthinos S (2010) Effect of pulmonary rehabilitation on muscle remodeling in cachectic patients with COPD. Eur Respir J 36:301–310

    Article  CAS  PubMed  Google Scholar 

  172. von Haehling S, Anker SD (2014) Prevalence, incidence and clinical impact of cachexia: facts and numbers-update 2014. J Cachexia Sarcopenia Muscle 5:261–263

    Article  Google Scholar 

  173. von Haehling S, Morley JE, Anker SD (2010) An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 1:129–133

    Article  Google Scholar 

  174. Waning DL, Nohammad KS, Reiken S, Xie W, Andersson DC, John S, Chiechi A, Wright LE, Umanskaya A, Niewolna M, Trivedi T, Charkhzarrin S, Khatiwada P, Wronska A, Haynes A, Benassi MS, Witzmann FA, Zhen G, Wang X, Cao X, Roodman GD, Marks AR, Guise TA (2015) Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nature Med 11:1262–1271

    Article  CAS  Google Scholar 

  175. Wehling M, Cai B, Tidball JG (2000) Modulation of myostatin expression during modified muscle use. FASEB J 14:103–110

    CAS  PubMed  Google Scholar 

  176. Welle S, Bhatt K, Shah B, Thornton C (2002) Insulin-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62 and 77 and 21-31 yr old men. Exp Gerontol 37:833–839

    Article  CAS  PubMed  Google Scholar 

  177. Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA (2003) Gene expression profile of aging in human muscle. Physiol Genomics 14:149–159

    Article  CAS  PubMed  Google Scholar 

  178. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 106:20405–20410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. White TA, LeBrasseur NK (2014) Myostatin and sarcopenia: opportunities and challenges—a mini-review. Gerontology 60:289–293

    Article  CAS  PubMed  Google Scholar 

  180. White JP, Baynes JW, Welle SL, Kostek MC, Matesic LE, Sato S, Carson JA (2011) The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the APC (Min/+) mouse. PLoS One 6:e24650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Whitman SA, Wacker MJ, Richmond SR, Godard MP (2005) Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflügers Arch 450:437–446

    Article  CAS  PubMed  Google Scholar 

  182. Wiedenmann B, Malfertheiner P, Friess H, Ritch P, Arseneau J, Mantovani G, Caprioni F, Van Custem E, Richel D, DeWitte M, Qi M, Robinson D Jr, Zhong B, De Boer C, Lu JD, Prabhakar U, Corringham R, Von Hoff D (2008) A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. J Support Oncol 6:18–25

    CAS  PubMed  Google Scholar 

  183. Williams JP, Phillips BE, Smith K, Atherton PJ, Rankin D, Selby AL, Liptrot S, Lund J, Larvin M, Rennie MJ (2012) Effect of tumor burden and subsequent surgical resection on skeletal muscle mass and protein turnover in colorectal cancer patients. Am J Clin Nutr 96:1064–1070

    Article  CAS  PubMed  Google Scholar 

  184. Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45:138–148

    Article  CAS  PubMed  Google Scholar 

  185. Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K, Tomkinson KN, Wright JF, Zhao L, Sebald SM, Greenspan DS, Lee SJ (2003) Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci U S A 100:15842–15846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wysong A, Couch M, Shadfar S, Li L, Rodriguez JE, Asher S, Yin X, Gore M, Baldwin A, Patterson C, Willis MS (2011) NF-κB inhibition protects against tumor-induced cardiac atrophy in vivo. Am J Pathol 178:1059–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang W, Zhang Y, Li Y, Wu Z, Zhu D (2007) Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/Akt/GSK-3β pathway and is antagonized by insulin-like growth factor 1. J Biol Chem 282:3799–3808

    Article  CAS  PubMed  Google Scholar 

  188. Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF (2002) Serum myostatin-immunoreactive protein is increased in 60- to 92-year-old women and men with muscle wasting. J Nutr Health Aging 6:343–348

    CAS  PubMed  Google Scholar 

  189. Zhang H, Garcia JM (2015) Anamorelin hydrochloride for the treatment cancer-anorexia-cachexia in NSCLC. Expert Opin Pharmacother 16:1245–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483

    Article  CAS  PubMed  Google Scholar 

  191. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, Lacey DL, Goldberg AL, Han HQ (2010) Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142:531–543

    Article  CAS  PubMed  Google Scholar 

  192. Zhou J, Freeman TA, Ahmad F, Shang X, Mangano E, Gao E, Farber J, Wang Y, Ma XL, Woodgett J, Vagnozzi RJ, Lai H, Force T (2013) GSK-3α is a central regulator of age-related pathologies in mice. J Clin Invest 123:1821–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296:1486–1488

    Article  CAS  PubMed  Google Scholar 

  194. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Lindsay Prescott for doing polite and complete English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiro Sakuma.

Ethics declarations

Funding

This work was supported by a research Grant-in-Aid for Scientific Research C (No. 26350815) from the Ministry of Education, Science, Culture, Sports, Science, and Technology of Japan.

Conflict of interest

Kunihiro Sakuma, Wataru Aoi, and Akihiko Yamaguchi declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakuma, K., Aoi, W. & Yamaguchi, A. Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflugers Arch - Eur J Physiol 469, 573–591 (2017). https://doi.org/10.1007/s00424-016-1933-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1933-3

Keywords

Navigation