Skip to main content

Advertisement

Log in

The Role of Malnutrition and Muscle Wasting in Advanced Lung Cancer

  • Lung Cancer (H Borghaei, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Malnutrition, cancer cachexia, and sarcopenia often co-occur in patients with advanced cancer and are associated with poorer response to chemotherapy and reduced survival. Here, we evaluate the current literature regarding the role of nutrition and these associated conditions in patients with advanced lung cancer.

Recent Findings

While rates of malnutrition are high, nutritional intervention studies have generally been limited by small sample sizes. Novel strategies such as home-based meal delivery may have promise. While no therapy is approved for cancer cachexia, ghrelin agonists and other targeted therapies have yielded promising data in clinical trials. Recent data also suggest that obesity may improve immunotherapy responsiveness.

Summary

Malnutrition and associated muscle wasting are clearly negative prognostic markers in advanced lung cancer. Patients with malnutrition should be urgently referred for dietary counseling and guidelines for nutritional support should be followed. Optimal treatment of these syndromes will likely include nutrition and anti-cachexia interventions used in combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Baracos VE. Cancer-associated malnutrition. Eur J Clin Nutr. 2018;72(9):1255–9.

    Article  PubMed  Google Scholar 

  2. Bozzetti F. Forcing the vicious circle: sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann Oncol. 2017;28(9):2107–18.

    Article  CAS  PubMed  Google Scholar 

  3. Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012;16(2):153–66.

    Article  CAS  PubMed  Google Scholar 

  4. Nipp RD, Fuchs G, El-Jawahri A, et al. Sarcopenia is associated with quality of life and depression in patients with advanced cancer. Oncologist. 2018;23(1):97–104. https://doi.org/10.1634/theoncologist.2017-0255.

  5. Goates S, Du K, Braunschweig CA, Arensberg MB. Economic burden of disease-associated malnutrition at the state level. PLoS One. 2016;11(9). https://doi.org/10.1371/journal.pone.0161833.

  6. Jain R, Handorf E, Khare V, Blau M, Chertock Y, Hall MJ. Impact of baseline nutrition and exercise status on toxicity and outcomes in phase I and II oncology clinical trial participants. Oncologist. 2020;25(2):161–69. https://doi.org/10.1634/theoncologist.2019-0289.

  7. Shachar SS, Williams GR, Muss HB, Nishijima TF. Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer. 2016;57:58–67.

    Article  PubMed  Google Scholar 

  8. Walsh D, et al. Malnutrition in cancer care: time to address the elephant in the room. J Oncol Pract. 2019;15(7):357–9.

    Article  PubMed  Google Scholar 

  9. Ryan AM, Power DG, Daly L, Cushen SJ, Ní Bhuachalla Ē, Prado CM. Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later. Proc Nutr Soc. 2016;75(2):199–211.

    Article  PubMed  Google Scholar 

  10. Cederholm T, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017;36(1):49–64.

    Article  CAS  PubMed  Google Scholar 

  11. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.

    Article  PubMed  Google Scholar 

  12. Baracos VE, et al. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4:17105.

    Article  PubMed  Google Scholar 

  13. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  PubMed  Google Scholar 

  14. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377(9):829–38.

    Article  CAS  PubMed  Google Scholar 

  15. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.

    Article  CAS  PubMed  Google Scholar 

  16. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  PubMed  Google Scholar 

  17. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, de Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.

    Article  CAS  PubMed  Google Scholar 

  18. Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–30.

    Article  CAS  PubMed  Google Scholar 

  19. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51.

    Article  CAS  PubMed  Google Scholar 

  20. Abernethy AP, Arunachalam A, Burke T, McKay C, Cao X, Sorg R, et al. Real-world first-line treatment and overall survival in non-small cell lung cancer without known EGFR mutations or ALK rearrangements in US community oncology setting. PLoS One. 2017;12(6):e0178420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line Nivolumab in stage IV or recurrent non–small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Routy B, le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.

    Article  CAS  PubMed  Google Scholar 

  26. Mytelka DS, Li L, Benoit K. Post-diagnosis weight loss as a prognostic factor in non-small cell lung cancer. J Cachexia Sarcopenia Muscle. 2018;9(1):86–92.

    Article  PubMed  Google Scholar 

  27. Sanders KJ, Hendriks LE, Troost EG, Bootsma GP, Houben RM, Schols AM, et al. Early weight loss during chemoradiotherapy has a detrimental impact on outcome in NSCLC. J Thorac Oncol. 2016;11(6):873–9.

    Article  PubMed  Google Scholar 

  28. Segura A, Pardo J, Jara C, Zugazabeitia L, Carulla J, de Las Peñas R, et al. An epidemiological evaluation of the prevalence of malnutrition in Spanish patients with locally advanced or metastatic cancer. Clin Nutr. 2005;24(5):801–14.

    Article  PubMed  Google Scholar 

  29. Read JA, Choy SB, Beale P, Clarke SJ. An evaluation of the prevalence of malnutrition in cancer patients attending the outpatient oncology clinic. Asia Pac J Clin Oncol. 2006;2(2):80–6.

    Article  Google Scholar 

  30. Hebuterne X, et al. Prevalence of malnutrition and current use of nutrition support in patients with cancer. JPEN J Parenter Enteral Nutr. 2014;38(2):196–204.

    Article  PubMed  Google Scholar 

  31. Bozzetti F, Mariani L, Lo Vullo S, SCRINIO Working Group, Amerio ML, Biffi R, et al. The nutritional risk in oncology: a study of 1,453 cancer outpatients. Support Care Cancer. 2012;20(8):1919–28.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Agarwal E, Ferguson M, Banks M, Bauer J, Capra S, Isenring E. Nutritional status and dietary intake of acute care patients: results from the Nutrition Care Day Survey 2010. Clin Nutr. 2012;31(1):41–7.

    Article  PubMed  Google Scholar 

  33. Muscaritoli M, Lucia S, Farcomeni A, Lorusso V, Saracino V, Barone C, et al. Prevalence of malnutrition in patients at first medical oncology visit: the PreMiO study. Oncotarget. 2017;8(45):79884–96.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Campagna S, et al. Prevalence, severity, and self-reported characteristics of taste alterations in patients receiving chemotherapy. Oncol Nurs Forum. 2018;45(3):342–53.

    Article  PubMed  Google Scholar 

  35. Bharadwaj S, Ginoya S, Tandon P, et al. Malnutrition: laboratory markers vs nutritional assessment. Gastroenterol Rep (Oxf). 2016;4(4):272–80. https://doi.org/10.1093/gastro/gow013.

  36. Kiss N, Isenring E, Gough K, Krishnasamy M. The prevalence of weight loss during (chemo)radiotherapy treatment for lung cancer and associated patient- and treatment-related factors. Clin Nutr. 2014;33(6):1074–80.

    Article  PubMed  Google Scholar 

  37. Kiss N, et al. Dosimetric factors associated with weight loss during (chemo)radiotherapy treatment for lung cancer. Eur J Clin Nutr. 2014;68(12):1309–14.

    Article  CAS  PubMed  Google Scholar 

  38. Morel H, et al. Prediagnosis weight loss, a stronger factor than BMI, to predict survival in patients with lung cancer. Lung Cancer. 2018;126:55–63.

    Article  PubMed  Google Scholar 

  39. •• Cederholm T, et al. GLIM criteria for the diagnosis of malnutrition - a consensus report from the global clinical nutrition community. Clin Nutr. 2019;38(1):1–9 This is a recent global consensus on the assessment of malnutrition. Both phenotypic and etiologic criteria for malnutrition are reviewed.

    Article  CAS  PubMed  Google Scholar 

  40. Masel EK, et al. Decreased body mass index is associated with impaired survival in lung cancer patients with brain metastases: a retrospective analysis of 624 patients. Eur J Cancer Care (Engl). 2017;26(6).

  41. Greenlee H, et al. Association between body mass index (BMI) and cancer survival in a pooled analysis of 22 clinical trials. Cancer Epidemiol Biomark Prev. 2017;26(1):21–9.

    Article  Google Scholar 

  42. Lee CH, Lin C, Wang CY, et al. Premorbid BMI as a prognostic factor in small-cell lung cancer—a single institute experience. Oncotarget. 2018;9(37):24642–52. https://doi.org/10.18632/oncotarget.24935.

  43. Sepesi B, Gold KA, Correa AM, Heymach JV, Vaporciyan AA, Roszik J, et al. The influence of body mass index on overall survival following surgical resection of non-small cell lung cancer. J Thorac Oncol. 2017;12(8):1280–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Winter JE, MacInnis R, Wattanapenpaiboon N, Nowson CA. BMI and all-cause mortality in older adults: a meta-analysis. Am J Clin Nutr. 2014;99(4):875–90.

    Article  CAS  PubMed  Google Scholar 

  45. @NCICancerStats. Cancer of the lung and bronchus - Cancer Stat Facts. 2019; Available from: https://seer.cancer.gov/statfacts/html/lungb.html.

  46. • Prado CM, et al. Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc Nutr Soc. 2016;75(2):188–98 This article reviews the impact of sarcopenia and the entity of sarcopenic obesity on clinical outcomes.

    Article  CAS  PubMed  Google Scholar 

  47. Isenring E, Cross G, Daniels L, Kellett E, Koczwara B. Validity of the malnutrition screening tool as an effective predictor of nutritional risk in oncology outpatients receiving chemotherapy. Support Care Cancer. 2006;14(11):1152–6.

    Article  PubMed  Google Scholar 

  48. • Arribas L, et al. NUTRISCORE: a new nutritional screening tool for oncological outpatients. Nutrition. 2017;33:297–303 This article offers a nutritional screening tool that can be intergrated in clinical practice.

    Article  PubMed  Google Scholar 

  49. Bauer J, Capra S, Ferguson M. Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur J Clin Nutr. 2002;56(8):779–85.

    Article  CAS  PubMed  Google Scholar 

  50. Evans WK, Makuch R, Clamon GH, Feld R, Weiner RS, Moran E, et al. Limited impact of total parenteral nutrition on nutritional status during treatment for small cell lung cancer. Cancer Res. 1985;45(7):3347–53.

    CAS  PubMed  Google Scholar 

  51. McGeer AJ, Detsky AS, O'Rourke K. Parenteral nutrition in cancer patients undergoing chemotherapy: a meta-analysis. Nutrition. 1990;6(3):233–40.

    CAS  PubMed  Google Scholar 

  52. Arends J, et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin Nutr. 2017;36(5):1187–96.

    Article  CAS  PubMed  Google Scholar 

  53. August DA, Huhmann MB. A.S.P.E.N. clinical guidelines: nutrition support therapy during adult anticancer treatment and in hematopoietic cell transplantation. JPEN J Parenter Enteral Nutr. 2009;33(5):472–500.

    Article  PubMed  Google Scholar 

  54. Jain R, Dotan E. Nutrition and aging: a practicing oncologist’s perspective. Curr Oncol Rep. 2017;19(11):71.

    Article  PubMed  Google Scholar 

  55. Tozer RG, Tai P, Falconer W, Ducruet T, Karabadjian A, Bounous G, et al. Cysteine-rich protein reverses weight loss in lung cancer patients receiving chemotherapy or radiotherapy. Antioxid Redox Signal. 2008;10(2):395–402.

    Article  CAS  PubMed  Google Scholar 

  56. van der Meij BS, et al. Oral nutritional supplements containing (n-3) polyunsaturated fatty acids affect the nutritional status of patients with stage III non-small cell lung cancer during multimodality treatment. J Nutr. 2010;140(10):1774–80.

    Article  PubMed  CAS  Google Scholar 

  57. van der Meij BS, et al. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT. Eur J Clin Nutr. 2012;66(3):399–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Murphy RA, Mourtzakis M, Chu QS, Baracos VE, Reiman T, Mazurak VC. Nutritional intervention with fish oil provides a benefit over standard of care for weight and skeletal muscle mass in patients with nonsmall cell lung cancer receiving chemotherapy. Cancer. 2011;117(8):1775–82.

    Article  CAS  PubMed  Google Scholar 

  59. Sanchez-Lara K, et al. Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: randomised trial. Clin Nutr. 2014;33(6):1017–23.

    Article  CAS  PubMed  Google Scholar 

  60. Kiss N, Isenring E, Gough K, Wheeler G, Wirth A, Campbell BA, et al. Early and intensive dietary counseling in lung cancer patients receiving (chemo)radiotherapy-a pilot randomized controlled trial. Nutr Cancer. 2016;68(6):958–67.

    Article  CAS  PubMed  Google Scholar 

  61. Leedo E, et al. The effect of a home delivery meal service of energy- and protein-rich meals on quality of life in malnourished outpatients suffering from lung cancer: a randomized controlled trial. Nutr Cancer. 2017;69(3):444–53.

    Article  PubMed  Google Scholar 

  62. Tanaka N, Takeda K, Kawasaki Y, Yamane K, Teruya Y, Kodani M, et al. Early intensive nutrition intervention with dietary counseling and oral nutrition supplement prevents weight loss in patients with advanced lung cancer receiving chemotherapy: a clinical prospective study. Yonago Acta Med. 2018;61(4):204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taylor MA, et al. Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery. J Immunother Cancer. 2019;7(1):328.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ballaro R, Costelli P, Penna F. Animal models for cancer cachexia. Curr Opin Support Palliat Care. 2016;10(4):281–7.

    Article  PubMed  Google Scholar 

  65. Goncalves MD, Hwang SK, Pauli C, Murphy CJ, Cheng Z, Hopkins BD, et al. Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proc Natl Acad Sci U S A. 2018;115(4):E743–e752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen JA, et al. Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved. J Cachexia Sarcopenia Muscle. 2015;6(2):132–43.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.

    Article  CAS  PubMed  Google Scholar 

  68. Guillory B, Splenser A, Garcia J. Chapter Three - The Role of Ghrelin in Anorexia–Cachexia Syndromes. In: Litwack G, editor. Vitamins & Hormones: Academic Press; 2013. p. 61–106.

  69. • Temel JS, et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016;17(4):519–31 This is a large study evaluating the efficacy of a ghrelin agonist to treat cancer cachexia in NSCLC.

    Article  CAS  PubMed  Google Scholar 

  70. Currow D, Temel JS, Abernethy A, Milanowski J, Friend J, Fearon KC. ROMANA 3: a phase 3 safety extension study of anamorelin in advanced non-small-cell lung cancer (NSCLC) patients with cachexia. Ann Oncol. 2017;28(8):1949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crawford J, Prado CM, Johnston MA, Gralla RJ, Taylor RP, Hancock ML, et al. Study design and rationale for the phase 3 clinical development program of Enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients (POWER trials). Curr Oncol Rep. 2016;18(6):37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Crawford J. Clinical results in cachexia therapeutics. Curr Opin Clin Nutr Metab Care. 2016;19(3):199–204.

    CAS  PubMed  Google Scholar 

  73. • Turner DC, et al. Pembrolizumab exposure-response assessments challenged by association of cancer cachexia and catabolic clearance. Clin Cancer Res. 2018;24(23):5841–9 This study evaluates the clearance of pembrolizumab in patients with weight loss and cancer cachexia.

    Article  PubMed  CAS  Google Scholar 

  74. Wang X, Feng Y, Bajaj G, Gupta M, Agrawal S, Yang A, et al. Quantitative characterization of the exposure-response relationship for cancer immunotherapy: a case study of nivolumab in patients with advanced melanoma. CPT Pharmacometrics Syst Pharmacol. 2017;6(1):40–8.

    Article  PubMed  CAS  Google Scholar 

  75. Feng Y, et al. Nivolumab exposure-response analyses of efficacy and safety in previously treated squamous or nonsquamous non-small cell lung cancer. Clin Cancer Res. 2017;23(18):5394–405.

    Article  CAS  PubMed  Google Scholar 

  76. Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y. Model-based population pharmacokinetic analysis of nivolumab in patients with solid tumors. CPT Pharmacometrics Syst Pharmacol. 2017;6(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  77. Badawi M, Coss CC, Phelps MA. Letter to the editor: exposure-response or clearance-response relationship in immune checkpoint therapy?-a comment on ‘correlation between nivolumab exposure and treatment outcomes in non-small-cell lung cancer’ by Basak et al. Eur J Cancer. 2019;114:25–6.

    Article  PubMed  Google Scholar 

  78. Bellesoeur A, Ollier E, Allard M, et al. Is there an exposure-response relationship for nivolumab in real-world NSCLC patients? Cancers (Basel). 2019;11(11). https://doi.org/10.3390/cancers11111784.

  79. Li H, Yu J, Liu C, Liu J, Subramaniam S, Zhao H, et al. Time dependent pharmacokinetics of pembrolizumab in patients with solid tumor and its correlation with best overall response. J Pharmacokinet Pharmacodyn. 2017;44(5):403–14.

    Article  CAS  PubMed  Google Scholar 

  80. Coss CC, Clinton SK, Phelps MA. Cachectic cancer patients: immune to checkpoint inhibitor therapy? Clin Cancer Res. 2018;24(23):5787–89. https://doi.org/10.1158/1078-0432.CCR-18-1847.

  81. Hurkmans DP, Basak EA, van Dijk T, Mercieca D, Schreurs MWJ, Wijkhuijs AJM, et al. A prospective cohort study on the pharmacokinetics of nivolumab in metastatic non-small cell lung cancer, melanoma, and renal cell cancer patients. J Immunother Cancer. 2019;7(1):192.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Loumaye A, Thissen JP. Biomarkers of cancer cachexia. Clin Biochem. 2017;50(18):1281–8.

    Article  CAS  PubMed  Google Scholar 

  83. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar L, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47.

    Article  PubMed  Google Scholar 

  84. Recio-Boiles A, Galeas JN, Goldwasser B, Sanchez K, Man LMW, Gentzler RD, et al. Enhancing evaluation of sarcopenia in patients with non-small cell lung cancer (NSCLC) by assessing skeletal muscle index (SMI) at the first lumbar (L1) level on routine chest computed tomography (CT). Support Care Cancer. 2018;26(7):2353–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Antoun S, Rossoni C, Lanoy E. What’s next in using CT scans to better understand cachexia? Curr Opin Support Palliat Care. 2018;12(4):427–33.

    Article  PubMed  Google Scholar 

  86. Nattenmuller J, et al. Prognostic impact of CT-quantified muscle and fat distribution before and after first-line-chemotherapy in lung cancer patients. PLoS One. 2017;12(1):e0169136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Potgens SA, et al. Klebsiella oxytoca expands in cancer cachexia and acts as a gut pathobiont contributing to intestinal dysfunction. Sci Rep. 2018;8(1):12321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bindels LB, Neyrinck AM, Salazar N, Taminiau B, Druart C, Muccioli GG, et al. Non digestible oligosaccharides modulate the gut microbiota to control the development of leukemia and associated cachexia in mice. PLoS One. 2015;10(6):e0131009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Bindels LB, Neyrinck AM, Claus SP, le Roy CI, Grangette C, Pot B, et al. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. Isme J. 2016;10(6):1456–70.

    Article  CAS  PubMed  Google Scholar 

  90. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    Article  PubMed  Google Scholar 

  91. Mehnert JM, Monjazeb AM, Beerthuijzen JMT, Collyar D, Rubinstein L, Harris LN. The challenge for development of valuable immuno-oncology biomarkers. Clin Cancer Res. 2017;23(17):4970–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aguilar EG, Murphy WJ. Obesity induced T cell dysfunction and implications for cancer immunotherapy. Curr Opin Immunol. 2018;51:181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang Z, et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med. 2019;25(1):141–51.

    Article  CAS  PubMed  Google Scholar 

  94. Lauby-Secretan B, et al. Body fatness and cancer--viewpoint of the IARC working group. N Engl J Med. 2016;375(8):794–8.

    Article  PubMed  PubMed Central  Google Scholar 

  95. • Murphy WJ, Longo DL. The surprisingly positive association between obesity and cancer immunotherapy efficacy. Jama. 2019;321(13):1247–8 This study evalautes influence of obesity on immunotherapy responsiveness.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Jain.

Ethics declarations

Conflict of Interest

Rishi Jain declares that he has no conflict of interest. Chris Coss has received compensation from Immuneering for service as a consultant; has patents pending on anti-cachexia therapeutic strategies; was a previous employee of GTx, Inc., which developed Enobosarm as an anti-cachexia therapy, but has had no financial or other relationship with GTx since 2014. Peter Whooley declares that he has no conflict of interest. Mitch Phelps declares that he has no conflict of interest. Dwight H. Owen has received research funding (paid to his institution) from Merck, Bristol-Myers Squibb, Palobiofarma, and Genentech; has received compensation from AstraZeneca for participation on an advisory board; and has received compensation from theMednet for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R., Coss, C., Whooley, P. et al. The Role of Malnutrition and Muscle Wasting in Advanced Lung Cancer. Curr Oncol Rep 22, 54 (2020). https://doi.org/10.1007/s11912-020-00916-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-020-00916-9

Keywords

Navigation