ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health

  • Bahare Salehi
    Bahare Salehi
    Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
    More by Bahare Salehi
  • Laura Machin
    Laura Machin
    Institute of Pharmacy and Food, University of Havana, Havana, Cuba
    More by Laura Machin
  • Lianet Monzote
    Lianet Monzote
    Parasitology Department, Institute of Medicine Tropical Pedro Kourí, Havana, Cuba
    More by Lianet Monzote
  • Javad Sharifi-Rad*
    Javad Sharifi-Rad
    Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
    *Email: [email protected]
  • Shahira M. Ezzat*
    Shahira M. Ezzat
    Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
    Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October 12566, Egypt
    *Email: [email protected]
  • Mohamed A. Salem
    Mohamed A. Salem
    Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
  • Rana M. Merghany
    Rana M. Merghany
    Department of Pharmacognosy, National Research Centre, Giza 12622, Egypt
  • Nihal M. El Mahdy
    Nihal M. El Mahdy
    Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
  • Ceyda Sibel Kılıç
    Ceyda Sibel Kılıç
    Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
  • Oksana Sytar
    Oksana Sytar
    Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, Kyiv 01033, Ukraine
    Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, Nitra 94976, Slovak Republic
    More by Oksana Sytar
  • Mehdi Sharifi-Rad
    Mehdi Sharifi-Rad
    Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
  • Farukh Sharopov
    Farukh Sharopov
    Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
    More by Farukh Sharopov
  • Natália Martins*
    Natália Martins
    Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
    Institute for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
    *Email: [email protected]
  • Miquel Martorell*
    Miquel Martorell
    Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
    Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
    *Email: [email protected]
  • , and 
  • William C. Cho*
    William C. Cho
    Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong
    *Email: [email protected]
    More by William C. Cho
Cite this: ACS Omega 2020, 5, 20, 11849–11872
Publication Date (Web):May 14, 2020
https://doi.org/10.1021/acsomega.0c01818

Copyright © 2020 American Chemical Society. This publication is licensed under CC-BY.

  • Open Access

Article Views

63660

Altmetric

-

Citations

328
LEARN ABOUT THESE METRICS
PDF (1 MB)

Abstract

Quercetin (Que) and its derivatives are naturally occurring phytochemicals with promising bioactive effects. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer’s, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, as well as its anticancer activity against different cancer cell lines has been recently reported. Que and its derivatives are found predominantly in the Western diet, and people might benefit from their protective effect just by taking them via diets or as a food supplement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles appear as a promising platform to enhance their bioavailability. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of Que.

1. Introduction

ARTICLE SECTIONS
Jump To

Quercetin (Que, Figure 1) is an antioxidant flavonol belonging to the flavonoid group and generally present as Que glycoside. (1−3) The Que aglycone is able to conjugate with glucose, xylose, or rutinose attaching to one of the Que’s hydroxyl groups with the consequent creation of various Que glycoside forms. (4) Quercetin-3-O-glycoside mostly serves as a pigment in flowers, vegetables, and fruits. (5) Nutritional Que is present mainly as glycosides rather than as aglycones. (6) It shows a relatively higher bioavailability than other phytochemicals, (7) with its main sources being grapes, berries, cherries, apples, citrus fruits, onions, buckwheat, kale, tomatoes, red wine, and black tea. (3,8,9) However, the Que concentration can vary from one plant to another or even in different parts of the same plant. (10,11)

Figure 1

Figure 1. Chemical structure of Quercetin.

Nutritional flavonoids, as is the case of Que, are even more powerful antioxidants than vitamins C and E, (12) with those which contain in formula a 3-OH and 3′,4′-catechol revealing to be 10 times stronger toward peroxynitrite than ebselen. (13) In different food products, onion-derived Que (containing Que glucoside) revealed a higher bioavailability than apple-derived Que (containing Que rhamnoside and Que galactoside). (2)
Que and its derivatives exert key biological effects on cell cycle progression and cellular signal transduction pathway regulation. (14) Moreover, the metabolic plasticity of Que is a determinant in the plant adaptive reaction. This also has a great impact on the early-stage adaptation of plants to their local ecosystems. (15) At the same time, Que aglycones are effective regulators of auxin transport, related to plant growth and development. (16)
The anti-inflammatory and antioxidant effects of Que are essential for its activity as oxidative, kinase, and cell cycle inhibitors, as well as for neuronal survival. Que apoptosis-inducing effects are the key for its anticancer potential. (17) Que, like many other compounds with a flavone ring, also exerts a marked effect on the immunity and inflammation. (18) Thus this review aims to review the therapeutic effects of Que using modern research techniques.

2. Results and Discussion

ARTICLE SECTIONS
Jump To

2.1. Preclinical Pharmacological Activities of Quercetin

2.1.1. Effects on Diabetes Complications

Many studies had shown that Que is a promising drug target for treating diabetes (Table 1). A number of mechanisms have been proposed for the antihyperglycemic action of Que, among which insulin sensitivity enhancement, glycogen synthesis promotion, and insulin resistance improvement are common. Que promotes the insulin sensitization effect by stimulating pancreatic β-cell proliferation, improving glucose metabolism and insulin secretion. (19) Que has also been reported as an α-glucosidase and α-amylase inhibitor. (20) In addition, Que improved plasma insulin levels and decreased blood glucose in streptozotocin (STZ)-induced diabetes models through maintaining the mass and function of β-cells and thus increasing the serum insulin effect. On the other hand, in alloxan-diabetic animal models, Que reduced islet cell failure, enhanced the insulin secretion of β-cells, and further prevented diabetes through decreasing oxidative stress. (21)
Table 1. Reported Pharmacological Activities for Quercetin
doses In vitro/in vivo/ex vivo route of administration model effect refs
Antidiabetic Effect
20 mmol/L ex vivo   INS-1 Pancreatic β-cells potentiated insulin secretion, β-cells protected against oxidative damages (22)
120 mg/kg/day for 8 weeks in vivo Oral diabetic rats decreased plasma triglycerides and weight of diabetic rats; decreased plasma cholesterol levels, fasting plasma insulin, and postprandial glucose and significantly increased insulin sensitivity index (22)
30 mg/kg b.w. for 14 days in vivo Intraperitoneal STZ-induced diabetic SD rats decreased serum blood glucose levels, enhanced insulin levels, and improved dyslipidemia, decreased oxidative stress injury (23)
10 and 15 mg/kg b.w. for 2 weeks in vivo Intraperitoneal STZ-induced diabetic SD rats regenerated pancreatic islets, increased insulin release, and reduced blood glucose and urine sugar levels. (24)
10 and 15 mg/kg b.w. for 8 weeks in vivo Intraperitoneal alloxan-induced diabetic mice decreased serum glucose levels and oxidative stress and inhibited apoptosis (25)
50 and 80 mg/kg b.w. for 45 days in vivo Oral STZ-induced diabetic Wistar rats regulated hyperglycemia, decreased the level of glycoprotein, scavenged ROS; modulated hepatic metabolism and antioxidant enzymes (26)
100 mg/kg b.w. for 49 days in vivo Oral STZ-induced diabetic SD rats attenuated fasting and postprandial hyperglycemia, reduced blood glycated hemoglobin (20)
25, 50 and 75 mg/kg for 28 days in vivo Oral STZ-induced diabetic Wistar rats decreased blood glucose and urine sugar. Enhanced plasma insulin and hemoglobin levels (27)
100 and 200 mg/kg b.w. for 6 weeks in vivo Oral STZ-induced diabetic Wistar rats controlled the blood sugar, decreased insulin resistance, and protected pancreatic cells (28)
50 mg/kg/day 4 weeks in vivo Intraperitoneal after 2 weeks of HFD-fed, albino rats i.p. with a low dose of STZ 35 mg/kg lowered blood glucose, increased serum insulin levels, preserved β-cell mass and function by increasing antioxidant activity (29)
diet containing Que at 0.04% (wt/wt) and 0.08% for 6 weeks in vivo Oral Type 2 diabetes C57BL/KsJ-db/db mice models decreased plasma total cholesterol and increased HDL cholesterol, decreased lipid peroxides, attenuated mitochondrial dysfunction (30)
50 and 100 μM ex vivo   cultured C2C12 skeletal muscles activated glucose uptake through an insulin-independent mechanism involving AMPK (31)
  ex vivo   cytological experiments on skeletal muscles decreased blood sugar level, increased GLUT4 expression, strengthened glucose uptake on skeletal muscle cells surface by stimulating AMPK (32)
0.08% of diet combined with acarbose (0.03% of diet) in vivo Oral db/db Mice decreased plasma glucose level and improved insulin resistance, reduced cyclic adenosine phosphoric acid (cAMP) accumulation and the influx of free fatty acids, activated protein kinase A (PKA), preserving cyclic nucleotide-dependent phosphodiesterase 3B (PDE3B), and accumulating two acylglycerol (DAG) (33)
Effect on Diabetic Complications, (A) Effect on Diabetic Liver Disorders
50 mg/kg b.w., per day for 30 days in vivo Oral STZ-induced diabetic rats increased CYP2E1 activity, reduced oxidative stress in liver, and decreased markers of liver damage (34)
50 mg/kg daily for 7 days in vivo Oral Alloxan-induced diabetes (75 mg/kg) in mice decreased the number of vacuolated cells and the degree of vacuolization (35)
15 mg/kg in vivo Intraperitoneal STZ-induced diabetic rats exerted significant preventive effect on liver cell damages (36)
(B) Effect on Diabetic Reproductive Disorder
25 or 50 mg/kg for 5 weeks in vivo Oral STZ-induced diabetic SD rats enhanced sexual activity and mount frequency (MF) and intromission frequency (IF), also increased sperm count as well as motility (37)
50 mg/kg for 5 weeks in vivo Oral STZ-induced diabetic rats reduced testicular damage (38)
15 mg/kg for 8 weeks in vivo Oral STZ-induced apoptosis of testicular cells in rats attenuated diabetes-related testicular dysfunction and histopathologic changes (39)
(C) Effect on Diabetic Neurodegenerative Disorders
5–20 mg/kg twice daily for 30 days in vivo Oral STZ-induced diabetic rats prevented changes in blood glucose, body weight, and performance in Morris water test and elevated the performance in plus-maze tasks (40)
40 mg/kg, twice daily for 31–35 days in vivo Oral STZ-induced diabetic mice in Morris water maze task decreased escape latency and increased the time spent by mice in the target quadrant during the Morris water maze task (41)
2.5, 5, and 10 mg/kg for 20 days   Intragastric STZ-diabetic-induced brain injuries decreased cerebral blood flow (CBF) and blood glucose level, prevented memory impairment, increased antioxidant enzymes activity, and attenuated brain energy metabolism and cholinergic dysfunction (42)
(D) Effect on Diabetic Retinopathy
150 mg/kg was administered per day for 20 weeks in vivo Gastric perfusion diabetic retinopathy in adult male STZ-induced SD rats alleviated retinopathy via downregulation of monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor (VEGF) expression levels (43)
Cardiovascular Effect
0.05 to 5 mg/kg in vivo Intravenous conventional and spontaneously hypertensive rats lowered blood pressure in both short- and long-term basis (44)
88.7 μmol/kg p.o, 45 min; 14.7 μmol/kg i.v., 5 min in vivo Oral Intravenous experimental anesthetized rats potentiated the hypotensive impact of bradykinin (10 nmol/kg i.v.) (45,46)
1.5 g Que/kg for 7 days in vivo Oral rat model attenuated carotid hypertrophy and arterial blood pressure, reduced aorta medial wall thickening and normalized cardiac translocation (47,48)
5 mg/kg and 10 mg/kg for 5 several weeks in vivo Oral nitro-l-arginine methyl ester hydrochloride (l-NAME)-induced high blood pressure in Wistar Kyoto mice reduced mean arterial pressure (12%) and heart rate (in STR) after 13 weeks (49)
10 mg/kg b.w., for 6 weeks in vivo Oral STZ-induced suffering from diabetes male Wistar Kyoto mice regenerated vascular function and reduced blood vessels sugar level and oxidative pressure (50)
20 mg/kg/day for 4 weeks in vivo Oral young male normotensive control (C) and automatically hypertensive rats (SHR) over the period of their 5–8th week of age damaged Na, K-ATPase action when all ATP and Na levels examined (51)
10 mg/kg/day for 7 days in vivo Oral pretreatment to Wistar mice before induction of myocardial infarction by subcutaneous hypodermic injection of isoproterenol (100 mg/kg) at a period of 24 h for two times reduced ST-segment level, decreased fat peroxidation in plasma and heart, and decreased free fatty acids levels in serum, serum phospholipids, total cholesterol, and triglycerides. (52)
Autophagy
20 μM in vitro   human umbilical vein endothelial cells (HUVECs) promoted cell survival (53)
100 mg/kg (in vivo) and 10–60 μmol (in vitro) in vitro and in vivo Intragastric pulmonary arterial smooth muscle cells (PASMCs) induced apoptotic and autophagic responses (54)
100 mg/kg in vivo Gavage C57BL/6J mice on ethanol-containing Lieber De Carli liquids diets reduced ethanol-induced liver injury and suppressed autophagic flux (55)
Anti-Alzheimer’s Effect
50 mg/kg b.w., 2 times a week for 4 weeks in vivo Oral homozygotic transgenic mouse line B6.129S7-Sod2tm1Leb/J Hydrogen peroxide- and Aβ-induced neurotoxicity decreased ROS levels, improved the typical morphology of mitochondria, prevented mitochondrial dysfunction (56)
50 mg/kg b.w., every day for 10 weeks in vivo Oral male C57BL/6J mice AMP-activated protein kinase activity on tau hyperphosphorylation enhanced AMP-activated protein kinase activity, reduced tau hyperphosphorylation, and improved cognitive deficit (57)
25 mg/kg b.w., every 2 days for 2 months in vivo Oral male SAMP8 mice model of AD improved cognition deficit, enhanced memory impairments, reduced astrogliosis (58)
30 mg/kg b.w. every day for 8 days in vivo Intraperitoneal scopolamine-induced cognitive dysfunction and neurodegeneration in male albino Wistar rats abridged transfer latency, reduced avoidance response, decreased in 3,4-methylene dioxy amphetamine, acetylcholinesterase levels, increased brain catalase and glutathione levels (59)
10 mg/kg b.w. every day for 12 weeks in vivo Oral aluminum-induced neurodegeneration in male albino Wistar rats decreased ROS production, amplified mitochondrial superoxide dismutase activity (60)
25 mg/kg b.w. every day for 3 months in vivo Intraperitoneal triple transgenic mouse model of AD reduced Alzheimer’s pathology, protected cognitive deficit, improved emotional function (61)
500 mg/kg b.w. every day for 10 days in vivo Oral five familial transgenic mouse model of AD increased brain apolipoprotein E, reduced insoluble Aβ levels (62)
1% in mouse chow for from 3 to 13 months in vivo Oral double transgenic female mice mouse model of AD decreased neuroinflammation, reduced neurodegeneration (63)
10 and 50 mg/kg b.w. at 30 min, 12 h, and 24 h after subarachnoid hemorrhage in vivo Intraperitoneal adult male SD rats, rat model of subarachnoid hemorrhage improved brain damage, provided neuroprotection (64)
5 and 10 μM ex vivo   cultured neurons Aβ42-induced oxidative cell toxicity decreased oxidative stress, reduced neurotoxicity (65)
  ex vivo   cell culture (PC12) H2O2-induced neurodegeneration reduced oxidative stress, abated neurotoxicity (66)
0.5% in AIN93G diet for 5 weeks in vivo Oral Aβ precursor protein 23 mice murine model of AD reduced memory dysfunction, decreased oxidative stress (67)
Wound Healing Effect
0.1, 1.0, and 10.0% concentration (w/v) in vivo Topical experimentally wounded male rats reduced wound area and increased wound contraction (68)
Antiarthritic Effect
10–100 mg/kg in vivo mice Intraperitoneal TiO2-induced arthritis model inhibited knee joint mechanical hyperalgesia, edema and leukocyte recruitment (69)
30 mg/kg in vivo mice (C57BL/6 mice) Oral collagen-induced arthritis (CIA) reduced arthritic inflammation and protected cartilage and bone from destruction. (70)
Antimicrobial Effect
100 mg/kg in vivo mice Subcutaneous Streptococcus suis (virulent SS2 ZY05719 strain)-infected mice reduced Streptococcus suis virulence (71)
5–30 mg/kg (in vivo) and 10–250 μM (in vitro) in vitro and in vivo Intraperitoneal human mononuclear and polymorphonuclear leukocytes, and rat whole blood. protected from gentamicin-induced oxidative stress (72)
Effect on Liver Diseases
100 mg/kg in vivo mice Oral chronic-plus-single-binge-ethanol feeding C57BL/6J mice protected liver from ethanol-induced liver fat accumulation and liver damage (73)
5–20 mg/kg in vivo rats Subcutaneous rotenone-induced hepatocellular dysfunction attenuated rotenone-induced liver-metabolic imbalances (74)
Antioxidant Effect
30 mg/kg b.w. in vivo Orally streptozotocin-induced diabetic rat decreased lipid peroxidation in both serum and liver tissue and controlled oxidative stress (75)
5.7 μM (for DPPH assay) and 0.78 μM (Fe3+-EDTA/H2O2 system) in vitro   erythrocytes exerted free-radical scavenging and ROS scavenging activity (76)
87.5, 90.4, and 78.6 μg/mL (for DPPH, FRAP, and OH radical scavenging assays, respectively) in vitro     attenuated oxidative stress through decreasing DPPH and OH radicals and reduction of ferric iron. (77)
10 mg/kg b.w. in vivo Intraperitoneal LPS-mediated oxidative stress in spleen and bone marrow of Funambulus pennanti. increased SOD, catalase, and GPx activities and decreased lipid peroxidation of bone marrow and spleen tissues (78)
different serial concentrations from 3.33 mg/mL stock solution in vitro     attenuated oxidative stress (79)
25 and 50 mg/kg b.w. day for 6 days in vivo Orally phenylhydrazine-mediated oxidative stress male SD rats controlled oxidative injury through modulating gene expression, and suppressed ROS generation, improved arterial blood pressure as well as resistance of peripheral vascular; increased response to bradykinin, acetylcholine, as well as phenylephrine in a dose-dependent manner; controlled blood glutathione; decreased plasma MDA levels, nitric oxide and superoxide anions. (80)
Que stimulate glucose uptake on isolated cells through stimulating the GLUT4 expression and endogenous GLUT4 translocation by upregulating the estrogen receptor-α, subsequently enhancing phosphorylation of both phosphatidylinositol-3-kinase/Akt (PI3K/Akt) and AMP-activated protein kinase/Akt (AMPK/Akt) signal pathways, increasing the glucose uptake in skeletal muscle cells. (31,32) Que enhances the glucose utilization by acting on glucose transport and insulin-receptor signaling, which plays a similar role to rosiglitazone such as glycogen phosphorylase (GP) and peroxisome proliferator-activated receptor γ (PPARγ) agonist. (81,82) The molecular interactions of the ligands, Que, gallic acid, and metformin were compared on various diabetes mellitus-related protein targets, such as GP and PPARγ. Que possesses good binding affinity to both targets. (27)
Que could restore the interference caused by hyperglycemia by modulating endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS). (83,84) In addition, Que may activate silencing factor 1 (silent information regulator 1, SIRTl) to increase insulin sensitivity.
2.1.1.1. Effect on Diabetic Liver Disorders
The increase of CYP2E1 in liver in the case of diabetes has been reported (85) thus and the enzyme inhibition mainly prevents the liver oxidative damage. In an in vivo study on rats, it was found that STZ-induced diabetes caused hyperglycemia, body weight loss, damaged hepatocyte ultrastructure, together with increased protein levels and CYP2E1 activity in liver. Thus, Que administration (50 mg/kg b.w., per day, during 30 days) led to a marked decrease in CYP2E1 activity, together with pro-oxidant–antioxidant balance promotion. (86) Other studies are shown in Table 1.
2.1.1.2. Effect on Diabetic Nephropathy
Que may improve the kidney shape altered by hyperglycemia through protein kinase C (PKC) activity inhibition, transforming growth factor β 1 (TGF-β1) expression downregulation, extracellular matrix formation reduction, and renal hypertrophy delay. (87) Que can also prevent renal pathological changes, delay diabetic nephropathy progression, and improve the glycolipid metabolism in type 2 diabetic rats. Moreover, Que could prevent diabetes-induced oxidative stress in renal tissues. (88) Que attenuated the tissue dyslipidemic due to lipid deposits in diabetic rats with kidney disease via activating AMPK phosphorylation and suppressing sterol regulatory element binding protein (SREBP)-1c in kidney, thereby preventing renal progression. (89)
2.1.1.3. Effect on Diabetic Reproductive and Neurodegenerative Disorders
Many animal studies proved the improving effect of Que on diabetes-induced reproductive dysfunction processes, such as sexual dysfunction, testicular dysfunction, or infertility (Table 1). Moreover, studies that proved the Que protective effect on diabetes-induced neurodegenerative diseases are shown in Table 1.
2.1.1.4. Effect on Diabetic Retinopathy
The involved mechanisms in diabetes-induced diabetic retinopathy mainly include oxidative stress, inflammation, neurodegeneration, and damaged retinal vasculature. (90) An in vitro experiment on human retinal endothelial cells proved that Que inhibited high-glucose-induced cell proliferation by reducing the vascular endothelial growth factor (VEGF) expression. (91) Furthermore, Que exerted protection against STZ diabetes-induced retinal neurodegeneration by reducing oxidative damage and NF-κB-mediated inflammation, (92) ameliorating neurotrophic factors levels and inhibiting the neurons apoptosis. (93)

2.1.2. Effect on Cardiovascular Diseases

Many studies were traced on the effects of Que on cardiovascular diseases (Table 1). The inhibitory effect of Que on the angiotensin-converting enzyme activity by converting bradykinin and angiotensin I was studied by Häckl et al. (45) Bradykinin has a more significant effect on the blood pressure in rats on pretreatment with captopril or Que. Que also reduced the hypertensive response to angiotensin I. (94) Moreover, the long-term use of Que diminished the risk of elevation of systolic blood pressure (SBP) levels in spontaneously hypertensive rats with a limited or full protection of most of the consequences caused by Nω-Nitro-l-arginine methyl ester hydrochloride (l-NAME). (49)
Moreover, the effects Que on vasoconstrictor and vasodilator reactions in the porcine-separated heart were studied by Suri et al. (95) who reported that Que enhances both the cyclic guanosine monophosphate (cGMP) content of the artery and cGMP-dependent relaxations to glyceryl trinitrate (GTN) and sodium nitroprusside (SNP) as well as restricted receptor-mediated contractions of the porcine. In addition, Que at nutritionally essential levels reduced the responsiveness of typical L type Ca2+ channels to the pharmacological stimulation managed by (S)-(−)-methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) pyridine-5-carboxylate (Bay K 8644), leading to cardioprotection. Dietary Que and its derivative epicatechin can improve the endothelial function through modulation of the blood nitric oxide concentration; they can also inhibit nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) that activates eNOS and hence enhance vascular activity. (96)
Another research has confirmed Que safety effect against myocardial ischemia-reperfusion injury (MIRI) in rabbits. (97) Que restricted MIRI-induced NADPH oxidase 2 (NOX2), eNOS, and iNOS mRNA and protein expression. The actions of extracellular signal-regulated kinase (ERK1/2), p38 MAP kinase (mitogen-activated protein kinase), Akt, and glycogen synthase kinase-3 β (GSK3β) were considerably enhanced with pressure overload and attenuated by Que therapy. Moreover, Que may also improve the cardioprotective impact of amlodipine against damage activated in the heart by ischemia/reperfusion. (98)
Que also reduced the transcriptional action of NF-κB in human hepatocytes. (99) In human C-reactive protein (CRP) transgenic mice, Que quenched interleukin-1β (IL-1β)-induced CRP appearance, as effected by sodium salicylate. In mice, Que significantly attenuated coronary artery illness by 40% (sodium salicylate by 86%). (99) Yan et al. (100) hypothesized that the Que heart hypertrophy prevention may be modulated by preventing activator protein 1 (c-fos, c-jun proteins) and initiating PPAR-γ signaling pathways.
Furthermore, in rat aorta, Que (0.1–100 μM) relaxed the contraction induced by pretreatment with 5 mM norepinephrine in a concentration-dependent manner. Finally, it was concluded that Que induces Ca2+ elevation, leading to NO production and Ca2+-activated K+ (KCa) channel activation in endothelium cell. (101) Wang et al. (102) reported that Que may act as a cardioprotector by initiating the PI3K/Akt signaling process and modulating the expression of Bcl-2 and Bax proteins through a study on male Sprague–Dawley rats.
In a placebo-controlled double-blind study, administration of 730 mg of Que per day for 28 days caused significant reductions in systolic (−7 ± 2 mm Hg), diastolic (−5 ± 2 mm Hg), and mean arterial pressures (−5 ± 2 mm Hg) in level 1 hypertensive patients. (103) Overweight or obese subjects ranged between 25 and 65 years were exposed to a double-blind study of 6 weeks to examine the effects of Que (150 mg Que daily). (104) Que plasma concentrations in fasting conditions increased from 71 to 269 nmol/L during Que treatment. Moreover, Que reduced SBP and HDL cholesterol levels, while total cholesterol levels, triacylglycerol (TAG), and the LDL:HDL cholesterol and TAG:HDL cholesterol rates were unaltered.
Que showed anti-inflammatory properties in patients with coronary artery disease (CAD), through a decrease in the transcriptional activity of the NF-κB. To prove this effect, Chekalina et al. (105) designed a study to determine the effect of Que on the indicators of chronic systemic inflammation in CAD patients. The study involved 85 CAD patients, stable angina pectoris, functional class II, and heart failure. (105) Thirty patients received Que at a daily dose of 120 mg for 2 months, while the remaining 55 patients considered as the control group received β-blockers, statins, and aspirin. An increase in the levels of IL-1β and tumor necrosis factor-α (TNF-α) and a moderate increase in IL-10 levels were detected in the serum of patients with CAD. Under the influence of Que, levels of IL-1β and TNF-α were reduced and IL-10 levels tended to decrease. Also, Que decreased the expression of the inhibitor of kappa βα (Ikβα) gene relative to the control group.
In a 10-week double-blind randomized clinical test on 72 females having type 2 diabetes, the subjects were assigned to Que (500 mg capsule daily) and placebo groups. The biochemical parameters were compared between the baseline and the end of the study. Consequently, Que consumption reduced systolic hypertension considerably relative to the placebo group, and the HDL levels were significantly reduced in both categories along with changes in total cholesterol levels, LDL, and triglycerides. Moreover, Que decreased the serum concentration of TNF-α and IL-6. (106)
In another clinical study, 23 healthy men were fed 4.3 g of onion extract (containing 51 mg of Que) once a day for 30 days. (107) The onion extract consumption did not considerably affect fasting flow-mediated vasodilation (FMD) but enhanced the postprandial FMD considerably.

2.1.3. Autophagy

Autophagy is a degradation process through which macromolecules, misfolded proteins, and organelles are degraded by lysosomes and recycled, (108) which constitutes an indispensable process for cellular homeostasis. (109) In this context, targeting autophagy by natural products is considered a potential therapeutic strategy for the prevention and treatment of several disorders.
Que has been reported to promote autophagic responses and thus protects human umbilical vein endothelial cells (HUVECs) against high-glucose-induced damage. (53) This study showed that Que can significantly promote cell survival via the induction of glutathione (GSH) and Beclin-1 and microtubule-associated protein light chain-3- II (LC3-II)/LC3-I ratio as well as reduction of oxidative stress marker levels. This promising activity can be beneficial in ECs insufficiency, and this will provide a high therapeutic potential for diabetic angiopathy. (53)
Similarly, Que has significant capacity to induce apoptotic and autophagic responses in pulmonary arterial smooth muscle cells (PASMCs). (54) This activity was connected to the ability of Que to induce the expression and transcriptional activity of the autophagy regulator, forkhead box protein O1 (FOXO1). This indicates that Que is a promising candidate for treating hypoxia-associated pulmonary arterial hypertension via promoting hypoxia-induced autophagy. This is specifically applied in combination with autophagy inhibitors. (54)
Intriguingly, Que has significant abilities to ameliorate lysosome damage-mediated autophagy dysfunction in alcohol liver disease (ALD). (55) mTOR-TFEB-mediated activity was associated with the induction of lysosomal-associated membrane protein 1 (LAMP-1), LAMP2, and Ras-related protein (Rab7) expression as well as reduction of LC3-II and p62 levels. (55)

2.1.4. Effect on Alzheimer’s Disease

Que is used for the development of anti-Alzheimer’s disease (AD) formulations due to its neuroprotective effect against oxidative stress and excitotoxicity via regulating apoptosis mechanisms. (65) Diverse mechanisms have been suggested for the Que neuroprotective actions including amyloid-β (Aβ) aggregation inhibition, intracellular neurofibrillary tangles (NFTs) formation inhibition, amyloid precursor protein (APP) inhibition, cleaving enzyme (BACE1) inhibition, acetylcholinesterase (AChE) inhibition, and others attenuating the oxidative stress in AD (Table 1).
Que and its bioactive molecules are helpful to ameliorate neurogenesis and neuron longevity modulating signaling pathway such as P13 kinase, AKT/PKB tyrosine kinase, and protein kinase C in AD. (61,110)
Many in vitro studies demonstrated that the hydroxylfunctional groups of the B-ring of Que play an important role in Aβ aggregation inhibition and disrupt the mature fibrils by forming hydrogen bonds with the β-sheet structure of Aβ. (110) Moreover, other studies have shown that Que increased in vitro neuronal culture survival. (17) Additionally, Que at 100 μM displayed a considerable inhibition of β-site APP cleaving enzyme 1 (BACE1) in vitro in a cell-free system by 11.85%. (111)
The other characteristic pathological implication of AD is the appearance of NFTs, with the core protein being tau, and its accumulation into tangles involves phosphorylation. (112) Que efficiently inhibited tau pathology via different mechanisms such as reducing hyperphosphorylation of tau protein with retrogressive action on the hyperphosphorylation process, (111) inhibiting GSK3β activity and consequently inhibiting hyperphosphorylation of tau protein or possessing anti-HSP70 activity, and thus reducing tau pathology via attenuating the hyperphosphorylated tau level. (110)
The decline in cholinergic neurotransmission is a reliable and early symptom of AD, and AChE is a noteworthy therapeutic target for symptomatic improvement in AD. (113) Que in vitro competitively inhibits AChE and diminished AChE activity in the hippocampal region. (110) In one study, Que (50 mg/kg b.w.) stopped the increase of AChE activity due to diabetes in the cerebral cortex and hippocampus. In relation to this, through restoring the function of acetylcholine (ACh), Que mitigated the cholinergic signaling and facilitated regaining lost memory in diabetic rats. (114) In another study, a single dose of Que avoided the memory impairment caused by scopolamine. (115) Moreover, a molecular docking study predicted that Que is superior to conventional AchE inhibitor drugs. (116)

2.1.5. Effect on Tyrosinase Activity

Tyrosinase is the key enzyme in the pathway of melanogenesis, which involves three pigmentary specific enzymes in melanosomes (117) and is widely present in mammalians, plants, bacteria, and fungi. (118,119) Tyrosinase catalyzes the hydroxylation of monophenols to O-diphenols (monophenolase activity), then to O-quinone (diphenolase activity), and finally to melanin. Excessive melanin accumulation leads to several pigmentation disorders, such as melasma age spots, freckles, and melanoma. (120) Inhibiting tyrosinase overexpression may decrease the generation of melanin. Que could inhibit both monophenolase and diphenolase activities of tyrosinase, and it inhibits diphenolase reversibly and competitively (IC50 of 3.08 ± 0.74 × 10–5 mol/L). (121)

2.1.6. Effect on Arthritis

Arthritis is associated with decreased motion anility, and its symptoms generally include swelling, pain, stiffness, and redness. (122) There are over 100 types of arthritis, and the most common are osteo, gout, and rheumatoid arthritis. Genetic, hormonal, and environmental factors have been related to arthritis. Treatment of arthritis includes drug steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and/or surgery. (123,124) A prolonged use of steroids may lead to osteoporosis and fractures, while a prolonged use of NSAIDs can lead to gastric ulcers and renal damage. Chronic joint inflammation can lead to destruction of joints, thus requiring partial or total replacement of the destroyed tissues surfaces via arthroplasty. (124)
Que was reported to reduce pain and inflammation associated with arthritis. (69) This dietary flavonoid inhibited, in mice, knee joint mechanical hyperalgesia, edema, and leukocyte recruitment in a dose-dependent manner without adverse effects on other organs such as liver, kidney, or stomach. (69) Que mechanisms included inhibition of oxidative stress, cytokines and COX-2 production, and proteoglycan degradation as well as activation of nuclear factor-erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway. (69)
Additionally, Que has been reported as a potential drug for the treatment of rheumatoid arthritis. (70) The administration of Que was effective alone than methotrexate or in combination with methotrexate to reduce joint inflammation, in mice, and to provide the highest protection. (70) The mechanisms included reduction of TNF-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 (MCP-1) levels.
Therefore, Que represents a promising natural compound to treat pain and inflammation associated with arthritis.

2.1.7. Effect on Microbial Infections

Streptococcus suis is a globally distributed zoonotic Gram-positive bacterial pathogen. (125,126)S. suis-associated human infection, mostly from the pig industry, may lead to meningitis, septicemia, endocarditis, and deafness. (127) Suilysin, a cytotoxic toxin secreted by S. suis, plays a potential role in infection. Thus, the effective interference of suilysin is a line of defense in the treatment of S. suis infection.
Que has been shown, in mice, to inhibit suilysin activity as well as decreasing S. suis-induced cytotoxicity. Its mechanism included the effective reduction IL-1β, IL-6, and TNF-α levels. (55) Additionally, Que was effective to inhibit reactive oxygen species (ROS) production and lipid peroxidation in gentamicin-induced oxidative stress. (72) Intriguingly, this study, which was performed in vitro on human leukocytes and in vivo on whole rat blood, showed that Que has more inhibitory capacity than ascorbic acid, the reference inhibitor. (72) Thus, Que may be considered as a potential candidate for the treatment of S. suis infection by targeting suilysin and its associated inflammation.

2.1.8. Effect on Liver Diseases

Liver plays an indispensable role in energy metabolism, protein synthesis, production of biochemicals necessary for digestion, and detoxification of various metabolites and drugs. (128) According to recent statistics, liver diseases cause approximately 2 million deaths/year worldwide, accounting for approximately 3.5% of worldwide deaths. (129) Additionally, alcohol consumption was reported, according to the global burden of disease (2018), to account for approximately 10% of global deaths among populations aged 15–49 years in 2016. (73) Que was shown to ameliorate ethanol-induced liver steatosis in chronic-plus-binge-ethanol feeding mice. (73) This therapeutic potential was associated with the improvement of lipophagy. Additionally, Que attenuates liver damage, increased serum triglyceride, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels. (73) Moreover, some xenobiotics can have severe adverse effects leading to liver toxicity. Among xenobiotics, rotenone, a natural pesticide, has been reported to cause liver toxicity. (130) Que displayed significant ameliorative activity in rotenone-induced hepatocellular dysfunction. (74)

2.1.9. Anticancer Effects

Many reports were detected on the anticancer activity of Que, and they are summarized in Table 2.
Table 2. Reported Anticancer Activity of Quercetin
extract/compound doses In vitro/in vivo route of administration model effect refs
Que 5 μM in vitro   H1975 and A549 human lung cancer cell lines Que significantly inhibited nickel-mediated invasion in H1975 and A549 human lung cancer cell lines; inhibited inflammatory mediators secretion; inhibited mRNA as well as protein expression of TLR4 and Myd88; reduced IKKβ as well as IκB phosphorylation; reduced NF-κB nuclear level; reduced MMP-9 expression; TLR4/NF-κB signaling pathway deactivation. (131)
Que 50 and 75 μM in vitro   PA-1 human ovarian cancer cell line Que significantly reduced cell viability through a dose-dependent manner; enhanced apoptosis in invasive ovarian cancer cell lines (further assured by AO/EtBr dual stain, DAPI stain as well as DNA fragments); reduced Bcl-2 and Bcl-xL; increased Bad, Bid, Bax, caspase 3, caspase 9, as well as cytochrome c; enhanced mitochondrial-induced apoptotic pathways, so suppresses the invasive ovarian cancer cell growth. (132)
Que 50 μM in vitro   HSC-6 and SCC-9 human oral cancer cells Que inhibited viability of cells, their migration and invasion (using MTT assay and western blot assay); decreased MMP-9 and MMP-2 abundance; downregulated miR-16 and upregulated HOXA10 (using qRT-PCR), where the relation linking miR-16 and HOXA10 has been tested using luciferase activity assay, RNA immunoprecipitation (RIP) as well as western blot analysis. (133)
Que 10 mg/mL in vitro   NPC039 nasopharyngeal cancer cell line. Que decreased cell viability up to 36% compared to control after only 24 h (using MTT assay); suppressed VEGF expression and NF-κB activity (using RT-PCR and ELISA). (134)
Que 40 μM in vitro   LPS-mediated inflamed WI-38 lung fibroblast cells Que may control LPS-mediated inflammation in lung fibroblasts through increasing cell viability and decreasing its apoptosis (using CCK-8 assay and Annexin V-FITC/PI Stain, respectively); reduced miR-221 expression level (using qRT-PCR), IL-6 as well as TNF-α (using ELISA) in the cells; suppressed NF-κB as well as JNK signaling pathways (using western blot). (135)
Que 50 μM in vitro   D44+/CD24– cancer stem cells and MCF-7 breast cancerous cell line. Que may have a potential role in treating breast cancer through suppressing breast cancerous stem cells (CD44+/CD24−) via suppressing PI3K/Akt/mTOR- pathway; suppression of cell viability, formation of clones, and generation of mammospheres; arrest of G1 phase; suppression of Cyclin D1 as well as Bcell lymphoma2 overexpression; enhancement of Bcl-2-like protein4 expression; downregulation of α estrogen receptor. (136)
Que 30 μM in vitro   MCF-7 and MDA-MB-231 human breast cancer cell lines Que may have a notable effect in controlling breast cancer through suppressing cancer cells mobility (trans-well invasion as well as wound healing assays) by suppressing glucose uptake as well as lactic acid production and reducing PKM2, GLUT1, and LDHA levels, so limiting the tumor cell migration; downregulation of MMP-2, MMP-9, and VEGF expression (western blot); induction of autophagy through deactivating Akt-mTOR pathway. (137)
Que and its metabolites IC50 value: Que 14.0 mg/mL and its metabolites, methylQue 11.0 mg/mL and Que glucuronide 4.0 mg/mL. in vitro   HL-60 Leukemic cells Que and its metabolites (after microbial transformation), methylQue and Que glucuronide, proved their efficacy as cytotoxic agents (using MTT as well as TB assays). (138)
Que 50 mg/kg b.w./day, for 9 days. in vivo Intraperitoneal cisplatin-induced toxicity in kidney and tumor tissues Male Fischer F344 rats Que succeeded in controlling the nephrotoxicity caused by cisplatin without affecting its antitumor action through decreasing the oxidative stress, inflammation and apoptotic effects. (139)
Que 40 μM in vitro   CD44+/CD133+ and CD44+ prostate cancerous stem cells Que may control prostate cancer in stem cells through inhibiting their proliferation through downregulation of MK expression, which led to reduction in cell migration and formation of spheroids; co-treatment of MK siRNA with Que decreased cell survival, increased apoptosis, and arrested G1 phase more efficiently than the single therapy; the co-therapy deactivated PI3K, AKT, and ERK1/2 pathways and decreased p38, ABCG2, and NF-κB expression. (140)
Que 20, 40, 60, 80, or 100 μM in vitro   U2OS and Saos-2 bone cancer cell lines Que can inhibit cancerous cell proliferation and invasion through suppression of PTHR1 by reducing its expression; decreased cell viability and its adhesion and migration; attenuated MMP-2 and MMP-9. (141)
Que 20 and 40 μM in vitro   A431-III cell lines. Que may have a potential effect in inhibiting metastasis of cancerous cells. Que decreased protein level as well as RPS19 activity through blockade of Akt/mTOR/c-Myc pathway. (142)
Que 2, 4, and 8 μM in vitro   Human A375 melanoma cells Que combined with curcumin suppressed the cancerous cell proliferation through decreasing cell viability (MTT assay), decreasing the number of colonies (using colony assay), and altering Wnt/β-catenin signaling pathway (using western blot) (143)
Que 20 μM in vitro   Human MCF-7 breast cancer cell line Que, combined with doxorubicin, enhanced the antiproliferative effect of breast cancerous cells through decreasing the cell viability (using SRB assay) (144)
Que 20, 40, 60, and 80 μM in vitro   Human SW480 cells and clone 26 colon cancer cell lines Que decreased the cell viability of the cancerous cells (using MTT assay); decreased cyclin D1 expression (using RT-PCR and western blot); downregulation of Wnt/β-catenin pathway. (145)
Que 20 μM in vitro   4T1 murine mammary cancer cells Que presented a dose-dependent suppression of cell progression and prompted apoptosis in cancerous cell; inhibited luciferase activity; inhibited Wnt/β-catenin pathway through decreasing β-catenin protein stabilization. (146)
Que 10 μM in vitro   Human SK-Br3, MDA-MB-453, and MDA-MB-231 breast cancer cell lines using a lower dose of Que also succeeded in arresting G1 phase of cancerous cell cycle through trapping E2F1; inhibited pRb phosphorylation of pRb; DNA damage; Chk2 activation; downregulated cyclin B1 as well as CDK1; inhibited the employment of NF-Y to cyclin B. (147)
Que 25, 50, and 75 mg/kg b.w. in vivo Intraperitoneal Murine Dalton’s lymphoma cells transplanted- AKR strain mice Que had a potential role in the downregulation of PKC activity due to their antioxidant activity; improved apoptotic potential, as detected by measures of caspase 3, caspase 9, PARP, PKCa, as well as nuclear condensation; decreased cell survival; stimulated death receptor-induced apoptosis through TNFR1 in the cancerous cells. (148)

2.1.10. Antiparasitic Activity of Quercetin

Despite the pharmacological properties of Que, interest has been focused on its antiparasitic potential. In this sense, the capacity of this flavonol to affect the parasite growth and disease progression has been demonstrated in different preclinical models, as well the potential of Que-related compounds (Table 3). In this sense, the main reports have been dedicated to evaluate the in vitro potentialities on the main protozoa parasites that cause the major mortality and morbidity, including Leishmania, Trypanosoma, and Plasmodium. Nevertheless, other reports related to activity against Toxoplasma gondii, Giardia lamblia, and Entamoeba histolytica have also been evidenced (Table 3).
Table 3. Quercetin and Related Compounds with Reported Effects on Parasites of Medical Importance Using Different In Vitro or In Vivo Models
parasite target experimental models/mechanism of action refs
Quercetin
Encephalitozoon intestinalis in vitro/antiparasitic activity (149)
Giardia lamblia and Entamoeba histolytica in vitro/high antigiardia activity and slight antiamebic activity (150)
Leishmania amazonensis in vivo/antileishmanial effect on due to the ROS generation and disrupted parasite mitochondrial function. (151)
Leishmania braziliensis in vitro/inhibition of promastigote forms due to the increase of the reactive oxygen species production, phosphatidylserine exposure, and loss of plasma membrane integrity. Reduction of parasites number in infected macrophages associated with the reduction of TNF-α and increase of IL-10 synthesis. (152)
Leishmania donovani in vitro/high activity but slight selectivity for parasite DNA topoisomerase I (153)
Leishmania mexicana in vitro/inhibition of parasite cathepsin L (154)
Leishmania panamensis in vitro/selective inhibition of nuclear DNA topoisomerase II enzymes from promastigotes (155)
Plasmodium falciparum in vitro/antiplasmodial potential (156)
Plasmodium falciparum and Plasmodium berghei in vivo/high reduction of parasitaemia in animal model (157)
Toxoplasma gondii in vitro/inhibits the synthesis of heat shock proteins (HSP90, HSP70, and HSP27). (158)
Trypanosoma brucei in vitro/inhibition of RNA triphosphatase Cet1 (159)
Trypanosoma brucei inhibition of hexokinases 1 (160)
Trypanosoma brucei in vitro/caused a loss of mitochondrial membrane potential and marked DNA degradation. (161)
Trypanosoma brucei gambiense in vitro/induced the death of parasite by apoptosis (162)
4-Hydroxycoumarin Derivatives (Isosters of Quercetin)
Trypanosoma cruzi in vitro/moderate trypanocidal activity (163)
Isoquercitin
Entamoeba histolytica in vitro/inhibition of parasite viability and growth (164)
Quercetin Analogues
Plasmodium falciparum in vitro/antiplasmodial potential (156)
In another context, the antiparasitic activity of several natural-derived products has been attributed to the presence of Que or derived compounds (Table 4), which constitutes one of the most common metabolites in plants. Currently, an attractive alternative to synthetic drugs is the search for active molecules from natural sources, such as the medicinal plants that have been used in the treatment of parasites since ancient times. As could be observed, several plant-derived products with antiparasitic activity have been correlated with the presence of Que or some of the related compounds. In general, different families and plant species have been studied on parasites of medical relevance, including protozoa and helminths. Also, in this case, we note that some studies have been conducted on animal models, which provide interesting and more comprehensive information.
Table 4. Quercetin and Related Compounds from Plant-Derived Products with Reported Effects on Parasites of Medical Importance
family natural source isolated compound parasite target comments refs
Amaranthaceae Atriplex lindleyi Moq. Que Plasmodium falciparum in vitro antimalarial activity. (165)
Asteraceae Bidens pilosa L. Que-related glucopyranoside Plasmodium spp. reduction of parasitaemia in animal model. (166)
  Pluchea carolinensis (Jacq.) G. Don Que Leishmania amazonensis activity against promastigotes and amastigotes. No effect on animal model of leishmaniasis. (167)
Crassulaceae Kalanchoe pinnata (Lam) Pers. Que aglycone-type structure Leishmania amazonensis activity against amastigotes and potent oral efficacy on cutaneous leishmaniasis. (168)
Cucurbitaceae Momordica charantia L. Que-enriched subfraction Fasciola hepatica affect the embryonic development of eggs and strongly inhibited the miracidium hatching. (169)
Fabaceae Dimorphandra gardneriana Tul. Que Leishmania infantum active on promastigotes and amastigotes. (170)
  Quercus infectoria Olivier Que Leishmania major extract showed in vitro and in vivo antileishmanial activity, which was correlated with Que amount. (171)
Leguminosae Mezoneuron benthamianum Baill. Que Plasmodium falciparum in vitro antimalarial activity. (172)
Malvaceae Guazuma ulmifolia Lam. ethanol extract Leishmania braziliensis, Leishmania infantum and Trypanosoma cruzi. significant antikinetoplastid in vitro inhibition. (173)
Melastomataceae Miconia langsdorffii Cogn. Que derivatives Schistosoma mansoni cause a significantly reduction in motor activity of adult worms. (174)
Meliaceae Azadirachta indica A. Juss. Que -3-rhamnoside, Que-3-rutinoside Plasmodium falciparum inhibition of substantial oxidant stress during malarial infection. (175)
Myrtaceae Psidium acutangulum Mart. ex DC glycosylated Que derivatives Plasmodium falciparum in vitro antimalarial activity. (176)
  Psidium brownianum Mart. ex DC. and Psidium guajava L. Que and derivatives Trypanosoma cruzi, Leishmania brasiliensis and L. infantum potent in vitro antikinetoplastidae activity. (177)
Poaceae Cymbopogon citratus (DC.) Stapf Que and derivatives Giardia lamblia in vitro and in vivo effect, correlated with phenolic compounds abundance. (178)
Polygonaceae Fagopyrum esculentum Moench Que Leishmania donovani in vitro antileishmanial activity. (179)
Rutaceae Diosma pilosa I.J Williams Que Plasmodium falciparum in vitro antimalarial activity. (180)
As could be appreciated in previous overview (Tables 3 and 4), remarkable efforts have contributed to elucidate the Que mechanism of action. In this sense, the antiparasite effect has been correlated with the disruption of mitochondrial function and the inhibition of different important enzymes and molecules including heat shock proteins (HSP), acetylcholinesterase enzyme, DNA topoisomerases, and kinases. Probably, the different targeted molecules promote the death in parasite by apoptosis, which has been evidenced in particular with the increase of ROS and DNA degradation. In addition, indirect biological effects of Que could have positive antiparasite effects, due to the induction of microbicidal response such as the production of nitric oxide and some cytokines.
In general, the development of drugs to treat parasitic diseases has been scarce, due to the fact that these diseases are more often presented in developing countries. However, as can be appreciated, Que and derivatives could constitute a source to explore new drugs with a wide antiparasitic spectrum. Several studies have been reported to prove the in vitro activity; although few reports described potentialities of this flavonol in animal models. However, some formulation has been designed and evaluated on experimental in vivo model, which is described in next work.

2.2. Quercetin in Preclinical and Clinical Trials

2.2.1. Preclinical Anticancer Effects

Cancer is an important problem in both developed and developing countries. Plants are important and promising sources for the treatment of cancers as well as many other diseases due to the secondary metabolites that they contain. Therefore, scientists are trying to discover new plant species and new active substances against different types of cancers, as well. (181)
Polyphenols, flavones, and flavonoids have great anticancer potential in different types of cancers. (182) Que is an important flavonoid that might be considered as an important agent in various cancer cells, and since it is predominantly found in Western diet, we might benefit from its protective effect just by taking it via our diets of as a food supplement. Moreover, Que is considered to be a chemopreventive that acts on signal transduction pathways as modulators to prevent, inhibit, or reverse carcinogenesis. By this activity, it shows many activities such as apoptosis, cell migration, differentiation and proliferation, oxidative balance, and inflammation. (183) It also shows antioxidative activity and inhibits enzymes that activate carcinogens. (184)
2.2.1.1. Pancreatic Cancer Preclinical Effects
Zhou et al. (185) studied the efficacy of Que against pancreatic cancer, and it was observed that apoptosis resistance was reverted and proliferation, angiogenesis, cancer stem-cell marker expression were reduced with Que treatment, which is a dietary polyphenol. In another study by Serri et al., (186) the combination of gemcitabine with Que exerted a synergistic effect especially in the migration of pancreatic cancer cells. Though this is an in vitro study, it is worth mentioning that since pancreatic adenocarcinoma is one of the most fatal types of cancer, it is resistant to drugs, demonstrates aggressive behavior, leads to unpredictable genetic mutations, and is usually diagnosed at a late stage and usually after metastasis.
2.2.1.2. Osteosarcoma Preclinical Effects
Osteosarcoma is a bone disease; it is known to be a malignant neoplasm mostly in teenagers and also in adults, and it is a worldwide health problem. Que is reported to be beneficial against this disease by inhibiting the proliferation and apoptosis of human osteosarcoma cells U2OS/MTX300. It also reduces the invasion, adhesion, proliferation, and migration of osteosarcoma cells with the inhibition of parathyroid hormone receptor 1. (141)
2.2.1.3. Ovarian Cancer Preclinical Effects
Ovarian cancer is a fatal form of reproductive cancers due to its late diagnosis and silent and obscure symptoms, (182) and it is the most leading cause of mortality among other gynecological cancer types. (187) Common cancer therapies also tend to encounter resistance by these cells. On the other hand, Que was shown to be cytotoxic to cancer cells but does not exert harmful effect on health ones. It is considered to show effect due to its anti-inflammatory, pro-oxidative, apoptotic, cell cycle arrest induction, and antiproliferation effects and is known to be an ideal agent especially in combination with other anticancer drugs. (188)
In the treatment of ovarian cancer, usually platinum drugs (i.e., cisplatin, oxaliplatin) are used. However, these drugs have side effects and lead to drug resistance; therefore, other solutions were sought. In a study in which two human epithelial ovarian cancer cell lines (A2780 and its cisplatin resistant form A2780cisR) were used, it was concluded that the administration of Que 2 h before the usage of platinum drugs might sensitize cancer cells to the action of platinum drugs, and this would be beneficial in dealing with the development of drug resistance.
2.2.1.4. Breast Cancer Preclinical Effects
The beneficial property of Que was established in 1995 in a study by Singhal et al., (189) in which it was recommended in the treatment of relapsed breast carcinoma cases that cannot be operated. In highly invasive breast cancer cells, Que was administered along with doxorubicin and it was found to potentiate the antitumor effects of the synthetic drug. By combining these two substances together, Que was also shown to reduce the side effects of the synthetic drug in nontumoral cells; therefore, it is considered to be a promising agent in the development of chemotherapeutic combinations in the treatment of breast cancer. (190)
2.2.1.5. Cervical Cancer Preclinical Effects
Que was found to be beneficial against cervical cancer in addition to ovarian cancer and breast cancer. It exerts this effect via p63 induction and NF-κB inhibition and thus inhibits cancer progression. Due to these properties, it can be concluded that the compound might be a candidate for anticancer drug design. (191)
2.2.1.6. Leukemia Preclinical Effects
Acute myeloid leukemia (AML) is an important type of hemolytic malignancy that arises from the disorder of hematopoietic stem cells, (192) and it is the most common acute type of leukemia in adults. (193) In this disease, leukemia cells undergo mutations, (193) and since conventional treatments also have cytotoxicity and side effects, many plant-derived agents are being used in the treatment of this disease and Que was also tested against this type of malignancy and shown to possess antileukemia ability since it contributes as an apoptosis inductor (194) and also it can sensitize acute myeloid KG-1 cells against a TNF-related apoptosis-inducing ligand, which is a biological cytokine. (193)
In chronic lymphocytic leukemia, Que was found to inhibit kinases such as PIM1, which is expressed in the lymphocytes of patients having chronic lymphocytic leukemia. It is recommended to be evaluated further in the stabilization of increasing lymphocyte counts. (195)
2.2.1.7. Colon Cancer Preclinical Effects
Colorectal cancer is an important health issue in developed countries. ErbB2 and ErbB3 are receptor tyrosine kinases associated with the growth of human colon cancer, and it was found that their expressions are high in HT-29 cells. In a study by Kim et al., (194) Que decreased the levels of these two enzymes in a dose-dependent manner and thus inhibits cell growth of colon cancer cells and induces apoptosis in these cells.
In another study by Ranelletti et al., (196) Que showed blocking action in the G0/G1 phase in HT-29 cancer cell lines, along with WiDr, COLO21, and LS-174T human colon cancer cell lines. This cell proliferation inhibition was dose-dependent and reversible. The growth of primary colorectal tumors was also demonstrated to be inhibited with Que according to another study by Ranelletti et al. (197) again.
2.2.1.8. Gastrointestinal Cancer Preclinical Effects
Que, which is found in foods in its free form in addition to the β-glycoside form like rutin and quercitrin, was reported to induce G1 arrest in human gastric cancer cells in a study conducted in 1990. (198) In AGS human gastric cancer cells, Que induced morphological changes and reduced total viability via apoptotic cell death; decreased antiapoptotic proteins of Mcl-1, Bcl-2, and Bcl-x; and increased the proapoptotic protein of Bad, Bax, and Bid. (199) Que protected intestinal porcine enterocyte cells against H2O2-induced apoptosis via the inhibition of the mitochondrial apoptosis pathway. (200)
2.2.1.9. Oral Cancer Preclinical Effects
Oral cancer has a high mortality rate throughout the world. It is among the most widespread tumors in the world with poor prognosis. Que has a beneficial effect via the regulation of miR-16 and HOXA10 in oral cancer cells, and with this regulation, it inhibits cell viability, migration, and invasion. These properties make it a promising agent in oncotherapy. (133)
2.2.1.10. Other Cancer-Related Preclinical Effects
In addition to possessing anticancer effect in various cancer types alone, Que exerts anticancer effect with other substances as combined. For example, it is reported to increase apoptosis in human lung cancer H1299 cells exposed to trichostatin A, i.e., it increases the antitumor activity of trichostatin A, which is a histone deacetylase inhibitor. (201) When combined with kaempferol, they show synergism and lead to a decrease in cell proliferation in human gut cell lines HuTu-80 and Caco-2 and also in PMC42 human breast cell line. (202)
It was also reported to activate apoptosis and different types of cancers, for example, it was found to inhibit cell proliferation in the nonsmall cell lung cancer strongly and also increased apoptotic cell population in cervical cancer by decreasing NF-κB expression. (203) Some researchers suggested that Que has a hormetic nature, that is, it has a biphasic dose–response relationship (for example, in low doses, it shows antioxidant effect; however, in high doses, it has pro-oxidant property). This hormetic feature of the compound makes it an excellent candidate in cancer prevention studies. (204) As a result, it has been concluded that Que is an important and efficient antioxidant and can be considered as a potent anticancer agent. (205)

2.2.2. Antiobesity and Antidiabetes Preclinical Effects

Obesity and diabetes are major health problems in developing and developed countries. These are multifactorial, complex, and chronic diseases and risk factors in the establishment of various ailments like hypertension, coronary heart disease, cancer, osteoarthritis, respiratory problems, etc. (206) They can also lead to metabolic syndrome that includes insulin resistance, hyperglycemia, dyslipidemia, and hypertension. Since chronic inflammation was considered as one of the factors contributing to obesity-related metabolic diseases, Que’s anti-inflammatory effect might be beneficial against the development of these two important health problems. (207)
It is also beneficial in the development of diabetic nonalcoholic fatty liver disease (NAFLD) via the regulation of genes related to lipid metabolism and secretion of inflammatory mediators. Que was shown to contribute to the prevention of hepatic lipid accumulation and liver injury due to chronic-plus-binge-ethanol feeding. (73) As a conclusion, Que is demonstrated to have antidiabetic effects due to various positive activities, for example, it downregulates gluconeogenesis enzymes and reduces the making of glucose in hepatocytes. (208)

2.2.3. Antiaging Preclinical and Clinical Effects

Antioxidants influence the process of aging. Que alleviates human mesenchymal stem-cell senescence due to its property to promote self-renewal and differentiation; it also restores the heterochromatin architecture of human mesenchymal stem cells. Due to these beneficial properties, Que is considered as a geroprotective agent against premature aging. (210)
In a study performed on human volunteers, topical application of Que and its derivative Que-caprylate has positive effects in regard to elasticity, moisturization, and depth of wrinkles. (209) This study was performed for cosmetic purposes; however, there are other aspects of aging in relation to Que, or polyphenols in general. For example, progeroid syndromes are rare genetic disorders characterized with clinical properties of premature aging (Wermer syndrome and Hutchinson–Gilford progeria syndrome are among these).

2.2.4. Hypertensive Clinical Effect

Hypertension is systolic blood pressure above 140 mm Hg and diastolic blood pressure over 90 mm Hg consistently, which is an important problem. Que may reduce blood pressure via nonendothelial mechanisms and is a promising agent in the treatment of hypertension. (211)
In a study by Gormaz et al., (212) Que lowered blood pressure in hypertensive patients when administered for 28 days at a dose of 1 g/day. This effect might be due to the mediation of improved endothelial function via both increased nitric oxide release and decreased endothelin-1 production. In a randomized, double-blind, placebo-controlled, crossover study performed with human patients with stage 1 hypertension, administration of high-dose Que was shown to lead to a decrease in systolic, diastolic, and mean arterial pressure, and these results show that it can be used for the treatment of early-stage hypertension. (213)

2.2.5. Cardiovascular Preclinical and Clinical Effects

Cardiovascular disease is an important health issue especially in industrialized countries and are considered to be among the main reasons for morbidity and mortality. (99) Que is considered to be a promising agent due to its great potential in the prevention and treatment of chronic diseases such as cardiovascular problems. (79) For example, both Que and its metabolites can be beneficial in the early stages of atherosclerosis due to their involvement in monocyte recruitment. And atherosclerosis is known to be the leading cause of cardiovascular disease mortality. (214)
Que supplementation might reduce cardiovascular problems and prevent obesity-associated mortality though it was found to have no positive effect on body weight. (215) Nevertheless, it possesses important heart-related advantages such as inhibition of LDL oxidation, vasodilatory effects not dependent on endothelium, protective effect under oxidative stress on nitric oxide, and endothelial function. (216) It might also exert positive effects on the cardiovascular system by reducing inflammation, (217) and it is considered to possess antiatherogenic effect. (212)

2.2.6. Antioxidant Preclinical Effects

Oxidant compounds are known to lead to many important diseases in human body; therefore, antioxidant compounds have gained importance in the prevention of oxidation-associated diseases/disorders.
Que is an excellent antioxidant and probably the most potent scavenger of reactive oxygen species and reactive nitrogen species due to its two antioxidant pharmacophores for free-radical scavenging. (218) One of the oxidant activity-associated disorders is age-related macular degeneration (AMD) that leads to vision loss in the elderly. (219) Retinal pigment epithelial cells (RPEs) are quite susceptible to damage by reactive oxygen intermediates. Foods rich in antioxidant compounds might reduce the risk of the development of AMD, and since Que has cytoprotective effects, it is considered as a good candidate for the prevention of early pathologic changes in age-related macular degeneration. Not only in AMD but Que might also be beneficial in the inhibition of oxidative stress-mediated neuronal damage since oxidative stress is considered as one of the major reasons for the development of neurodegenerative disorders and vascular pathologies in the brain due to its radical-scavenging and metal-chelating activities. (110) It might also be an effective protector against neurodegenerative diseases caused by oxidative stress and apoptosis. (220)

2.2.7. Anti-inflammatory Preclinical Effect

Que is known to possess anti-inflammatory effect. It is effective in various inflammation models, and the analgesic activity of the compound is also considered to be linked to its anti-inflammatory property. (221) It also has beneficial effects as a topical product prepared for rheumatoid arthritis. Arthritic disorders are very common throughout the world, and this topical product containing Que in a nanoemulsion-based gel would be beneficial in the prevention of joint dysfunction and disability in adults. (222)
Respiratory diseases are widespread in the pediatric population, especially pneumonia. Lung fibroblasts undergoing inflammatory damage is seen as the occurrence and development of disease; therefore, Que might be effective against pneumonia since it can alleviate inflammatory damage by ameliorating lipopolysaccharide-originated inflammatory damage of WI-38 lung fibroblasts. (135)

2.2.8. Other Uses/Activities

Since Que is a multifaceted compound, it is indicated in other disorders and/or conditions as well. Some of them are summarized as follows:
It can be used as a protective factor against some drugs in the treatment of schizophrenia. This disease is a severe, chronic psychiatric disorder and is thought to be associated with oxidative stress. Drug use in the treatment of this disease, for example, haloperidol, is associated with a risk of developing important side effects (i.e., movement disorder like drug-induced parkinsonism, akathisia, and dystonia). Que reduces lipid peroxidation of plasma exposed to haloperidol or amisulpride; therefore, it can be beneficial in the protection against antipsychotic drugs. (223)
Que might be used as a sunscreen, and it was demonstrated in a study that it was as effective as the compound homosalate, a common ingredient found in sunscreen products. (224)
Isoquercitrin was demonstrated to have antiviral effects against African historical and Asian epidemic strains of ZIKV in human hepatoma, epithelial, and neroblastoma cell lines. This study was performed as an in vitro study; however, it is an important disease and therefore it might be worth mentioning it here. This derivative prevents the internalization of virus particles into the host cell and therefore prevents their entrance into the cell. Therefore, it can be a promising antiviral compound in the prevention of Zika virus infection. (225)
Que might protect against dimethoate-induced oxidative stress. This compound is an organophosphate insecticide that acts by interfering with the functioning of cholinesterase (an enzyme required for the proper functioning of the nervous system) and therefore may lead to human poisonings. Que decreases lipid peroxidation and protein oxidation, increases superoxide dismutase and catalase activities in human lymphocytes, and hence protects against dimethoate-induced oxidative stress. (226)
Whitening cosmetics are very popular throughout the world due to their antimelanogenesis activities. Que has been tested for this effect in human trials. Though Que was found to be ineffective in hypopigmentation of human skin, its tested glycosides were found to be somewhat effective in concentration-dependent behavior. (227)
Que was tested in 12 healthy men for 7 days on bike riding performance via the measurement of VO2 max and time to fatigue. Both these parameters were found to increase; therefore, it could be concluded that this flavonoid might increase the endurance capacity of the skeletal muscle. (228)
Eccentric exercises are involved in training programs of athletes, and they involve lengthening of the skeletal muscle while producing force. However, this produces a mechanical stress and induces breaking of contractile components and then the occurrence of an inflammatory phase that leads to secondary muscle damage. In a double-blind, placebo-controlled, randomized study with crossover design carried out on 12 moderately active men, Que promoted membrane stability by preserving excitation–contraction coupling in myocytes. Therefore, it can be said that Que might improve general physical fitness and even might improve performance.

2.3. Quercetin Bioavailability and Related Issues

Despite the immense benefits of Que, it is limited by poor aqueous solubility, poor permeability, instability in physiological medium (stomach and intestine), short biological half-life, and extensive first past metabolism in the liver before reaching the systemic circulation resulting in poor oral bioavailability, (229−231) which limits the application of Que pharmaceutically. Nevertheless, recent progress in the field of drug delivery has enabled the consequential development of alternative drug-delivery systems to counteract the poor bioavailability of Que and achieve better therapeutic results tailored to enhance its biological activity. Ideal delivery systems must protect Que in the upper gastrointestinal tract to avoid its instability while releasing it at colon with prolonged sustained release with enhanced bioavailability. (231)

2.3.1. Quercetin Nanoformulations: A Way to Overcome Bioavailability-Related Issues

Nanoparticles offer a promising platform to enhance Que bioavailability owing to their large surface area, ability to be customized for targeted delivery of drugs, improved bioavailability, protection against enzymes, and physiological conditions, and they provide a controlled release of medication from a single dose. (232)
Natural polymers have been extensively studied for Que delivery, such as chitosan, which is a natural polysaccharide that has been used for the preparation of Que nanoparticles. Que-loaded chitosan nanoparticles with enhanced encapsulation efficiency and sustained release with small size (<200 nm) were prepared by Baksi et al., (233) which showed a significantly reduced IC50 value compared to free Que in cytotoxicity assay as well as a significant reduction of tumor volume in comparison to disease control groups in mice. Que-loaded chitosan nanoparticles were also investigated by encapsulating Que into pH-sensitive self-assembled amphiphilic chitosan nanoparticles; blank nanoparticles were nonantiproliferative, while Que maintains its metabolism inhibition against MCF-7 cells after encapsulation. (234) Zein was also used for Que loading, which provided high and sustained levels of the drug in plasma and higher relative bioavailability with enhanced anti-inflammatory action. (235)
Synthetic polymers were also used for the formulation of Que delivery systems. Que nanoparticles using synthetic poly(lactide-co-glycolide) (PLGA) nanoparticles were formulated in several studies. One study utilized Que-loaded PLGA nanoparticles using pluronic as a stabilizer, and conjugation with transferrin (Tf-QrPLGA) showed significant antiproliferative and cytotoxic effects on metastatic cell lines as well as apoptosis and cycle cell arrest. (236) Lou et al. (237) prepared gold Que loaded into PLGA nanoparticles that induced cell autophagy and apoptosis in human neuroglioma cells as well as suppressed tumor growth through activation LC3/ERK/Caspase 3 and suppression AKT/mTOR signaling. The antidiabetic action of Que was also reported using PLGA nanoparticles, involving the emulsion–diffusion–evaporation method, which showed enhanced antioxidant properties as well as increased oral bioavailability (523%) of Que with sustained plasma concentration for 6 days in vivo, suggesting a reduced dosing frequency of the nanoformulations. (238)
Polymeric micelles have also been utilized in the synthesis of quercetin nanoparticles. Chen et al. (57) developed a lecithin-based nanomicelle (LMPM) delivery system, which improved the solubility of Que as well as achieved sustained release and higher bioavailability as well as enhanced cytotoxicity against MCF-7 breast cancer cells with no toxic effects. Tan et al. (239) utilized nanomicells for preparing Que from diblock copolymer of poly(ethylene glycol) (PEG)-derivatized phosphatidylethanolamine (PE) as oral anticancer dosage forms, which showed enhanced bioavailability and stability in simulated gastric fluid as well as enhanced antitumor activity using the A549 cancer cell line and murine xenograft model with no apparent toxicity. (240)
Metallic nanoparticles were also used in Que nanoparticle formulation. One study used phenylboronic acid (PBA)-conjugated zinc oxide nanoparticles (PBA-ZnO) loaded with Que. (241) The presence of PBA moieties over the nanoparticle surface facilitates targeted delivery of Que to cancer cells. Moreover, Que-loaded PBA-ZnO nanoparticles showed pH-responsive drug-release behavior and induced apoptotic cell death in human breast cancer cells (MCF-7) via enhanced oxidative stress and mitochondrial damage. Braga et al. (242) incorporated Que and silver nanoparticles (AgNPs) into poly(vinyl chloride) (PVC) matrix, which demonstrated significant antimicrobial activity against food pathogens (Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes) and considerable effect in inhibiting bacterial growth, indicating a possibility of the prevention of microbial dissemination in foods with a significant antioxidant effect. Another study prepared Que/CdSe/ZnS nanoparticles (QCZ NPs), which showed antibacterial activity against drug-resistant E. coli and Bacillus subtilis as well as anticancer activities by affecting cell proliferation and migration in BGC-823 cells. (243) Que-loaded silica nanoparticles synthesized using the oil-in-water microemulsion method act as antioxidants and anti-inflammatory agents. The prepared nanoparticles showed superoxide radical scavenging effects as well as higher cell viability and lower amounts of proinflammatory cytokines produced by macrophages. (244) Another study focused on loading of Que on silica nanoparticles and investigated its effect on MCF-7 breast cancer cell lines, which showed cell cycle arrest, apoptosis, and reduced cell vitality and growth rate, thereby offering a promising approach in breast cancer prevention. (245)
Lipid-based nanoparticles were also utilized in Que encapsulation. Solid lipid nanoparticles were formulated to encapsulate Que with sustained release till 48 h, showing enhanced cytotoxic effect and a lower IC50 than free Que in MCF-7 breast cancer cells. (246) Hatahet et al. (247) tested three approaches to improve Que delivery to skin—liposomes, lipid nanocapsules (LNC), and smart Crystals—and concluded that Que smart Crystals enabled the superficial deposition of Que on top of the skin. On the other hand, LNC seems to allow Que delivery to viable epidermis that holds the promise for skin inflammatory disorders such as psoriasis, while liposomes showed the least favorable characteristics in terms of encapsulation efficiency and particle size. Vijayakumar et al. (248) prepared solid lipid nanoparticle (SLN) dispersion containing Que using tripalmitin and lecithin as lipid core, and then the surface was coated with chitosan, which showed enhanced in vitro release and cellular uptake of Que using Caco-2 cells. Que-loaded cationic nanostructured lipid carriers consisting of glycerol monostearate, medium chain triglycerides, and soy lecithin were found to exhibit a slower release in vitro during the digestion compared to those of Que suspended in 0.5% (w/v) sodium carboxymethylcellulose aqueous solution. (249)
The poor bioavailability of flavonoids limits their biological effectiveness, which has been influenced by several factors. (188,228) One of the more critical points is that in an aqueous solution, its solubility varies from 0.00215 g/L at 25 °C to 0.665 g/L at 140 °C. However, it shows high solubility at 25 °C in organic solvents such as ethanol (2 g/L) and dimethylsulfoxide (30 g/L). (250) Then, as a consequence, the poor solubility and instability of this flavonol in aqueous intestinal fluids and the quick metabolism reduce its efficacy and oral bioavailability; (218,251−253) which is almost 1% in humans. (254) Nevertheless, Que is a druglike compliant with Lipinski’s rule of five without any violation (Figure 2), which predicts that a compound with ≤5 hydrogen-bond donors, ≤10 hydrogen-bond acceptors, molecular weight ≤500, and log P ≤ 5 more probably presents a high bioavailability. (255)

Figure 2

Figure 2. Lipinski’s rule-of-five quercetin-like properties.

Different studies have demonstrated that Que circulated as types of conjugates in the blood. Thereafter, quercetin-3-O-β-d-glucuronide (Q3GA), a major metabolite of Que, and quercetin-3′-O-sulfate are distributed throughout the body where they may exert beneficial functions in target tissues. (228,256) Hydrophilic Q3GA has been found to be deconjugated into hydrophobic Que aglycone at injured sites which, in turn, may improve the pathological conditions. (228,257) Other Que-related compounds such as the Que monoglucosides present higher bioavailability, (258) and isoquercetin (quercetin-3-O-β-d-glucopyranoside) exhibited a better pharmacokinetic profile in particular. (259) However, it should be noted that nonconjugated aglycones, including methylquercetins, are scarcely detected in the human plasma. (260)
Alongside with this characteristic, of a BCS class II drug, a moderately short half-life after intravenous injection of Que was also observed. (261,262) These drawbacks, which can limit the clinical administration of Que, demand urgent solutions to maintain free Que levels in blood and other tissues for a prolonged period. (263) In this sense, nanoformulations have been strongly recommended as an alternative to Que therapy.

2.3.2. Nanodelivery Systems for Quercetin

Several biocompatible, biodegradable, affordable, and versatile nanoparticles are currently available for formulating bioactive compounds for health promotion and prevention. Nanoparticles can increase the solubility and stability of Que, enhancing its absorption, cellular uptake, and protection from premature degradation in the body, resulting in decreased toxicity. (264)
Numerous studies highlight that nanoencapsulation may elevate the bioactivities of Que, improving its sustained release. (265−267) During an in vivo critical evaluation of Que as an antileishmanial agent through the use of different vesicular delivery systems, the nanoencapsulated Que was found to be the most potent in reducing the parasite burden in the spleen, with a better reduction of hepatotoxicity and renal toxicity compared to free drug or drug in other vesicular forms. (264) Also, the gastro protection mediated by nanoencapsulated Que was better than by free Que, by preventing mitochondrial damage and regulation of key enzymes. (267) The oral administration of Que-loaded poly(lactide-co-glycolide) nanocapsules containing triphenylphosphonium increased brain uptake and remarkable mitochondrial localization after cerebral ischemia reperfusion in young and aged rats. (268) Besides, the encapsulation of Que in lipid-core nanocapsules of poly(ε-caprolactone) safely increased its oral efficacy in experimental cutaneous leishmaniasis. (269)
The potentiality of nano-Que as a promising adjuvant vehicle for chemotherapy has been demonstrated. (270) In this sense, size, charge, and retention reached by a nanoform of Que in combination with anticancer drugs like adriamycin and mitoxantrone may solve multidrug resistance. (271) Co-delivery of doxorubicin with phytosomes increased the efficacy of the drug in tumor microenvironment. (272) Also, co-delivery of doxorubicin in a nanosized system based on gold nanocages increased the intracellular accumulation and could maximize the antitumor effect on malignant cells. (273) Lately, co-loading of Que and vincristine through lipid polymeric nanocarriers exhibited the best in vitro and in vivo antitumor efficacy, showing a synergistic effect to overcome chemoresistant lymphoma. (274)
Chitosan has been used to design promising delivery systems capable of offering excellent protection and controlled released of Que. In this sense, micelles of a chitosan/polycaprolactam nanocomplex containing folic acid and Que efficiently inhibited breast cancer cells. (275) Recently, the encapsulation of anticancer drugs into the nanomicelles of the Que–chitosan conjugate demonstrated that it could display a sustained-release profile in gastrointestinal simulation fluid and promote cellular uptake. (276)
Other polymers have allowed the preparation of biocompatible hybrid nanomaterials. To this effect, Que loading into nanosized polymeric micelles of methoxy poly(ethylene glycol)–cholesterol conjugate might be a potential formulation for the controlled and targeted drug delivery to tumor in a pH-sensitive manner. (277) Likewise, conjugating Que into the backbone of poly(β-amino esters) guaranteed a uniform release and retention of its antioxidant activity. (278) The synthesis of hybrid nanocomposite structures based on silica and PEG entrapping Que showed positive outcomes on the biocompatibility toward tested cell lines. (279) Recently, a nanoplatform of poly-d-l-lactide-co-glycolide decorated with chitosan and PEG was suitable for the delivery of Que increasing its anticancer potency. (280)
Other therapeutic nanosystems containing Que have been reported as successful applications of nanotechnology to solve the problems of hydrolysis and short half-life. In this sense, new Que conjugated to gold nanoparticles was successfully evaluated for the first time against leishmanial macrophage infections, indicating its future application in the chemotherapy of wild- and resistant-type visceral leishmaniasis. (281) Of note, solubility and bioavailability of Que were improved by a nanoliposomal presentation, which enhanced the cellular uptake and effectively displayed antioxidant protection. (282)
Moreover, the synthesis of a synergistic nanocomposite by conjugating Que and acetylcholine to the surface of Se nanoparticles enhanced the antibacterial activity against Methicillin-resistant Staphylococcus aureus. (283) Que-loaded nanolipidic carriers/solid lipid nanoparticles offered better drug loading and controlled release to brain with appreciable stability, with improvement of Que in vitro antioxidant performance. (284) Que inclusion into silk fibroin nanoparticles conserved the antioxidant activity in comparison to the equivalent amount of free drug, being successfully transported and delivered gastrointestinally. (285) Que-loaded phytosome nanoparticles were prepared using the thin-film hydration method, whose enhanced therapeutic efficacy over free Que was associated with better absorption. (286)
It stands out that the formulation of Que-loaded nanomicelles (Soluplus) improved the bioavailability of the drug and enhanced its antidiabetic effect. (287) Lately, nano-Que significantly reduced the toxicity of the food mutagen 2-amino-3-methylimidazo[4,5-f]quinolone, which was higher than bulk Que. (288)
The previous observations raise the possibility of further studies using Que, in combination with existing clinically approved drugs to evaluate the synergism or using nanotechnology-related strategies.

3. Conclusions

ARTICLE SECTIONS
Jump To

There is an extraordinary attention to naturally occurring bioactive molecules, and Que is a great example of phenomenal therapeutic applications. The multitude of preclinical studies have allowed more in-depth studies, including the development of increasingly specific and targeted clinical studies. Apart from the several pharmacokinetic limitations of Que, the distinct techniques developed and currently applied have opened the possibility to overcome most of the previously identified gaps, thus allowing Que use under multiple preparations, for multiple purposes and even for different applications. Thus, the clinical applications and effectiveness of Que are remarkable. Nonetheless, as most of modern problems come from a wide variety of triggering agents, it would be of extreme importance to pay attention to the use of Que for preventive purposes, as well as in combination with multiple drugs to determine their abilities to potentiate or synergistically interact with these chemical agents, consequently reducing their side effects and related toxicity, at the same time increasing their overall efficacy and safety (as is the case of antitumor drugs).

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Javad Sharifi-Rad - Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, IranOrcidhttp://orcid.org/0000-0002-7301-8151 Email: [email protected]
    • Shahira M. Ezzat - Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, EgyptDepartment of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October 12566, Egypt Email: [email protected]
    • Natália Martins - Faculty of Medicine, University of Porto, Porto 4200-319, PortugalInstitute for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal Email: [email protected]
    • Miquel Martorell - Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción 4070386, ChileUniversidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile Email: [email protected]
    • William C. Cho - Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong Email: [email protected]
  • Authors
    • Bahare Salehi - Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
    • Laura Machin - Institute of Pharmacy and Food, University of Havana, Havana, Cuba
    • Lianet Monzote - Parasitology Department, Institute of Medicine Tropical Pedro Kourí, Havana, Cuba
    • Mohamed A. Salem - Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
    • Rana M. Merghany - Department of Pharmacognosy, National Research Centre, Giza 12622, Egypt
    • Nihal M. El Mahdy - Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
    • Ceyda Sibel Kılıç - Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
    • Oksana Sytar - Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, Kyiv 01033, UkraineDepartment of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, Nitra 94976, Slovak Republic
    • Mehdi Sharifi-Rad - Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
    • Farukh Sharopov - Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
  • Funding

    This research received no external funding.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

This work was supported by CONICYT PIA/APOYO CCTE AFB170007.

References

ARTICLE SECTIONS
Jump To

This article references 288 other publications.

  1. 1
    Spencer, J. P.; Vauzour, D.; Rendeiro, C. Flavonoids and cognition: the molecular mechanisms underlying their behavioral effects. Arch. Biochem. Biophys. 2009, 492, 19,  DOI: 10.1016/j.abb.2009.10.003
  2. 2
    Kaşıkcı, M. B.; Bağdatlıoğlu, N. Bioavailability of quercetin. Curr. Res. Nutr. Food Sci. 2016, 4, 146151,  DOI: 10.12944/CRNFSJ.4.Special-Issue-October.20
  3. 3
    David, A. V. A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 8489,  DOI: 10.4103/0973-7847.194044
  4. 4
    Sytar, O.; Kosyan, A.; Taran, N.; Smetanska, I. Anthocyanin’s as marker for selection of buckwheat plants with high rutin content. Gesunde Pflanzen 2014, 66, 165,  DOI: 10.1007/s10343-014-0331-z
  5. 5
    Miles, S. L.; McFarland, M.; Niles, R. M. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human diseases. Nutr. Rev. 2014, 72, 720734,  DOI: 10.1111/nure.12152
  6. 6
    Guo, Y.; Bruno, R. S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem. 2015, 26, 201210,  DOI: 10.1016/j.jnutbio.2014.10.008
  7. 7
    Russo, M.; Spangnulo, C.; Tedesco, I.; Bilotto, S.; Russo, G. L. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol. 2012, 83, 615,  DOI: 10.1016/j.bcp.2011.08.010
  8. 8
    Sultana, B.; Anwar, F. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 2008, 108, 879888,  DOI: 10.1016/j.foodchem.2007.11.053
  9. 9
    Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the phenol-explorer database. Eur. J. Clin. Nutr. 2010, 64, S112S120,  DOI: 10.1038/ejcn.2010.221
  10. 10
    Dinelli, G.; Bonetti, A.; Minelli, M.; Marotti, I.; Catizone, P.; Mazzanti, A. Content of flavonols in Italian bean (Phaseolus vulgaris L.) ecotypes. Food Chem. 2006, 99, 105114,  DOI: 10.1016/j.foodchem.2005.07.028
  11. 11
    Sytar, O.; Bruckova, K.; Hunkova, E.; Zivcak, M.; Konate, K.; Brestic, M. The application of muliplex flourimetric sensor for analysis flavonoids content in the medical herbs family Asteraceae, Lamiaceae, Rosaceae. Biol. Res. 2015, 48, 5,  DOI: 10.1186/0717-6287-48-5
  12. 12
    Sokól-Lętowska, A.; Osmianski, J.; Wojdylo, A. Antioxidant activity of phenolic compounds of hawthorn, pine and skullcap. Food Chem. 2007, 103, 853859,  DOI: 10.1016/j.foodchem.2006.09.036
  13. 13
    Haenen, G. R.; Paquay, J. B.; Korthouwer, R. E.; Bast, A. Peroxynitrite scavenging by flavonoids. Biochem. Biophys. Res. Commun. 1997, 236, 591593,  DOI: 10.1006/bbrc.1997.7016
  14. 14
    Dell’Albani, P.; Di Marco, B.; Grasso, S.; Rocco, C.; Foti, M. C. Quercetin derivatives as potent inducers of selective cytotoxicity in glioma cells. Eur. J. Pharm. Sci. 2017, 101, 5665,  DOI: 10.1016/j.ejps.2017.01.036
  15. 15
    Mouradov, A.; Spangenberg, G. Flavonoids: a metabolic network mediating plants adaptation to their real estate. Front. Plant Sci. 2014, 5, 620,  DOI: 10.3389/fpls.2014.00620
  16. 16
    Jacobs, M.; Rubery, P. H. Naturally occurring auxin transport regulators. Science 1988, 241, 346349,  DOI: 10.1126/science.241.4863.346
  17. 17
    Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol. 2012, 143, 383396,  DOI: 10.1016/j.jep.2012.07.005
  18. 18
    Chirumbolo, S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflammation Allergy: Drug Targets 2010, 9, 263285,  DOI: 10.2174/187152810793358741
  19. 19
    Adewole, S. O.; Caxton-Martins, E. A.; Ojewole, J. A. Protective effect of quercetin on the morphology of pancreatic beta-cells of streptozotocin-treated diabetic rats. Afr. J. Tradit., Complementary Altern. Med. 2006, 4, 6474
  20. 20
    Kim, J. H.; Kang, M. J.; Choi, H. N.; Jeong, S. M.; Lee, Y. M.; Kim, J. I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr. Res. Pract. 2011, 5, 107111,  DOI: 10.4162/nrp.2011.5.2.107
  21. 21
    Shi, G. J.; Li, Y.; Cao, Q. H.; Wu, H. X.; Tang, X. Y.; Gao, X. H.; Yu, J. Q.; Chen, Z.; Yang, Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed. Pharmacother. 2019, 109, 10851099,  DOI: 10.1016/j.biopha.2018.10.130
  22. 22
    Youl, E.; Bardy, G.; Magous, R.; Cros, G.; Sejalon, F.; Virsolvy, A.; Richard, S.; Quignard, J. F.; Gross, R.; Petit, P.; Bataille, D.; Oiry, C. Quercetin potentiates insulin secretion and protects INS-1 pancreatic beta-cells against oxidative damage via the ERK1/2 pathway. Br. J. Pharmacol. 2010, 161, 799814,  DOI: 10.1111/j.1476-5381.2010.00910.x
  23. 23
    Yang, D. K.; Kang, H. S. Anti-Diabetic Effect of Cotreatment with Quercetin and Resveratrol in Streptozotocin-Induced Diabetic Rats. Biomol. Ther. 2018, 26, 130138,  DOI: 10.4062/biomolther.2017.254
  24. 24
    Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 2003, 135, 357364,  DOI: 10.1016/S1532-0456(03)00140-6
  25. 25
    Alam, M. M.; Meerza, D.; Naseem, I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci. 2014, 109, 814,  DOI: 10.1016/j.lfs.2014.06.005
  26. 26
    Mahesh, T.; Menon, V. P. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytother. Res. 2004, 18, 123127,  DOI: 10.1002/ptr.1374
  27. 27
    Srinivasan, P.; Vijayakumar, S.; Kothandaraman, S.; Palani, M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J. Pharm. Anal. 2018, 8, 109118,  DOI: 10.1016/j.jpha.2017.10.005
  28. 28
    Sharma, G.; Kumar, S.; Sharma, M.; Upadhyay, N.; Kumar, S.; Ahmed, Z.; Mahindroo, N. Anti-Diabetic, Anti-oxidant and anti-adipogenic potential of quercetin rich ethyl acetate fraction of Prunus persica. Pharmacogn. J. 2018, 10, 463469,  DOI: 10.5530/pj.2018.3.76
  29. 29
    Gaballah, H. H.; Zakaria, S. S.; Mwafy, S. E.; Tahoon, N. M.; Ebeid, A. M. Mechanistic insights into the effects of quercetin and/or GLP-1 analogue liraglutide on high-fat diet/streptozotocin-induced type 2 diabetes in rats. Biomed. Pharmacother. 2017, 92, 331339,  DOI: 10.1016/j.biopha.2017.05.086
  30. 30
    Jeong, S. M.; Kang, M. J.; Choi, H. N.; Kim, J. H.; Kim, J. I. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr. Res. Pract. 2012, 6, 201207,  DOI: 10.4162/nrp.2012.6.3.201
  31. 31
    Hamilton, K. E.; Rekman, J. F.; Gunnink, L. K.; Busscher, B. M.; Scott, J. L.; Tidball, A. M.; Stehouwer, N. R.; Johnecheck, G. N.; Looyenga, B. D.; Louters, L. L. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1. Biochimie 2018, 151, 107114,  DOI: 10.1016/j.biochi.2018.05.012
  32. 32
    Dai, X.; Ding, Y.; Zhang, Z.; Cai, X.; Bao, L.; Li, Y. Quercetin but not quercitrin ameliorates tumor necrosis factor-alpha-induced insulin resistance in C2C12 skeletal muscle cells. Biol. Pharm. Bull. 2013, 36, 788795,  DOI: 10.1248/bpb.b12-00947
  33. 33
    Henagan, T. M.; Cefalu, W. T.; Ribnicky, D. M.; Noland, R. C.; Dunville, K.; Campbell, W. W.; Stewart, L. K.; Forney, L. A.; Gettys, T. W.; Chang, J. S.; Morrison, C. D. In vivo effects of dietary quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria, metabolism, and insulin sensitivity. Genes Nutr. 2015, 10, 451,  DOI: 10.1007/s12263-014-0451-1
  34. 34
    Dias, A. S.; Porawski, M.; Alonso, M.; Marroni, N.; Collado, P. S.; Gonzalez-Gallego, J. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. The. J. Nutr. 2005, 135, 22992304,  DOI: 10.1093/jn/135.10.2299
  35. 35
    Sirovina, D.; Orsolic, N.; Koncic, M. Z.; Kovacevic, G.; Benkovic, V.; Gregorovic, G. Quercetin vs chrysin: effect on liver histopathology in diabetic mice. Hum. Exp. Toxicol. 2013, 32, 10581066,  DOI: 10.1177/0960327112472993
  36. 36
    Khaki, A.; Nouri, M.; Fathiazad, F.; Ahmadi-Ashtiani, H.; Rastgar, H.; Rezazadeh, S. Protective Effects of Quercetin on Spermatogenesis in Streptozotocin-induced Diabetic Rat. J. Med. Plants 2009, 1, 5764
  37. 37
    Khaki, A. A. Evaluation Effects of Quercetin on Liver Apoptosis in Streptozotocin-induced Diabetic Rat. J. Med. Plants 2009, 1, 7078
  38. 38
    Jahan, S.; Iftikhar, N.; Ullah, H.; Rukh, G.; Hussain, I. Alleviative effect of quercetin on rat testis against arsenic: a histological and biochemical study. Syst. Biol. Reprod. Med. 2015, 61, 8995,  DOI: 10.3109/19396368.2014.998350
  39. 39
    Kanter, M.; Aktas, C.; Erboga, M. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis. Food Chem. Toxicol. 2012, 50, 719725,  DOI: 10.1016/j.fct.2011.11.051
  40. 40
    Nuckols, T. K.; Keeler, E.; Anderson, L. J.; Green, J.; Morton, S. C.; Doyle, B. J.; Shetty, K.; Arifkhanova, A.; Booth, M.; Shanman, R.; Shekelle, P. Economic Evaluation of Quality Improvement Interventions Designed to Improve Glycemic Control in Diabetes: A Systematic Review and Weighted Regression Analysis. Diabetes care 2018, 41, 985993,  DOI: 10.2337/dc17-1495
  41. 41
    Sundstrom, J. M.; Hernandez, C.; Weber, S. R.; Zhao, Y.; Dunklebarger, M.; Tiberti, N.; Laremore, T.; Simo-Servat, O.; Garcia-Ramirez, M.; Barber, A. J.; Gardner, T. W.; Simo, R. Proteomic Analysis of Early Diabetic Retinopathy Reveals Mediators of Neurodegenerative Brain Diseases. Invest Ophthalmol. Visual Sci. 2018, 59, 22642274,  DOI: 10.1167/iovs.17-23678
  42. 42
    Li, X. H.; Xin, X.; Wang, Y.; Wu, J. Z.; Jin, Z. D.; Ma, L. N.; Nie, C. J.; Xiao, X.; Hu, Y.; Jin, M. W. Pentamethylquercetin protects against diabetes-related cognitive deficits in diabetic Goto-Kakizaki rats. J. Alzheimer’s Dis. 2013, 34, 755767,  DOI: 10.3233/JAD-122017
  43. 43
    Chen, B.; He, T.; Xing, Y.; Cao, T. Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy. Exp. Ther. Med. 2017, 14, 60226026,  DOI: 10.3892/etm.2017.5275
  44. 44
    Porcu, E. P.; Cossu, M.; Rassu, G.; Giunchedi, P.; Cerri, G.; Pourova, J.; Najmanova, I.; Migkos, T.; Pilarova, V.; Novakova, L.; Mladenka, P.; Gavini, E. Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. Int. J. Pharm. 2018, 541, 224233,  DOI: 10.1016/j.ijpharm.2018.02.036
  45. 45
    Häckl, L. P. N.; Cuttle, G.; Dovichi, S. S.; Lima-Landman, M. T.; Nicolau, M. Inhibition of angiotesin-converting enzyme by quercetin alters the vascular response to brandykinin and angiotensin I. Pharmacology 2002, 65, 182186,  DOI: 10.1159/000064341
  46. 46
    Linz, W.; Wiemer, G.; Gohlke, P.; Unger, T.; Scholkens, B. A. Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol. Rev. 1995, 47, 2549
  47. 47
    Jalili, T.; Takeishi, Y.; Song, G.; Ball, N. A.; Howles, G.; Walsh, R. A. PKC translocation without changes in Galphaq and PLC-beta protein abundance in cardiac hypertrophy and failure. J. Am. Phys. 1999, 277, H2298H2304,  DOI: 10.1152/ajpheart.1999.277.6.H2298
  48. 48
    Collins, J. F.; Pawloski-Dahm, C.; Davis, M. G.; Ball, N.; Dorn, G. W., 2nd; Walsh, R. A. The role of the cytoskeleton in left ventricular pressure overload hypertrophy and failure. J. Mol. Cell. Cardiol. 1996, 28, 14351443,  DOI: 10.1006/jmcc.1996.0134
  49. 49
    Sánchez, M.; Galisteo, M.; Vera, R.; Villar, I. C.; Zarzuelo, A.; Tamargo, J.; Perez-Vizcaino, F.; Duarte, J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J. Hypertens. 2006, 24, 7584,  DOI: 10.1097/01.hjh.0000198029.22472.d9
  50. 50
    Machha, A.; Achike, F. I.; Mustafa, A. M.; Mustafa, M. R. Quercetin, a flavonoid antioxidant, modulates endothelium-derived nitric oxide bioavailability in diabetic rat aortas. Nitric Oxide 2007, 16, 442447,  DOI: 10.1016/j.niox.2007.04.001
  51. 51
    Mezesova, L.; Bartekova, M.; Javorkova, V.; Vlkovicova, J.; Breier, A.; Vrbjar, N. Effect of quercetin on kinetic properties of renal Na,K-ATPase in normotensive and hypertensive rats. J. Physiol. Pharmacol. 2010, 61, 593598
  52. 52
    Prince, P. S.; Sathya, B. Pretreatment with quercetin ameliorates lipids, lipoproteins and marker enzymes of lipid metabolism in isoproterenol treated cardiotoxic male Wistar rats. Eur. J. Pharmacol. 2010, 635, 142148,  DOI: 10.1016/j.ejphar.2010.02.019
  53. 53
    Rezabakhsh, A.; Rahbarghazi, R.; Malekinejad, H.; Fathi, F.; Montaseri, A.; Garjani, A. Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy. Phytomedicine 2019, 56, 183193,  DOI: 10.1016/j.phymed.2018.11.008
  54. 54
    He, Y.; Cao, X.; Guo, P.; Li, X.; Shang, H.; Liu, J.; Xie, M.; Xu, Y.; Liu, X. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radical Biol. Med. 2017, 103, 165176,  DOI: 10.1016/j.freeradbiomed.2016.12.016
  55. 55
    Li, Y.; Chen, M.; Wang, J.; Guo, X.; Xiao, L.; Liu, P.; Liu, L.; Tang, Y.; Yao, P. Quercetin ameliorates autophagy in alcohol liver disease associated with lysosome through mTOR-TFEB pathway. J. Funct. Foods 2019, 52, 177185,  DOI: 10.1016/j.jff.2018.10.033
  56. 56
    Godoy, J. A.; Lindsay, C. B.; Quintanilla, R. A.; Carvajal, F. J.; Cerpa, W.; Inestrosa, N. C. Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and Abeta Aggregates in Hippocampal Neurons: the Role of Mitochondria. Mol. Neurobiol. 2017, 54, 71167128,  DOI: 10.1007/s12035-016-0203-x
  57. 57
    Chen, L. C.; Chen, Y. C.; Su, C. Y.; Hong, C. S.; Ho, H. O.; Sheu, M. T. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. Int. J. Nanomed. 2016, 11, 15571566,  DOI: 10.2147/IJN.S103681
  58. 58
    Moreno, L.; Puerta, E.; Suarez-Santiago, J. E.; Santos-Magalhaes, N. S.; Ramirez, M. J.; Irache, J. M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int. J. Pharm. 2017, 517, 5057,  DOI: 10.1016/j.ijpharm.2016.11.061
  59. 59
    Palle, S.; Neerati, P. Quercetin nanoparticles attenuates scopolamine induced spatial memory deficits and pathological damages in rats. Bull. Fac. Pharm. 2017, 55, 101106,  DOI: 10.1016/j.bfopcu.2016.10.004
  60. 60
    Sharma, D. R.; Wani, W. Y.; Sunkaria, A.; Kandimalla, R. J.; Sharma, R. K.; Verma, D.; Bal, A.; Gill, K. D. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience 2016, 324, 163176,  DOI: 10.1016/j.neuroscience.2016.02.055
  61. 61
    Sabogal-Guáqueta, A. M.; Munoz-Manco, J. I.; Ramirez-Pineda, J. R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gomez, G. P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015, 93, 134145,  DOI: 10.1016/j.neuropharm.2015.01.027
  62. 62
    Zhang, X.; Hu, J.; Zhong, L.; Wang, N.; Yang, L.; Liu, C. C.; Li, H.; Wang, X.; Zhou, Y.; Zhang, Y.; Xu, H.; Bu, G.; Zhuang, J. Quercetin stabilizes apolipoprotein E and reduces brain Abeta levels in amyloid model mice. Neuropharmacology 2016, 108, 179192,  DOI: 10.1016/j.neuropharm.2016.04.032
  63. 63
    JUNG, S. H.; Murphy, E. A.; McClellan, J. L.; Carmichael, M. D.; Davis, J. M. The dietary flavonoid quercetin decreases neuroinflammation in a mouse model of Alzheimer’s disease. FASEB J. 2010, 24, 604617
  64. 64
    Dong, Y. S.; Wang, J. L.; Feng, D. Y.; Qin, H. Z.; Wen, H.; Yin, Z. M.; Gao, G. D.; Li, C. Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. Int. J. Med. Sci. 2014, 11, 282290,  DOI: 10.7150/ijms.7634
  65. 65
    Ansari, M. A.; Abdul, H. M.; Joshi, G.; Opii, W. O.; Butterfield, D. A. Protective effect of quercetin in primary neurons against Abeta(1-42): relevance to Alzheimer’s disease. J. Nutr. Biochem. 2009, 20, 269275,  DOI: 10.1016/j.jnutbio.2008.03.002
  66. 66
    Heo, H. J.; Lee, C. Y. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J. Agric. Food Chem. 2004, 52, 75147517,  DOI: 10.1021/jf049243r
  67. 67
    Braidy, N.; Behzad, S.; Habtemariam, S.; Ahmed, T.; Daglia, M.; Nabavi, S. M.; Sobarzo-Sanchez, E.; Nabavi, S. F. Neuroprotective Effects of Citrus Fruit-Derived Flavonoids, Nobiletin and Tangeretin in Alzheimer’s and Parkinson’s Disease. CNS Neurol. Disord.: Drug Targets 2017, 16, 387397,  DOI: 10.2174/1871527316666170328113309
  68. 68
    Kant, V.; Jangir, B. L.; Nigam, A.; Kumar, V.; Sharma, S. Dose regulated cutaneous wound healing potential of quercetin in male rats. Wound Med. 2017, 19, 8287,  DOI: 10.1016/j.wndm.2017.10.004
  69. 69
    Borghi, S. M.; Mizokami, S. S.; Pinho-Ribeiro, F. A.; Fattori, V.; Crespigio, J.; Clemente-Napimoga, J. T.; Napimoga, M. H.; Pitol, D. L.; Issa, J. P. M.; Fukada, S. Y.; Casagrande, R.; Verri, W. A., Jr. The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. J. Nutr. Biochem. 2018, 53, 8195,  DOI: 10.1016/j.jnutbio.2017.10.010
  70. 70
    Haleagrahara, N.; Miranda-Hernandez, S.; Alim, M. A.; Hayes, L.; Bird, G.; Ketheesan, N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed. Pharmacother. 2017, 90, 3846,  DOI: 10.1016/j.biopha.2017.03.026
  71. 71
    Li, G.; Shen, X.; Wei, Y.; Si, X.; Deng, X.; Wang, J. Quercetin reduces Streptococcus suis virulence by inhibiting suilysin activity and inflammation. Int. Immunopharmacol. 2019, 69, 7178,  DOI: 10.1016/j.intimp.2019.01.017
  72. 72
    Bustos, P. S.; Deza-Ponzio, R.; Paez, P. L.; Albesa, I.; Cabrera, J. L.; Virgolini, M. B.; Ortega, M. G. Protective effect of quercetin in gentamicin-induced oxidative stress in vitro and in vivo in blood cells. Effect on gentamicin antimicrobial activity. Environ. Toxicol. Pharmacol. 2016, 48, 253264,  DOI: 10.1016/j.etap.2016.11.004
  73. 73
    Zeng, H.; Guo, X.; Zhou, F.; Xiao, L.; Liu, J.; Jiang, C.; Xing, M.; Yao, P. Quercetin alleviates ethanol-induced liver steatosis associated with improvement of lipophagy. Food Chem. Toxicol. 2019, 125, 2128,  DOI: 10.1016/j.fct.2018.12.028
  74. 74
    Akinmoladun, A. C.; Oladejo, C. O.; Josiah, S. S.; Famusiwa, C. D.; Ojo, O. B.; Olaleye, M. T. Catechin, quercetin and taxifolin improve redox and biochemical imbalances in rotenone-induced hepatocellular dysfunction: Relevance for therapy in pesticide-induced liver toxicity?. Pathophysiology 2018, 25, 365371,  DOI: 10.1016/j.pathophys.2018.07.002
  75. 75
    Adeoye, A. O.; Ojowu, J.; Daniel, O. O.; Olorunsogo, O. O. Inhibition of liver mitochondrial membrane permeability transition pore opening by quercetin and vitamin E in streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun. 2018, 504, 460469,  DOI: 10.1016/j.bbrc.2018.08.114
  76. 76
    Lee, K. S.; Park, S. N. Cytoprotective effects and mechanisms of quercetin, quercitrin and avicularin isolated from Lespedeza cuneata G. Don against ROS-induced cellular damage. J. Ind. Eng. Chem. 2019, 71, 160166,  DOI: 10.1016/j.jiec.2018.11.018
  77. 77
    Nile, S. H.; Nile, A. S.; Keum, Y. S.; Sharma, K. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chem. 2017, 235, 119126,  DOI: 10.1016/j.foodchem.2017.05.043
  78. 78
    Rastogi, S.; Haldar, C. Comparative effect of melatonin and quercetin in counteracting LPS induced oxidative stress in bone marrow mononuclear cells and spleen of Funambulus pennanti. Food Chem. Toxicol. 2018, 120, 243252,  DOI: 10.1016/j.fct.2018.06.062
  79. 79
    Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 6875,  DOI: 10.1016/j.jff.2017.10.047
  80. 80
    Luangaram, S.; Kukongviriyapan, U.; Pakdeechote, P.; Kukongviriyapan, V.; Pannangpetch, P. Protective effects of quercetin against phenylhydrazine-induced vascular dysfunction and oxidative stress in rats. Food Chem. Toxicol. 2007, 45, 448455,  DOI: 10.1016/j.fct.2006.09.008
  81. 81
    Moreira, L.; Araujo, I.; Costa, T.; Correia-Branco, A.; Faria, A.; Martel, F.; Keating, E. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp. Cell Res. 2013, 319, 17841795,  DOI: 10.1016/j.yexcr.2013.05.001
  82. 82
    Dhanya, R.; Arya, A. D.; Nisha, P.; Jayamurthy, P. Quercetin, a Lead Compound against Type 2 Diabetes Ameliorates Glucose Uptake via AMPK Pathway in Skeletal Muscle Cell Line. Front. Pharmacol. 2017, 8, 336,  DOI: 10.3389/fphar.2017.00336
  83. 83
    Choi, H.-N.; Jeong, S.-M.; Huh, G. H.; Kim, J.-I. Quercetin ameliorates insulin sensitivity and liver steatosis partly by increasing adiponectin expression in ob/ob mice. Food Sci. Biotechnol. 2015, 24, 273279,  DOI: 10.1007/s10068-015-0036-9
  84. 84
    Babacanoglu, C.; Yildirim, N.; Sadi, G.; Pektas, M. B.; Akar, F. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats. Food Chem. Toxicol. 2013, 60, 160167,  DOI: 10.1016/j.fct.2013.07.026
  85. 85
    Dey, A.; Kumar, S. M. Cytochrome P450 2E1 and hyperglycemia-induced liver injury. Cell Biol. Toxicol. 2011, 27, 285310,  DOI: 10.1007/s10565-011-9188-4
  86. 86
    Maksymchuk, O.; Shysh, A.; Rosohatska, I.; Chashchyn, M. Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacol. Rep. 2017, 69, 13861392,  DOI: 10.1016/j.pharep.2017.05.020
  87. 87
    Xu, X.; Chen, P.; Zheng, Q.; Wang, Y.; Chen, W. Effect of pioglitazone on diabetic nephropathy and expression of HIF-1alpha and VEGF in the renal tissues of type 2 diabetic rats. Diabetes Res. Clin. Pract. 2011, 93, 6369,  DOI: 10.1016/j.diabres.2011.03.019
  88. 88
    Chen, P.; Chen, J.; Zheng, Q.; Chen, W.; Wang, Y.; Xu, X. Pioglitazone, extract of compound Danshen dripping pill, and quercetin ameliorate diabetic nephropathy in diabetic rats. J. Endocrinol. Invest. 2013, 36, 422427,  DOI: 10.3275/8763
  89. 89
    Roth, G.; Kotzka, J.; Kremer, L.; Lehr, S.; Lohaus, C.; Meyer, H. E.; Krone, W.; Muller-Wieland, D. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. The. J. Biol. Chem. 2000, 275, 3330233307,  DOI: 10.1074/jbc.M005425200
  90. 90
    Elbe, H.; Vardi, N.; Esrefoglu, M.; Ates, B.; Yologlu, S.; Taskapan, C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum. Exp. Toxicol. 2015, 34, 100113,  DOI: 10.1177/0960327114531995
  91. 91
    Thomas, A. A.; Feng, B.; Chakrabarti, S. ANRIL: A Regulator of VEGF in Diabetic Retinopathy. Invest Ophthalmol. Visual Sci. 2017, 58, 470480,  DOI: 10.1167/iovs.16-20569
  92. 92
    Kumar, B.; Gupta, S. K.; Srinivasan, B. P.; Nag, T. C.; Srivastava, S.; Saxena, R.; Jha, K. A. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc. Res. 2013, 87, 6574,  DOI: 10.1016/j.mvr.2013.01.002
  93. 93
    Ibarra, J.; Bland, M.; Gonzalez, M.; Garcia, C. Quercetin ameliorates hyperglycemia-induced inflammation and apoptosis in the retina and lateral geniculate nucleus in a rat model of type 2 diabetes mellitus (688.8). FASEB J. 2014, 28, 688-8
  94. 94
    Greindling, K. K.; Lassegue, B.; Alexander, R. W. Angiotensin receptors and their therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 1996, 36, 281306,  DOI: 10.1146/annurev.pa.36.040196.001433
  95. 95
    Suri, S.; Liu, X. H.; Rayment, S.; Hughes, D. A.; Kroon, P. A.; Needs, P. W.; Taylor, M. A.; Tribolo, S.; Wilson, V. G. Quercetin and its major metabolites selectively modulate cyclic GMP-dependent relaxations and associated tolerance in pig isolated coronary artery. Br. J. Pharmacol. 2010, 159, 566575,  DOI: 10.1111/j.1476-5381.2009.00556.x
  96. 96
    Ganz, P.; Vita, J. A. Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation 2003, 108, 20492053,  DOI: 10.1161/01.CIR.0000089507.19675.F9
  97. 97
    Wan, L. L.; Xia, J.; Ye, D.; Liu, J.; Chen, J.; Wang, G. Effects of quercetin on gene and protein expression of NOX and NOS after myocardial ischemia and reperfusion in rabbit. Cardiovasc. Ther. 2009, 27, 2833,  DOI: 10.1111/j.1755-5922.2009.00071.x
  98. 98
    Ahmed, L. A.; Salem, H. A.; Attia, A. S.; El-Sayed, M. E. Enhancement of amlodipine cardioprotection by quercetin in ischaemia/reperfusion injury in rats. J. Pharm. Pharmacol. 2009, 61, 12331241,  DOI: 10.1211/jpp.61.09.0014
  99. 99
    Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M. J.; Wielinga, P. Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 2011, 218, 4452,  DOI: 10.1016/j.atherosclerosis.2011.04.023
  100. 100
    Yan, L.; Zhang, J. D.; Wang, B.; Lv, Y. J.; Jiang, H.; Liu, G. L.; Qiao, Y.; Ren, M.; Guo, X. F. Quercetin inhibits left ventricular hypertrophy in spontaneously hypertensive rats and inhibits angiotensin II-induced H9C2 cells hypertrophy by enhancing PPAR-gamma expression and suppressing AP-1 activity. PLoS One 2013, 8, e72548  DOI: 10.1371/journal.pone.0072548
  101. 101
    Satoh, H.; Nishida, S. Cardio-electopharmacology and vasodilating mechanisms of quercetin. Med. Chem. 2014, 4, 523530,  DOI: 10.4172/2161-0444.1000189
  102. 102
    Wang, Y.; Zhang, Z. Z.; Wu, Y.; Ke, J. J.; He, X. H.; Wang, Y. L. Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas 2013, 46, 861867,  DOI: 10.1590/1414-431X20133036
  103. 103
    Knekt, P.; Kumpulainen, J.; Jarvinen, R.; Rissanen, H.; Heliovaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. The American journal of clinical nutrition 2002, 76, 560568,  DOI: 10.1093/ajcn/76.3.560
  104. 104
    Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Kurbitz, C.; Settler, U.; Plachta-Danielzik, S.; Wagner, A. E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; Wolffram, S.; Muller, M. J. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br. J. Nutr. 2009, 102, 10651074,  DOI: 10.1017/S0007114509359127
  105. 105
    Chekalina, N.; Burmak, Y.; Petrov, Y.; Borisova, Z.; Manusha, Y.; Kazakov, Y.; Kaidashev, I. Quercetin reduces the transcriptional activity of NF-kB in stable coronary artery disease. Indian Heart J. 2018, 70, 593597,  DOI: 10.1016/j.ihj.2018.04.006
  106. 106
    Zahedi, M.; Ghiasvand, R.; Feizi, A.; Asgari, G.; Darvish, L. Does Quercetin Improve Cardiovascular Risk factors and Inflammatory Biomarkers in Women with Type 2 Diabetes: A Double-blind Randomized Controlled Clinical Trial. Int. J. Prev. Med. 2013, 4, 777785
  107. 107
    Nakayama, H.; Tsuge, N.; Sawada, H.; Higashi, Y. Chronic intake of onion extract containing quercetin improved postprandial endothelial dysfunction in healthy men. Journal of the American College of Nutrition 2013, 32, 160164,  DOI: 10.1080/07315724.2013.797858
  108. 108
    Xie, M.; Morales, C. R.; Lavandero, S.; Hill, J. A. Tuning flux: autophagy as a target of heart disease therapy. Curr. Opin. Cardiol. 2011, 26, 216222,  DOI: 10.1097/HCO.0b013e328345980a
  109. 109
    Sasaki, Y.; Ikeda, Y.; Iwabayashi, M.; Akasaki, Y.; Ohishi, M. The Impact of Autophagy on Cardiovascular Senescence and Diseases. Int Heart J 2017, 58, 666673,  DOI: 10.1536/ihj.17-246
  110. 110
    Suganthy, N.; Devi, K. P.; Nabavi, S. F.; Braidy, N.; Nabavi, S. M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother. 2016, 84, 892908,  DOI: 10.1016/j.biopha.2016.10.011
  111. 111
    Jiménez-Aliaga, K.; Bermejo-Bescos, P.; Benedi, J.; Martin-Aragon, S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011, 89, 939945,  DOI: 10.1016/j.lfs.2011.09.023
  112. 112
    McGeer, P. L.; McGeer, E. G. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013, 126, 479497,  DOI: 10.1007/s00401-013-1177-7
  113. 113
    Anand, R.; Gill, K. D.; Mahdi, A. A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014, 76, 2750,  DOI: 10.1016/j.neuropharm.2013.07.004
  114. 114
    Maciel, R. M.; Carvalho, F. B.; Olabiyi, A. A.; Schmatz, R.; Gutierres, J. M.; Stefanello, N.; Zanini, D.; Rosa, M. M.; Andrade, C. M.; Rubin, M. A.; Schetinger, M. R.; Morsch, V. M.; Danesi, C. C.; Lopes, S. T. A. Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities. Biomed. Pharmacother. 2016, 84, 559568,  DOI: 10.1016/j.biopha.2016.09.069
  115. 115
    Richetti, S. K.; Blank, M.; Capiotti, K. M.; Piato, A. L.; Bogo, M. R.; Vianna, M. R.; Bonan, C. D. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav. Brain Res. 2011, 217, 1015,  DOI: 10.1016/j.bbr.2010.09.027
  116. 116
    Islam, M. R.; Zaman, A.; Jahan, I.; Chakravorty, R.; Chakraborty, S. In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer’s disease. J. Young Pharm. 2013, 5, 173179,  DOI: 10.1016/j.jyp.2013.11.005
  117. 117
    Ochiai, A.; Tanaka, S.; Imai, Y.; Yoshida, H.; Kanaoka, T.; Tanaka, T.; Taniguchi, M. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues. J. Biosci. Bioeng. 2016, 121, 607613,  DOI: 10.1016/j.jbiosc.2015.10.010
  118. 118
    Hridya, H.; Amrita, A.; Mohan, S.; Gopalakrishnan, M.; Dakshinamurthy, T. K.; Doss, G. P.; Siva, R. Functionality study of santalin as tyrosinase inhibitor: A potential depigmentation agent. Int. J. Biol. Macromol. 2016, 86, 383389,  DOI: 10.1016/j.ijbiomac.2016.01.098
  119. 119
    Hu, Y. H.; Zhuang, J. X.; Yu, F.; Cui, Y.; Yu, W. W.; Yan, C. L.; Chen, Q. X. Inhibitory effects of cefotaxime on the activity of mushroom tyrosinase. J. Biosci. Bioeng. 2016, 121, 385389,  DOI: 10.1016/j.jbiosc.2015.08.005
  120. 120
    Oyama, T.; Takahashi, S.; Yoshimori, A.; Yamamoto, T.; Sato, A.; Kamiya, T.; Abe, H.; Abe, T.; Tanuma, S. I. Discovery of a new type of scaffold for the creation of novel tyrosinase inhibitors. Bioorg. Med. Chem. 2016, 24, 45094515,  DOI: 10.1016/j.bmc.2016.07.060
  121. 121
    Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res. Int. 2017, 100, 226233,  DOI: 10.1016/j.foodres.2017.07.010
  122. 122
    Athanasiou, K. A.; Darling, E. M.; Hu, J. C.; DuRaine, G. D.; Reddi, A. H. Articular Cartilage; CRC Press, 2017.
  123. 123
    Laev, S. S.; Salakhutdinov, N. F. Anti-arthritic agents: Progress and potential. Bioorg. Med. Chem. 2015, 23, 30593080,  DOI: 10.1016/j.bmc.2015.05.010
  124. 124
    Cobelli, N.; Scharf, B.; Crisi, G. M.; Hardin, J.; Santambrogio, L. Mediators of the inflammatory response to joint replacement devices. Nat. Rev. Rheumatol. 2011, 7, 600608,  DOI: 10.1038/nrrheum.2011.128
  125. 125
    Xu, J. G.; Jing, H. Q.; Ye, C. Y. Highly virulent Streptococcus suis infection and problems involved in the disease prevention and control in China. Zhonghua Liu Xing Bing Xue Za Zhi 2005, 26, 629632
  126. 126
    Gao, Z. Y.; Zhuang, H. Human infection due to Streptococcus suis. Zhonghua Liu Xing Bing Xue Za Zhi 2005, 26, 645648
  127. 127
    Huang, Y. T.; Teng, L. J.; Ho, S. W.; Hsueh, P. R. Streptococcus suis infection. J. Microbiol. Immunol. Infect. 2005, 38, 306313
  128. 128
    Abdel-Misih, S. R. Z.; Bloomston, M. Liver Anatomy. Surg. Clin. North Am. 2010, 90, 643653,  DOI: 10.1016/j.suc.2010.04.017
  129. 129
    Asrani, S. K.; Devarbhavi, H.; Eaton, J.; Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151171,  DOI: 10.1016/j.jhep.2018.09.014
  130. 130
    Sanders, L. H.; Timothy Greenamyre, J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radical Biol. Med. 2013, 62, 111120,  DOI: 10.1016/j.freeradbiomed.2013.01.003
  131. 131
    Wu, T.-C.; Chan, S.-T.; Chang, C.-N.; Yu, P.-S.; Chuang, C.-H.; Yeh, S.-L. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem.-Biol. Interact. 2018, 292, 101109,  DOI: 10.1016/j.cbi.2018.07.010
  132. 132
    Teekaraman, D.; Elayapillai, S. P.; Viswanathan, M. P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem.-Biol. Interact. 2019, 300, 91100,  DOI: 10.1016/j.cbi.2019.01.008
  133. 133
    Zhao, J.; Fang, Z.; Zha, Z.; Sun, Q.; Wang, H.; Sun, M.; Qiao, B. Quercetin inhibits cell viability, migration and invasion by regulating miR-16/HOXA10 axis in oral cancer. Eur. J. Pharmacol. 2019, 847, 1118,  DOI: 10.1016/j.ejphar.2019.01.006
  134. 134
    Huang, D.-Y.; Dai, Z.-R.; Li, W.-M.; Wang, R.-G.; Yang, S.-M. Inhibition of EGF expression and NF-κB activity by treatment with quercetin leads to suppression of angiogenesis in nasopharyngeal carcinoma. Saudi J. Biol. Sci. 2018, 25, 826831,  DOI: 10.1016/j.sjbs.2016.11.011
  135. 135
    Wang, C.; Qu, Z.; Kong, L.; Xu, L.; Zhang, M.; Liu, J.; Yang, Z. Quercetin ameliorates lipopolysaccharide-caused inflammatory damage via down-regulation of miR-221 in WI-38 cells. Exp. Mol. Pathol. 2019, 108, 18,  DOI: 10.1016/j.yexmp.2019.03.002
  136. 136
    Li, X.; Zhou, N.; Wang, J.; Liu, Z.; Wang, X.; Zhang, Q.; Liu, Q.; Gao, L.; Wang, R. Quercetin suppresses breast cancer stem cells (CD44+/CD24−) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci. 2018, 196, 5662,  DOI: 10.1016/j.lfs.2018.01.014
  137. 137
    Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci. 2018, 208, 123130,  DOI: 10.1016/j.lfs.2018.07.027
  138. 138
    Araújo, K. C. F.; de MB Costa, E. M.; Pazini, F.; Valadares, M. C.; de Oliveira, V. Bioconversion of quercetin and rutin and the cytotoxicity activities of the transformed products. Food Chem. Toxicol. 2013, 51, 9396,  DOI: 10.1016/j.fct.2012.09.015
  139. 139
    Sánchez-González, P. D.; López-Hernández, F. J.; Dueñas, M.; Prieto, M.; Sánchez-López, E.; Thomale, J.; Ruiz-Ortega, M.; López-Novoa, J. M.; Morales, A. I. Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food Chem. Toxicol. 2017, 107, 226236,  DOI: 10.1016/j.fct.2017.06.047
  140. 140
    Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, O.; Doganlar, Z. B.; Bilir, A.; Oktem, G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother. 2018, 107, 793805,  DOI: 10.1016/j.biopha.2018.08.061
  141. 141
    Li, S.; Pei, Y.; Wang, W.; Liu, F.; Zheng, K.; Zhang, X. Quercetin suppresses the proliferation and metastasis of metastatic osteosarcoma cells by inhibiting parathyroid hormone receptor 1. Biomed. Pharmacother. 2019, 114, 108839  DOI: 10.1016/j.biopha.2019.108839
  142. 142
    Chen, K.-C.; Hsu, W.-H.; Ho, J.-Y.; Lin, C.-W.; Chu, C.-Y.; Kandaswami, C. C.; Lee, M.-T.; Cheng, C.-H. Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. J. Food Drug Anal. 2018, 26, 11801191,  DOI: 10.1016/j.jfda.2018.01.012
  143. 143
    Srivastava, N. S.; Srivastava, R. A. K. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine 2019, 52, 117128,  DOI: 10.1016/j.phymed.2018.09.224
  144. 144
    Elmadany, N.; Khalil, E.; Vaccari, L.; Birarda, G.; Yousef, I.; Abu-Dahab, R. Antiproliferative activity of the combination of doxorubicin/quercetin on MCF7 breast cancer cell line: A combined study using colorimetric assay and synchrotron infrared microspectroscopy. Infrared Phys. Technol. 2018, 95, 141147,  DOI: 10.1016/j.infrared.2018.10.014
  145. 145
    Shan, B.-E.; Wang, M.-X.; Li, R.-q. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway. Cancer invest. 2009, 27, 604612,  DOI: 10.1080/07357900802337191
  146. 146
    Kim, H.; Seo, E.-M.; Sharma, A. R.; Ganbold, B.; Park, J.; Sharma, G.; Kang, Y.-H.; Song, D.-K.; Lee, S.-S.; Nam, J.-S. Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. Int. J. Oncol. 2013, 43, 13191325,  DOI: 10.3892/ijo.2013.2036
  147. 147
    Jeong, J. H.; An, J. Y.; Kwon, Y. T.; Rhee, J. G.; Lee, Y. J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem. 2009, 106, 7382,  DOI: 10.1002/jcb.21977
  148. 148
    Maurya, A. K.; Vinayak, M. Modulation of PKC signaling and induction of apoptosis through suppression of reactive oxygen species and tumor necrosis factor receptor 1 (TNFR1): key role of quercetin in cancer prevention. Tumor Biol. 2015, 36, 89138924,  DOI: 10.1007/s13277-015-3634-5
  149. 149
    Mead, J.; McNair, N. Antiparasitic activity of flavonoids and isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiol. Lett. 2006, 259, 153157,  DOI: 10.1111/j.1574-6968.2006.00263.x
  150. 150
    Calzada, F.; Correa-Basurto, J.; Barbosa, E.; Mendez-Luna, D.; Yepez-Mulia, L. Antiprotozoal Constituents from Annona cherimola Miller, a Plant Used in Mexican Traditional Medicine for the Treatment of Diarrhea and Dysentery. Pharmacogn. Mag. 2017, 13, 148152,  DOI: 10.4103/0973-1296.203976
  151. 151
    Fonseca-Silva, F.; Inacio, J. D.; Canto-Cavalheiro, M. M.; Almeida-Amaral, E. E. Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One 2011, 6, e14666  DOI: 10.1371/journal.pone.0014666
  152. 152
    Cataneo, A. H. D.; Tomiotto-Pellissier, F.; Miranda-Sapla, M. M.; Assolini, J. P.; Panis, C.; Kian, D.; Yamauchi, L. M.; Colado Simao, A. N.; Casagrande, R.; Pinge-Filho, P.; Costa, I. N.; Verri, W. A., Jr; Conchon-Costa, I.; Pavanelli, W. R. Quercetin promotes antipromastigote effect by increasing the ROS production and anti-amastigote by upregulating Nrf2/HO-1 expression, affecting iron availability. Biomed. Pharmacother. 2019, 113, 108745  DOI: 10.1016/j.biopha.2019.108745
  153. 153
    Jean-Moreno, V.; Rojas, R.; Goyeneche, D.; Coombs, G. H.; Walker, J. Leishmania donovani: differential activities of classical topoisomerase inhibitors and antileishmanials against parasite and host cells at the level of DNA topoisomerase I and in cytotoxicity assays. Exp. Parasitol. 2006, 112, 2130,  DOI: 10.1016/j.exppara.2005.08.014
  154. 154
    de Sousa, L. R.; Wu, H.; Nebo, L.; Fernandes, J. B.; da Silva, M. F.; Kiefer, W.; Schirmeister, T.; Vieira, P. C. Natural products as inhibitors of recombinant cathepsin L of Leishmania mexicana. Exp. Parasitol. 2015, 156, 4248,  DOI: 10.1016/j.exppara.2015.05.016
  155. 155
    Cortázar, T. M.; Coombs, G. H.; Walker, J. Leishmania panamensis: comparative inhibition of nuclear DNA topoisomerase II enzymes from promastigotes and human macrophages reveals anti-parasite selectivity of fluoroquinolones, flavonoids and pentamidine. Exp. Parasitol. 2007, 116, 475482,  DOI: 10.1016/j.exppara.2007.02.018
  156. 156
    Ganesh, D.; Fuehrer, H. P.; Starzengruber, P.; Swoboda, P.; Khan, W. A.; Reismann, J. A.; Mueller, M. S.; Chiba, P.; Noedl, H. Antiplasmodial activity of flavonol quercetin and its analogues in Plasmodium falciparum: evidence from clinical isolates in Bangladesh and standardized parasite clones. Parasitol. Res. 2012, 110, 22892295,  DOI: 10.1007/s00436-011-2763-z
  157. 157
    Penna-Coutinho, J.; Aguiar, A. C.; Krettli, A. U. Commercial drugs containing flavonoids are active in mice with malaria and in vitro against chloroquine-resistant Plasmodium falciparum. Mem. Inst. Oswaldo Cruz 2018, 113, e180279  DOI: 10.1590/0074-02760180279
  158. 158
    Kerboeuf, D.; Riou, M.; Guegnard, F. Flavonoids and related compounds in parasitic disease control. Mini-Rev. Med. Chem. 2008, 8, 116128,  DOI: 10.2174/138955708783498168
  159. 159
    Smith, P.; Ho, C. K.; Takagi, Y.; Djaballah, H.; Shuman, S. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase. mBio 2016, 7, e00058  DOI: 10.1128/mBio.00058-16
  160. 160
    Dodson, H. C.; Lyda, T. A.; Chambers, J. W.; Morris, M. T.; Christensen, K. A.; Morris, J. C. Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1. Exp. Parasitol. 2011, 127, 423428,  DOI: 10.1016/j.exppara.2010.10.011
  161. 161
    Worthen, C.; Jensen, B. C.; Parsons, M. Diverse effects on mitochondrial and nuclear functions elicited by drugs and genetic knockdowns in bloodstream stage Trypanosoma brucei. PLoS Neglected Trop. Dis. 2010, 4, e678  DOI: 10.1371/journal.pntd.0000678
  162. 162
    Mamani-Matsuda, M.; Rambert, J.; Malvy, D.; Lejoly-Boisseau, H.; Daulouede, S.; Thiolat, D.; Coves, S.; Courtois, P.; Vincendeau, P.; Mossalayi, M. D. Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob. Agents Chemother. 2004, 48, 924929,  DOI: 10.1128/AAC.48.3.924-929.2004
  163. 163
    Pérez-Cruz, F.; Serra, S.; Delogu, G.; Lapier, M.; Maya, J. D.; Olea-Azar, C.; Santana, L.; Uriarte, E. Antitrypanosomal and antioxidant properties of 4-hydroxycoumarins derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 55695573,  DOI: 10.1016/j.bmcl.2012.07.013
  164. 164
    Calzada, F.; Alanis, A. D. Additional antiprotozoal flavonol glycosides of the aerial parts of Helianthemum glomeratum. Phytother. Res. 2007, 21, 7880,  DOI: 10.1002/ptr.2031
  165. 165
    El Souda, S. S.; Matloub, A. A.; Nepveuc, F.; Valentin, A.; Roques, C. Phenolic composition and prospective anti-infectious properties of Atriplex lindleyi. Asian Pac. J. Trop. Dis. 2015, 5, 786791,  DOI: 10.1016/S2222-1808(15)60931-8
  166. 166
    Oliveira, F. Q.; Andrade-Neto, V.; Krettli, A. U.; Brandao, M. G. New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J. Ethnopharmacol. 2004, 93, 3942,  DOI: 10.1016/j.jep.2004.03.026
  167. 167
    Montrieux, E.; Perera, W. H.; Garcia, M.; Maes, L.; Cos, P.; Monzote, L. In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol. Res. 2014, 113, 29252932,  DOI: 10.1007/s00436-014-3954-1
  168. 168
    Muzitano, M. F.; Falcao, C. A.; Cruz, E. A.; Bergonzi, M. C.; Bilia, A. R.; Vincieri, F. F.; Rossi-Bergmann, B.; Costa, S. S. Oral metabolism and efficacy of Kalanchoe pinnata flavonoids in a murine model of cutaneous leishmaniasis. Planta Med. 2009, 75, 307311,  DOI: 10.1055/s-0028-1088382
  169. 169
    Pereira, C. A. J.; Oliveira, L. L. S.; Coaglio, A. L.; Santos, F. S. O.; Cezar, R. S. M.; Mendes, T.; Oliveira, F. L. P.; Conzensa, G.; Lima, W. S. Anti-helminthic activity of Momordica charantia L. against Fasciola hepatica eggs after twelve days of incubation in vitro. Vet. Parasitol. 2016, 228, 160166,  DOI: 10.1016/j.vetpar.2016.08.025
  170. 170
    Vila-Nova, N. S.; Morais, S. M.; Falcão, M. J. C.; Bevilaqua, C. M. L.; Rondon, F. C. M.; Wilson, M. E.; Vieira, I. G. P.; Andrade, H. F. Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds of Dimorphandra gardneriana and Platymiscium floribundum, native plants from Caatinga biome. Pesq. Vet. Bras. 2012, 32, 11641168,  DOI: 10.1590/S0100-736X2012001100015
  171. 171
    Kheirandish, F.; Delfan, B.; Mahmoudvand, H.; Moradi, N.; Ezatpour, B.; Ebrahimzadeh, F.; Rashidipour, M. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed. Pharmacother. 2016, 82, 208215,  DOI: 10.1016/j.biopha.2016.04.040
  172. 172
    Jansen, O.; Tchinda, A. T.; Loua, J.; Esters, V.; Cieckiewicz, E.; Ledoux, A.; Toukam, P. D.; Angenot, L.; Tits, M.; Balde, A. M.; Frederich, M. Antiplasmodial activity of Mezoneuron benthamianum leaves and identification of its active constituents. J. Ethnopharmacol. 2017, 203, 2026,  DOI: 10.1016/j.jep.2017.03.021
  173. 173
    Calixto Júnior, J. T.; de Morais, S. M.; Gomez, C. V.; Molas, C. C.; Rolon, M.; Boligon, A. A.; Athayde, M. L.; de Morais Oliveira, C. D.; Tintino, S. R.; Henrique Douglas, M. C. Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast “Cerrado”. Saudi J. Biol. Sci. 2016, 23, 434440,  DOI: 10.1016/j.sjbs.2015.10.009
  174. 174
    Cunha, N. L.; Uchoa, C. J.; Cintra, L. S.; de Souza, H. C.; Peixoto, J. A.; Silva, C. P.; Magalhaes, L. G.; Gimenez, V. M.; Groppo, M.; Rodrigues, V.; da Silva Filho, A. A.; Andrade, E. S. M. L.; Cunha, W. R.; Pauletti, P. M.; Januario, A. H. In vitro schistosomicidal activity of some brazilian cerrado species and their isolated compounds. J. Evidence-Based Complementary Altern. Med. 2012, 2012, 173614  DOI: 10.1155/2012/173614
  175. 175
    Iwu, M. M.; Obidoa, O.; Anazodo, M. Biochemical mechanism of the antimalarial activity of Azadirachta indica leaf extract. Pharmacol. Res. Commun. 1986, 18, 8191,  DOI: 10.1016/0031-6989(86)90161-X
  176. 176
    Houël, E.; Nardella, F.; Jullian, V.; Valentin, A.; Vonthron-Senecheau, C.; Villa, P.; Obrecht, A.; Kaiser, M.; Bourreau, E.; Odonne, G.; Fleury, M.; Bourdy, G.; Eparvier, V.; Deharo, E.; Stien, D. Wayanin and guaijaverin, two active metabolites found in a Psidium acutangulum Mart. ex DC (syn. P. persoonii McVaugh) (Myrtaceae) antimalarial decoction from the Wayana Amerindians. J. Ethnopharmacol. 2016, 187, 241248,  DOI: 10.1016/j.jep.2016.04.053
  177. 177
    de Souza, C. E. S.; da Silva, A. R. P.; Gomez, M. C. V.; Rolom, M.; Coronel, C.; da Costa, J. G. M.; Sousa, A. K.; Rolim, L. A.; de Souza, F. H. S.; Coutinho, H. D. M. Anti-Trypanosoma, anti-Leishmania and cytotoxic activities of natural products from Psidium brownianum Mart. ex DC. and Psidium guajava var. Pomifera analysed by LC-MS. Acta Trop. 2017, 176, 380384,  DOI: 10.1016/j.actatropica.2017.09.009
  178. 178
    Méabed, E. M. H.; Abou-Sreea, A. I. B.; Roby, M. H. H. Chemical analysis and giardicidal effectiveness of the aqueous extract of Cymbopogon citratus Stapf. Parasitol. Res. 2018, 117, 17451755,  DOI: 10.1007/s00436-018-5855-1
  179. 179
    Das, B. B.; Sen, N.; Roy, A.; Dasgupta, S. B.; Ganguly, A.; Mohanta, B. C.; Dinda, B.; Majumder, H. K. Differential induction of Leishmania donovani bi-subunit topoisomerase I-DNA cleavage complex by selected flavones and camptothecin: activity of flavones against camptothecin-resistant topoisomerase I. Nucleic Acids Res. 2006, 34, 11211132,  DOI: 10.1093/nar/gkj502
  180. 180
    Khalid, S. A.; Farouk, A.; Geary, T. G.; Jensen, J. B. Potential antimalarial candidates from African plants: and in vitro approach using Plasmodium falciparum. J. Ethnopharmacol. 1986, 15, 201209,  DOI: 10.1016/0378-8741(86)90156-X
  181. 181
    Gibellini, L.; Pinti, M.; Nasi, M.; Montagna, J. P.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cooper, E. L.; Cossarizza, A. Quercetin and cancer chemoprevention. J. Evidence-Based Complementary Altern. Med. 2011, 2011, 591356  DOI: 10.1093/ecam/neq053
  182. 182
    Shafabakhsh, R.; Asemi, Z. Quercetin: a natural compound for ovarian cancer treatment. J. Ovarian Res. 2019, 12, 55  DOI: 10.1186/s13048-019-0530-4
  183. 183
    Alper, M.; Güneş, H. The anticancer and anti-inflammatory effects of Centaurea solstitialis extract on human cancer cell lines. Turk. J. Pharm. Sci. 2019, 16, 273281,  DOI: 10.4274/tjps.galenos.2018.27146
  184. 184
    Murakami, A.; Ashida, H.; Terao, J. Multitargeted cancer prevention by quercetin. Cancer letters 2008, 269, 315325,  DOI: 10.1016/j.canlet.2008.03.046
  185. 185
    Zhou, W.; Kallifatidis, G.; Baumann, B.; Rausch, V.; Mattern, J.; Gladkich, J.; Giese, N.; Moldenhauer, G.; Wirth, T.; Buchler, M. W.; Salnikov, A. V.; Herr, I. Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int. J. Oncol. 2010, 37, 551561,  DOI: 10.3892/ijo_00000704
  186. 186
    Serri, C.; Quagliariello, V.; Iaffaioli, R. V.; Fusco, S.; Botti, G.; Mayol, L.; Biondi, M. Combination therapy for the treatment of pancreatic cancer through hyaluronic acid-decorated nanoparticles loaded with quercetin and gemcitabine: A preliminary in vitro study. J. Cell. Physiol. 2019, 234, 49594969,  DOI: 10.1002/jcp.27297
  187. 187
    Nessa, M. U.; Beale, P.; Chan, C.; Yu, J. Q.; Huq, F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res. 2011, 31, 37893797
  188. 188
    Lesser, S.; Wolffram, S. Oral bioavailability of the flavonol quercetin - A review. Curr. Top. Nutraceutical Res. 2006, 4, 239256
  189. 189
    Singhal, R. L.; Yeh, Y. A.; Praja, N.; Olah, E.; Sledge, G. W., Jr; Weber, G. Quercetin down-regulates signal transduction in human breast carcinoma cells. Biochem. Biophys. Res. Commun. 1995, 208, 425431,  DOI: 10.1006/bbrc.1995.1355
  190. 190
    Staedler, D.; Idrizi, E.; Kenzaoui, B. H.; Juillerat-Jeanneret, L. Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother. Pharmacol. 2011, 68, 11611172,  DOI: 10.1007/s00280-011-1596-x
  191. 191
    Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-kappaB inhibition. Eur. J. Pharmacol. 2010, 649, 8491,  DOI: 10.1016/j.ejphar.2010.09.020
  192. 192
    Calgarotto, A. K.; Maso, V.; Junior, G. C. F.; Nowill, A. E.; Filho, P. L.; Vassallo, J.; Saad, S. T. O. Antitumor activities of Quercetin and Green Tea in xenografts of human leukemia HL60 cells. Sci. Rep. 2018, 8, 3459  DOI: 10.1038/s41598-018-21516-5
  193. 193
    Naimi, A.; Entezari, A.; Hagh, M. F.; Hassanzadeh, A.; Saraei, R.; Solali, S. Quercetin sensitizes human myeloid leukemia KG-1 cells against TRAIL-induced apoptosis. J. Cell. Physiol. 2019, 234, 1323313241,  DOI: 10.1002/jcp.27995
  194. 194
    Kim, W. K.; Bang, M. H.; Kim, E. S.; Kang, N. E.; Jung, K. C.; Cho, H. J.; Park, J. H. Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J. Nutr. Biochem. 2005, 16, 155162,  DOI: 10.1016/j.jnutbio.2004.10.010
  195. 195
    Baron, B. W.; Thirman, M. J.; Giurcanu, M. C.; Baron, J. M. Quercetin Therapy for Selected Patients with PIM1 Kinase-Positive Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: A Pilot Study. Acta Haematol. 2018, 139, 132139,  DOI: 10.1159/000486361
  196. 196
    Ranelletti, F. O.; Ricci, R.; Larocca, L. M.; Maggiano, N.; Capelli, A.; Scambia, G.; Benedetti-Panici, P.; Mancuso, S.; Rumi, C.; Piantelli, M. Growth-inhibitory effect of quercetin and presence of type-II estrogen-binding sites in human colon-cancer cell lines and primary colorectal tumors. Int. J. Cancer 1992, 50, 486492,  DOI: 10.1002/ijc.2910500326
  197. 197
    Ranelletti, F. O.; Maggiano, N.; Serra, F. G.; Ricci, R.; Larocca, L. M.; Lanza, P.; Scambia, G.; Fattorossi, A.; Capelli, A.; Piantelli, M. Quercetin inhibits p21-RAS expression in human colon cancer cell lines and in primary colorectal tumors. Int. J. Cancer 2000, 85, 438445,  DOI: 10.1002/(SICI)1097-0215(20000201)85:3<438::AID-IJC22>3.0.CO;2-F
  198. 198
    Yoshida, M.; Sakai, T.; Hosokawa, N.; Marui, N.; Matsumoto, K.; Fujioka, A.; Nishino, H.; Aoike, A. The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Lett. 1990, 260, 1013,  DOI: 10.1016/0014-5793(90)80053-L
  199. 199
    Shang, H. S.; Lu, H. F.; Lee, C. H.; Chiang, H. S.; Chu, Y. L.; Chen, A.; Lin, Y. F.; Chung, J. G. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ. Toxicol. 2018, 33, 11681181,  DOI: 10.1002/tox.22623
  200. 200
    Chen, Z.; Yuan, Q.; Xu, G.; Chen, H.; Lei, H.; Su, J. Effects of Quercetin on Proliferation and H2O2-Induced Apoptosis of Intestinal Porcine Enterocyte Cells. Molecules 2018, 23, 2012,  DOI: 10.3390/molecules23082012
  201. 201
    Chuang, C. H.; Chan, S. T.; Chen, C. H.; Yeh, S. L. Quercetin enhances the antitumor activity of trichostatin A through up-regulation of p300 protein expression in p53 null cancer cells. Chem.-Biol. Interact. 2019, 306, 5461,  DOI: 10.1016/j.cbi.2019.04.006
  202. 202
    Ackland, M. L.; van de Waarsenburg, S.; Jones, R. Synergistic antiproliferative action of the flavonols quercetin and kaempferol in cultured human cancer cell lines. In Vivo 2005, 19, 6976
  203. 203
    Yalçın, A. S.; Yılmaz, A. M.; Altundağ, E. M.; Koçtürk, S. Kurkumin, kuersetin ve çay kateşinlerinin anti-kanser etkileri. Marmara Pharm. J. 2016, 21, 1929,  DOI: 10.12991/marupj.259877
  204. 204
    Vargas, A. J.; Burd, R. Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management. Nutrition reviews 2010, 68, 418428,  DOI: 10.1111/j.1753-4887.2010.00301.x
  205. 205
    Nam, J. S.; Sharma, A. R.; Nguyen, L. T.; Chakraborty, C.; Sharma, G.; Lee, S. S. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine. Molecules 2016, 21, 108,  DOI: 10.3390/molecules21010108
  206. 206
    Aguirre, L.; Arias, N.; Macarulla, M. T.; Gracia, A.; Portillo, M. P. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J. 2011, 4, 189198,  DOI: 10.2174/1876396001104010189
  207. 207
    Chen, S.; Jiang, H.; Wu, X.; Fang, J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediators Inflammation 2016, 2016, 9340637  DOI: 10.1155/2016/9340637
  208. 208
    Ostadmohammadi, V.; Milajerdi, A.; Ayati, E.; Kolahdooz, F.; Asemi, Z. Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 13301340,  DOI: 10.1002/ptr.6334
  209. 209
    Chondrogianni, N.; Kapeta, S.; Chinou, I.; Vassilatou, K.; Papassideri, I.; Gonos, E. S. Anti-ageing and rejuvenating effects of quercetin. Exp. Gerontol. 2010, 45, 763771,  DOI: 10.1016/j.exger.2010.07.001
  210. 210
    Geng, L.; Liu, Z.; Zhang, W.; Li, W.; Wu, Z.; Wang, W.; Ren, R.; Su, Y.; Wang, P.; Sun, L.; Ju, Z.; Chan, P.; Song, M.; Qu, J.; Liu, G. H. Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell 2019, 10, 417435,  DOI: 10.1007/s13238-018-0567-y
  211. 211
    Larson, A. J.; Symons, J. D.; Jalili, T. Quercetin: A Treatment for Hypertension?-A Review of Efficacy and Mechanisms. Pharmaceuticals 2010, 3, 237250,  DOI: 10.3390/ph3010237
  212. 212
    Gormaz, J. G.; Quintremil, S.; Rodrigo, R. Cardiovascular Disease: A Target for the Pharmacological Effects of Quercetin. Curr. Top. Med. Chem. 2015, 15, 17351742,  DOI: 10.2174/1568026615666150427124357
  213. 213
    Khurana, S.; Venkataraman, K.; Hollingsworth, A.; Piche, M.; Tai, T. C. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 2013, 5, 37793827,  DOI: 10.3390/nu5103779
  214. 214
    Tribolo, S.; Lodi, F.; Connor, C.; Suri, S.; Wilson, V. G.; Taylor, M. A.; Needs, P. W.; Kroon, P. A.; Hughes, D. A. Comparative effects of quercetin and its predominant human metabolites on adhesion molecule expression in activated human vascular endothelial cells. Atherosclerosis 2008, 197, 5056,  DOI: 10.1016/j.atherosclerosis.2007.07.040
  215. 215
    Carrasco-Pozo, C.; Cires, M. J.; Gotteland, M. Quercetin and Epigallocatechin Gallate in the Prevention and Treatment of Obesity: From Molecular to Clinical Studies. J. Med. food 2019, 22, 753770,  DOI: 10.1089/jmf.2018.0193
  216. 216
    Patel, R. V.; Mistry, B. M.; Shinde, S. K.; Syed, R.; Singh, V.; Shin, H. S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem. 2018, 155, 889904,  DOI: 10.1016/j.ejmech.2018.06.053
  217. 217
    D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications?. Fitoterapia 2015, 106, 256271,  DOI: 10.1016/j.fitote.2015.09.018
  218. 218
    Boots, A. W.; Haenen, G. R.; Bast, A. Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325337,  DOI: 10.1016/j.ejphar.2008.03.008
  219. 219
    Kook, D.; Wolf, A. H.; Yu, A. L.; Neubauer, A. S.; Priglinger, S. G.; Kampik, A.; Welge-Lussen, U. C. The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol. Visual Sci. 2008, 49, 17121720,  DOI: 10.1167/iovs.07-0477
  220. 220
    Suematsu, N.; Hosoda, M.; Fujimori, K. Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci. Lett. 2011, 504, 223227,  DOI: 10.1016/j.neulet.2011.09.028
  221. 221
    Carullo, G.; Cappello, A. R.; Frattaruolo, L.; Badolato, M.; Armentano, B.; Aiello, F. Quercetin and derivatives: useful tools in inflammation and pain management. Future Med. Chem. 2017, 9, 7993,  DOI: 10.4155/fmc-2016-0186
  222. 222
    Gokhale, J. P.; Mahajan, H. S.; Surana, S. J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed. Pharmacother. 2019, 112, 108622  DOI: 10.1016/j.biopha.2019.108622
  223. 223
    Dietrich-Muszalska, A.; Olas, B. Inhibitory effects of polyphenol compounds on lipid peroxidation caused by antipsychotics (haloperidol and amisulpride) in human plasma in vitro. World J. Biol. Psychiatry 2010, 11, 276281,  DOI: 10.3109/15622970902718790
  224. 224
    Rabinovich, L.; Kazlouskaya, V. Herbal sun protection agents: Human studies. Clin. Dermatol. 2018, 36, 369375,  DOI: 10.1016/j.clindermatol.2018.03.014
  225. 225
    Gaudry, A.; Bos, S.; Viranaicken, W.; Roche, M.; Krejbich-Trotot, P.; Gadea, G.; Despres, P.; El-Kalamouni, C. The Flavonoid Isoquercitrin Precludes Initiation of Zika Virus Infection in Human Cells. Int. J. Mol. Sci. 2018, 19, 1093,  DOI: 10.3390/ijms19041093
  226. 226
    Gargouri, B.; Mansour, R. B.; Abdallah, F. B.; Elfekih, A.; Lassoued, S.; Khaled, H. Protective effect of quercetin against oxidative stress caused by dimethoate in human peripheral blood lymphocytes. Lipids Health Dis. 2011, 10, 149,  DOI: 10.1186/1476-511X-10-149
  227. 227
    Choi, M. H.; Shin, H. J. Anti-melanogenesis effect of quercetin. Cosmetics 2016, 3, 18,  DOI: 10.3390/cosmetics3020018
  228. 228
    Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct. 2015, 6, 13991417,  DOI: 10.1039/C4FO01178C
  229. 229
    Graefe, E. U.; Wittig, J.; Mueller, S.; Riethling, A.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; H, H. D.; Veit, M. Pharmacokinetics and Bioavailability of Quercetin Glycosides in Humans. J. Clin. Psychopharmacol. 2001, 41, 492499,  DOI: 10.1177/00912700122010366
  230. 230
    Almeida, A. F.; Borge, G. I. A.; Piskula, M.; Tudose, A.; Tudoreanu, L.; Valentová, K.; Williamson, G.; Santos, C. N. Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Compr. Rev. Food Sci. Food Saf. 2018, 17, 714731,  DOI: 10.1111/1541-4337.12342
  231. 231
    Mukhopadhyay, P.; Prajapati, A. K. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers – a review. RSC Adv. 2015, 5, 9754797562,  DOI: 10.1039/C5RA18896B
  232. 232
    Rizvi, S. A. A.; Saleh, A. M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018, 26, 6470,  DOI: 10.1016/j.jsps.2017.10.012
  233. 233
    Baksi, R.; Singh, D. P.; Borse, S. P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother. 2018, 106, 15131526,  DOI: 10.1016/j.biopha.2018.07.106
  234. 234
    de Oliveira Pedro, R.; Hoffmann, S.; Pereira, S.; Goycoolea, F. M.; Schmitt, C. C.; Neumann, M. G. Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. Eur. J. Pharm. Biopharm. 2018, 131, 203210,  DOI: 10.1016/j.ejpb.2018.08.009
  235. 235
    Penalva, R.; Gonzalez-Navarro, C. J.; Gamazo, C.; Esparza, I.; Irache, J. M. Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 103110,  DOI: 10.1016/j.nano.2016.08.033
  236. 236
    Halder, A.; Mukherjee, P.; Ghosh, S.; Mandal, S.; Chatterji, U.; Mukherjee, A. Smart PLGA nanoparticles loaded with Quercetin: Cellular uptake and in-vitro anticancer study. Mater. Today: Proc. 2018, 5, 96989705,  DOI: 10.1016/j.matpr.2017.10.156
  237. 237
    Lou, M.; Zhang, L. N.; Ji, P. G.; Feng, F. Q.; Liu, J. H.; Yang, C.; Li, B. F.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother. 2016, 84, 19,  DOI: 10.1016/j.biopha.2016.08.055
  238. 238
    Chitkara, D.; Nikalaje, S. K.; Mittal, A.; Chand, M.; Kumar, N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Delivery Transl. Res. 2012, 2, 112123,  DOI: 10.1007/s13346-012-0063-5
  239. 239
    Tan, B. J.; Liu, Y.; Chang, K. L.; Lim, B. K.; Chiu, G. N. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomed. 2012, 7, 651661,  DOI: 10.2147/IJN.S26538
  240. 240
    Zhou, H.; Wang, X. Spectrometric study on the interaction of sodium cholate aggregates with quercetin. Colloids Surf., A 2015, 481, 3137,  DOI: 10.1016/j.colsurfa.2015.04.023
  241. 241
    Sadhukhan, P.; Kundu, M.; Chatterjee, S.; Ghosh, N.; Manna, P.; Das, J.; Sil, P. C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng., C 2019, 100, 129140,  DOI: 10.1016/j.msec.2019.02.096
  242. 242
    Braga, L. R.; Pérez, L. M.; Soazo, M. dV.; Machado, F. Evaluation of the antimicrobial, antioxidant and physicochemical properties of Poly(Vinyl chloride) films containing quercetin and silver nanoparticles. Lwt 2019, 101, 491498,  DOI: 10.1016/j.lwt.2018.11.082
  243. 243
    Yang, X.; Zhang, W.; Zhao, Z.; Li, N.; Mou, Z.; Sun, D.; Cai, Y.; Wang, W.; Lin, Y. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorg. Biochem. 2017, 167, 3648,  DOI: 10.1016/j.jinorgbio.2016.11.023
  244. 244
    Lee, G. H.; Lee, S. J.; Jeong, S. W.; Kim, H. C.; Park, G. Y.; Lee, S. G.; Choi, J. H. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloids Surf., B 2016, 143, 511517,  DOI: 10.1016/j.colsurfb.2016.03.060
  245. 245
    Aghapour, F.; Moghadamnia, A. A.; Nicolini, A.; Kani, S. N. M.; Barari, L.; Morakabati, P.; Rezazadeh, L.; Kazemi, S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun. 2018, 500, 860865,  DOI: 10.1016/j.bbrc.2018.04.174
  246. 246
    Niazvand, F.; Orazizadeh, M.; Khorsandi, L.; Abbaspour, M.; Mansouri, E.; Khodadadi, A. Effects of Quercetin-Loaded Nanoparticles on MCF-7 Human Breast Cancer Cells. Medicina 2019, 55, 114,  DOI: 10.3390/medicina55040114
  247. 247
    Hatahet, T.; Morille, M.; Hommoss, A.; Devoisselle, J. M.; Muller, R. H.; Begu, S. Liposomes, lipid nanocapsules and smartCrystals(R): A comparative study for an effective quercetin delivery to the skin. Int. J. Pharm. 2018, 542, 176185,  DOI: 10.1016/j.ijpharm.2018.03.019
  248. 248
    Vijayakumar, A.; Baskaran, R.; Jang, Y. S.; Oh, S. H.; Yoo, B. K. Quercetin-Loaded Solid Lipid Nanoparticle Dispersion with Improved Physicochemical Properties and Cellular Uptake. AAPS PharmSciTech 2017, 18, 875883,  DOI: 10.1208/s12249-016-0573-4
  249. 249
    Liu, L.; Tang, Y.; Gao, C.; Li, Y.; Chen, S.; Xiong, T.; Li, J.; Du, M.; Gong, Z.; Chen, H.; Liu, L.; Yao, P. Characterization and biodistribution in vivo of quercetin-loaded cationic nanostructured lipid carriers. Colloids Surf., B 2014, 115, 125131,  DOI: 10.1016/j.colsurfb.2013.11.029
  250. 250
    Srinivas, K.; King, J. W.; Howard, L. R.; Monrad, J. K. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng. 2010, 100, 208218,  DOI: 10.1016/j.jfoodeng.2010.04.001
  251. 251
    Biasutto, L.; Marotta, E.; Garbisa, S.; Zoratti, M.; Paradisi, C. Determination of quercetin and resveratrol in whole blood--implications for bioavailability studies. Molecules 2010, 15, 65706579,  DOI: 10.3390/molecules15096570
  252. 252
    Kumari, A.; Kumar, V.; Yadav, S. K. Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PLoS One 2012, 7, e41230  DOI: 10.1371/journal.pone.0041230
  253. 253
    Souza, M. P.; Vaz, A. F. M.; Correia, M. T. S.; Cerqueira, M. A.; Vicente, A. A.; Carneiro-da-Cunha, M. G. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food Bioprocess Technol. 2014, 7, 11491159,  DOI: 10.1007/s11947-013-1160-2
  254. 254
    Gugler, R.; Leschik, M.; Dengler, H. J. Disposition of quercetin in man after single oral and intravenous doses. Eur. J. Clin. Pharmacol. 1975, 9, 229234,  DOI: 10.1007/BF00614022
  255. 255
    Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technol. 2004, 1, 337341,  DOI: 10.1016/j.ddtec.2004.11.007
  256. 256
    Kawai, Y. Understanding metabolic conversions and molecular actions of flavonoids in vivo:toward new strategies for effective utilization of natural polyphenols in human health. J. Med. Invest. 2018, 65, 162165,  DOI: 10.2152/jmi.65.162
  257. 257
    de Boer, V. C.; Dihal, A. A.; van der Woude, H.; Arts, I. C.; Wolffram, S.; Alink, G. M.; Rietjens, I. M.; Keijer, J.; Hollman, P. C. Tissue distribution of quercetin in rats and pigs. J. Nutr. 2005, 135, 17181725,  DOI: 10.1093/jn/135.7.1718
  258. 258
    Olthof, M. R.; Hollman, P. C.; Vree, T. B.; Katan, M. B. Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans. J. Nutr. 2000, 130, 12001203,  DOI: 10.1093/jn/130.5.1200
  259. 259
    Stopa, J. D.; Neuberg, D.; Puligandla, M.; Furie, B.; Flaumenhaft, R.; Zwicker, J. I. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation. JCI insight 2017, 2, e89373  DOI: 10.1172/jci.insight.89373
  260. 260
    Day, A. J.; Mellon, F.; Barron, D.; Sarrazin, G.; Morgan, M. R.; Williamson, G. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radical Res. 2001, 35, 941952,  DOI: 10.1080/10715760100301441
  261. 261
    Hollman, P. C. H.; Arts, I. C. W. Flavonols, flavones and flavanols – nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 10811093,  DOI: 10.1002/(SICI)1097-0010(20000515)80:7<1081::AID-JSFA566>3.0.CO;2-G
  262. 262
    Manach, C.; Donovan, J. L. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radical Res. 2004, 38, 771785,  DOI: 10.1080/10715760410001727858
  263. 263
    Li, W.; Yi, S.; Wang, Z.; Chen, S.; Xin, S.; Xie, J.; Zhao, C. Self-nanoemulsifying drug delivery system of persimmon leaf extract: Optimization and bioavailability studies. Int. J. Pharm. 2011, 420, 161171,  DOI: 10.1016/j.ijpharm.2011.08.024
  264. 264
    Sarkar, S.; Mandal, S.; Sinha, J.; Mukhopadhyay, S.; Das, N.; Basu, M. K. Quercetin: critical evaluation as an antileishmanial agent in vivo in hamsters using different vesicular delivery modes. J. Drug Targeting 2002, 10, 573578,  DOI: 10.1080/106118021000072681
  265. 265
    Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Controlled Release 2009, 133, 238244,  DOI: 10.1016/j.jconrel.2008.10.002
  266. 266
    Ghosh, D.; Ghosh, S.; Sarkar, S.; Ghosh, A.; Das, N.; Das Saha, K.; Mandal, A. K. Quercetin in vesicular delivery systems: evaluation in combating arsenic-induced acute liver toxicity associated gene expression in rat model. Chem.-Biol. Interact. 2010, 186, 6171,  DOI: 10.1016/j.cbi.2010.03.048
  267. 267
    Chakraborty, S.; Stalin, S.; Das, N.; Choudhury, S. T.; Ghosh, S.; Swarnakar, S. The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials 2012, 33, 29913001,  DOI: 10.1016/j.biomaterials.2011.12.037
  268. 268
    Ghosh, S.; Sarkar, S.; Choudhury, S. T.; Ghosh, T.; Das, N. Triphenyl phosphonium coated nano-quercetin for oral delivery: Neuroprotective effects in attenuating age related global moderate cerebral ischemia reperfusion injury in rats. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 24392450,  DOI: 10.1016/j.nano.2017.08.002
  269. 269
    Sousa-Batista, A. J.; Poletto, F. S.; Philipon, C.; Guterres, S. S.; Pohlmann, A. R.; Rossi-Bergmann, B. Lipid-core nanocapsules increase the oral efficacy of quercetin in cutaneous leishmaniasis. Parasitology 2017, 144, 17691774,  DOI: 10.1017/S003118201700097X
  270. 270
    Tian, F.; Dahmani, F. Z.; Qiao, J.; Ni, J.; Xiong, H.; Liu, T.; Zhou, J.; Yao, J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater. 2018, 75, 398412,  DOI: 10.1016/j.actbio.2018.05.050
  271. 271
    Saha, C.; Kaushik, A.; Das, A.; Pal, S.; Majumder, D. Anthracycline Drugs on Modified Surface of Quercetin-Loaded Polymer Nanoparticles: A Dual Drug Delivery Model for Cancer Treatment. PLoS One 2016, 11, e0155710  DOI: 10.1371/journal.pone.0155710
  272. 272
    Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep. 2016, 43, 99105,  DOI: 10.1007/s11033-016-3942-x
  273. 273
    Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci. 2018, 509, 4757,  DOI: 10.1016/j.jcis.2017.08.097
  274. 274
    Zhu, B.; Yu, L.; Yue, Q. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed. Pharmacother. 2017, 91, 287294,  DOI: 10.1016/j.biopha.2017.02.112
  275. 275
    Rezvani, M.; Mohammadnejad, J.; Narmani, A.; Bidaki, K. Synthesis and in vitro study of modified chitosan-polycaprolactam nanocomplex as delivery system. Int. J. Biol. Macromol. 2018, 113, 12871293,  DOI: 10.1016/j.ijbiomac.2018.02.141
  276. 276
    Mu, Y.; Fu, Y.; Li, J.; Yu, X.; Li, Y.; Wang, Y.; Wu, X.; Zhang, K.; Kong, M.; Feng, C.; Chen, X. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr. Polym. 2019, 203, 1018,  DOI: 10.1016/j.carbpol.2018.09.020
  277. 277
    Li, J.; He, Z.; Yu, S.; Li, S.; Ma, Q.; Yu, Y.; Zhang, J.; Li, R.; Zheng, Y.; He, G.; Song, X. Micelles based on methoxy poly(ethylene glycol)-cholesterol conjugate for controlled and targeted drug delivery of a poorly water soluble drug. J. Biomed. Nanotechnol. 2012, 8, 809817,  DOI: 10.1166/jbn.2012.1433
  278. 278
    Gupta, P.; Authimoolam, S. P.; Hilt, J. Z.; Dziubla, T. D. Quercetin conjugated poly(beta-amino esters) nanogels for the treatment of cellular oxidative stress. Acta Biomater. 2015, 27, 194204,  DOI: 10.1016/j.actbio.2015.08.039
  279. 279
    Catauro, M.; Bollino, F.; Nocera, P.; Piccolella, S.; Pacifico, S. Entrapping quercetin in silica/poly(ethylene glycol) hybrid materials: Chemical characterization and biocompatibility. Mater. Sci. Eng., C 2016, 68, 205212,  DOI: 10.1016/j.msec.2016.05.082
  280. 280
    Abd-Rabou, A. A.; Ahmed, H. H. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line. Adv. Med. Sci. 2017, 62, 357367,  DOI: 10.1016/j.advms.2017.01.003
  281. 281
    Das, S.; Roy, P.; Mondal, S.; Bera, T.; Mukherjee, A. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf., B 2013, 107, 2734,  DOI: 10.1016/j.colsurfb.2013.01.061
  282. 282
    Rezaei-Sadabady, R.; Eidi, A.; Zarghami, N.; Barzegar, A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif. Cells, Nanomed., Biotechnol. 2016, 44, 128134,  DOI: 10.3109/21691401.2014.926456
  283. 283
    Huang, X.; Chen, X.; Chen, Q.; Yu, Q.; Sun, D.; Liu, J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater. 2016, 30, 397407,  DOI: 10.1016/j.actbio.2015.10.041
  284. 284
    Kumar, P.; Sharma, G.; Kumar, R.; Singh, B.; Malik, R.; Katare, O. P.; Raza, K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int. J. Pharm. 2016, 515, 307314,  DOI: 10.1016/j.ijpharm.2016.10.024
  285. 285
    Lozano-Pérez, A. A.; Rivero, H. C.; Perez Hernandez, M. D. C.; Pagan, A.; Montalban, M. G.; Villora, G.; Cenis, J. L. Silk fibroin nanoparticles: Efficient vehicles for the natural antioxidant quercetin. Int. J. Pharm. 2017, 518, 1119,  DOI: 10.1016/j.ijpharm.2016.12.046
  286. 286
    Abd El-Fattah, A. I.; Fathy, M. M.; Ali, Z. Y.; El-Garawany, A. E. A.; Mohamed, E. K. Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chem.-Biol. Interact. 2017, 271, 3038,  DOI: 10.1016/j.cbi.2017.04.026
  287. 287
    Singh, J.; Mittal, P.; Vasant Bonde, G.; Ajmal, G.; Mishra, B. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus(R)/P407 micelles in diabetes treatment. Artif. Cells, Nanomed., Biotechnol. 2018, 46, S546S555,  DOI: 10.1080/21691401.2018.1501379
  288. 288
    Habas, K.; Abdulmwli, M.; Demir, E.; Jacob, B. K.; Najafzadeh, M.; Anderson, D. DNA damage protection by bulk and nano forms of quercetin in lymphocytes of patients with chronic obstructive pulmonary disease exposed to the food mutagen 2-amino-3-methylimidazo [4,5-f]quinolone (IQ). Environ. Res. 2018, 166, 1015,  DOI: 10.1016/j.envres.2018.05.012

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 328 publications.

  1. Vishakha Goswami, Vijay Raj Tomar, Yashika, Shashank Deep. Nanocarriers for the Delivery of Quercetin to Inhibit the UV-Induced Aggregation of γD-Crystallin. Langmuir 2024, 40 (11) , 5617-5631. https://doi.org/10.1021/acs.langmuir.3c01910
  2. Bimal K. Raut, Siddha Raj Upadhyaya, Jyoti Bashyal, Niranjan Parajuli. In Silico and In Vitro Analyses to Repurpose Quercetin as a Human Pancreatic α-Amylase Inhibitor. ACS Omega 2023, 8 (46) , 43617-43631. https://doi.org/10.1021/acsomega.3c05082
  3. Olga Stężycka, Magdalena Frańska. Binding of Quercetin Derivatives toward G-Tetrads as Studied by the Survival Yield Method. ACS Omega 2023, 8 (42) , 39816-39821. https://doi.org/10.1021/acsomega.3c06016
  4. Molly M. Haskins, Oisín N. Kavanagh, Rana Sanii, Sanaz Khorasani, Jia-Mei Chen, Zhi-Yuan Zhang, Xia-Lin Dai, Bo-Ying Ren, Tong-Bu Lu, Michael J. Zaworotko. Tuning the Pharmacokinetic Performance of Quercetin by Cocrystallization. Crystal Growth & Design 2023, 23 (8) , 6059-6066. https://doi.org/10.1021/acs.cgd.3c00590
  5. Lokman Liv, Erman Karakuş. Signal-Enhanced Electrochemical Determination of Quercetin with Poly(chromotrope fb)-Modified Pencil Graphite Electrode in Vegetables and Fruits. ACS Omega 2023, 8 (13) , 12522-12531. https://doi.org/10.1021/acsomega.3c00599
  6. Jia-Xin Li, Rong Tian, Naihao Lu. Quercetin Attenuates Vascular Endothelial Dysfunction in Atherosclerotic Mice by Inhibiting Myeloperoxidase and NADPH Oxidase Function. Chemical Research in Toxicology 2023, 36 (2) , 260-269. https://doi.org/10.1021/acs.chemrestox.2c00334
  7. Rong Tian, Lan Zhou, Naihao Lu. Binding of Quercetin to Hemoglobin Reduced Hemin Release and Lipid Oxidation. Journal of Agricultural and Food Chemistry 2022, 70 (40) , 12925-12934. https://doi.org/10.1021/acs.jafc.2c04129
  8. Ahmed M. M. Gabr, Nesrin M. Fayek, Hossam M. Mahmoud, Mohamed K. El-Bahr, Hanan S. Ebrahim, Oksana Sytar, Ali M. El-Halawany. Effect of Light Quality and Media Components on Shoot Growth, Rutin, and Quercetin Production from Common Buckwheat. ACS Omega 2022, 7 (30) , 26566-26572. https://doi.org/10.1021/acsomega.2c02728
  9. Dezhi Yang, Junzi Cao, Tianyu Heng, Cheng Xing, Shiying Yang, Li Zhang, Yang Lu, Guanhua Du. Theoretical Calculation and Structural Analysis of the Cocrystals of Three Flavonols with Praziquantel. Crystal Growth & Design 2021, 21 (4) , 2292-2300. https://doi.org/10.1021/acs.cgd.0c01706
  10. Rong Tian, Zeran Jin, Lan Zhou, Xing-Ping Zeng, Naihao Lu. Quercetin Attenuated Myeloperoxidase-Dependent HOCl Generation and Endothelial Dysfunction in Diabetic Vasculature. Journal of Agricultural and Food Chemistry 2021, 69 (1) , 404-413. https://doi.org/10.1021/acs.jafc.0c06335
  11. Mengjuan Luo, Rong Tian, Naihao Lu. Quercetin Inhibited Endothelial Dysfunction and Atherosclerosis in Apolipoprotein E-Deficient Mice: Critical Roles for NADPH Oxidase and Heme Oxygenase-1. Journal of Agricultural and Food Chemistry 2020, 68 (39) , 10875-10883. https://doi.org/10.1021/acs.jafc.0c03907
  12. Lei Zhang, Xingzhi Wang, Liang Chang, Yiqun Ren, Manshu Sui, Yuting Fu, Lei Zhang, Lirong Hao. Quercetin improves diabetic kidney disease by inhibiting ferroptosis and regulating the Nrf2 in streptozotocin-induced diabetic rats. Renal Failure 2024, 46 (1) https://doi.org/10.1080/0886022X.2024.2327495
  13. Dong My Lieu, Ly Thi Kim Vo, Han Gia Le, Tien Thi Bich Nguyen, Thuy Thi Kim Dang. Yeast cell as a potential microcapsule of bioactive compounds: an overview. Nutrire 2024, 49 (1) https://doi.org/10.1186/s41110-024-00257-8
  14. Golak Majumdar, Shyamapada Mandal. Evaluation of broad-spectrum antibacterial efficacy of quercetin by molecular docking, molecular dynamics simulation and in vitro studies. Chemical Physics Impact 2024, 8 , 100501. https://doi.org/10.1016/j.chphi.2024.100501
  15. Daniela Pastorim Vaiss, Jamile Lima Rodrigues, Virginia Campello Yurgel, Frank do Carmo Guedes, Lauanda Larissa Mendonça da Matta, Paula Alice Bezerra Barros, Gustavo Richter Vaz, Raíssa Nunes dos Santos, Bibiana Franzen Matte, Larine Kupski, Jaqueline Garda-Buffon, Juliana Bidone, Ana Luiza Muccillo-Baisch, Fabio Sonvico, Cristiana Lima Dora. Curcumin and quercetin co-encapsulated in nanoemulsions for nasal administration: A promising therapeutic and prophylactic treatment for viral respiratory infections. European Journal of Pharmaceutical Sciences 2024, 197 , 106766. https://doi.org/10.1016/j.ejps.2024.106766
  16. Sawsan S. Al-Rawi, Ahmad Hamdy Ibrahim, Heshu Jalal Ahmed, Zhikal Omar Khudhur. Therapeutic, and pharmacological prospects of nutmeg seed: A comprehensive review for novel drug potential insights. Saudi Pharmaceutical Journal 2024, 32 (6) , 102067. https://doi.org/10.1016/j.jsps.2024.102067
  17. Mohd Abul Kalam, Raisuddin Ali, Adel Alhowyan, Ajaz Ahmad, Muzaffar Iqbal, Mohammad Raish. Quercetin-loaded transliposomal gel for effective management of skin cancer: In vitro and cell line efficacy studies. Journal of Drug Delivery Science and Technology 2024, 96 , 105659. https://doi.org/10.1016/j.jddst.2024.105659
  18. Shereen Farhana P., Arul Prakash Francis, Gayathri R., Kavitha Sankaran, Vishnu Priya Veeraraghavan. Synthesis and Characterization of Zirconium Oxide Nanoparticles Based on Hemidesmus Indicus Extract: Evaluation of Biocompatibility and Bioactivity for Prosthetic Implant Coatings. Journal of Advanced Oral Research 2024, 15 (1) , 100-108. https://doi.org/10.1177/23202068241239150
  19. Huihui Sun, Yaqing Yang, Yaoyao Jin, Hao Chen, Aoying Li, Xizhao Chen, Junxiang Yin, Jun Cai, Liang Zhang, Xinmin Feng, Yongxiang Wang, Wu Xiong, Chunming Tang, Bowen Wan. Novel nanocomposites improve functional recovery of spinal cord injury by regulating NF-κB mediated microglia polarization. Chemical Engineering Journal 2024, 487 , 150633. https://doi.org/10.1016/j.cej.2024.150633
  20. Neeraj Choudhary, Devesh Tewari, Seyed Fazel Nabavi, Hamid Reza Khayat Kashani, Zahra Lorigooini, Rosanna Filosa, Farheen Badrealam Khan, Nooshin Masoudian, Seyed Mohammad Nabavi. Plant based food bioactives: A boon or bane for neurological disorders. Critical Reviews in Food Science and Nutrition 2024, 64 (11) , 3279-3325. https://doi.org/10.1080/10408398.2022.2131729
  21. Bernadette Xin Jie Tune, Yuan Seng Wu, Rhanye Mac Guad, Aimi Syamima Abd Manap, Sheryar Afzal, Kalaivani Batumalaie, Ker Woon Choy, Neeraj Kumar Fuloria, Shivkanya Fuloria, Vetriselvan Subramaniyan, Mahendran Sekar. Preclinical Therapeutic Effects of Quercetin on Gastrointestinal Cancers. 2024https://doi.org/10.5772/intechopen.1004556
  22. Marcela Dvorakova, Petr Soudek, Antonio Pavicic, Lenka Langhansova. The traditional utilization, biological activity and chemical composition of edible fern species. Journal of Ethnopharmacology 2024, 324 , 117818. https://doi.org/10.1016/j.jep.2024.117818
  23. Debasmita Das, Arnab Banerjee, Krishnendu Manna, Deotima Sarkar, Aparna Shil, Mausumi Sikdar (ne′e Bhakta), Sandip Mukherjee, Bithin Kumar Maji. Quercetin counteracts monosodium glutamate to mitigate immunosuppression in the thymus and spleen via redox-guided cellular signaling. Phytomedicine 2024, 126 , 155226. https://doi.org/10.1016/j.phymed.2023.155226
  24. Tamsheel Fatima Roohi, Seema Mehdi, Sadaf Aarfi, K. L. Krishna, Suman Pathak, Seikh Mohammad Suhail, Syed Faizan. Biomarkers and signaling pathways of diabetic nephropathy and peripheral neuropathy: possible therapeutic intervention of rutin and quercetin. Diabetology International 2024, 15 (2) , 145-169. https://doi.org/10.1007/s13340-023-00680-8
  25. Eman A. Mazyed, Galal Magdy, Engy Elekhnawy, Marie Yammine, Christian Rolando, Mai H. ElNaggar. Formulation and characterization of quercetin-loaded Prunus armeniaca gum nanoparticles with enhanced anti-bacterial effect. Journal of Drug Delivery Science and Technology 2024, 94 , 105485. https://doi.org/10.1016/j.jddst.2024.105485
  26. Gisláine C. Silva, Rodney A. F. Rodrigues, Carla B. G. Bottoli. In vitro diffusion of plant phenolics through the skin: A review update. International Journal of Cosmetic Science 2024, 46 (2) , 239-261. https://doi.org/10.1111/ics.12927
  27. E Anandhi, Rafeeya Shams, Kshirod Kumar Dash, Jasleen Kaur Bhasin, Vinay Kumar Pandey, Anjali Tripathi. Extraction and Food Enrichment Applications of Black Carrot Phytocompounds: A Review. Applied Food Research 2024, 66 , 100420. https://doi.org/10.1016/j.afres.2024.100420
  28. Wira Eka Putra, Intan Nilatus Shofiyah, Adelia Riezka Rahim, Arief Hidayatullah, Muhaimin Rifa’i. Ameliorative Effect of Jamaican Cherry (Muntingia calabura L.) Leaf Extract Toward Glucose Control and Immune Cells Modulation in High Fat Diet-Administrated Mice. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 2024, 34 (1) , 1-13. https://doi.org/10.29133/yyutbd.1331257
  29. Sree Thalir, Sherin Celshia Susai, Muthamizh Selvamani, Vasugi Suresh, Sathya Sethuraman, Karthikeyan Ramalingam. Sensing of Quercetin With Cobalt-Doped Manganese Nanosystems by Electrochemical Method. Cureus 2024, 324 https://doi.org/10.7759/cureus.56665
  30. Subha Rastogi, Tara Singh Farswan, Madan Mohan Pandey. Seasonal variation in the phytoconstituents and antioxidant activity in Moringa oleifera Lam. leaves of North India. South African Journal of Botany 2024, 166 , 492-502. https://doi.org/10.1016/j.sajb.2024.01.054
  31. Eber Josue Carrillo-Martinez, Flor Yohana Flores-Hernández, Adriana María Salazar-Montes, Hector Fabián Nario-Chaidez, Luis Daniel Hernández-Ortega. Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules 2024, 29 (5) , 1000. https://doi.org/10.3390/molecules29051000
  32. Szymon Sip, Anna Sip, Piotr Szulc, Marek Selwet, Marcin Żarowski, Bogusław Czerny, Judyta Cielecka-Piontek. Exploring Beneficial Properties of Haskap Berry Leaf Compounds for Gut Health Enhancement. Antioxidants 2024, 13 (3) , 357. https://doi.org/10.3390/antiox13030357
  33. Priyank Shah, Pravin Shende. Engineering of Layered Nanocarriers of Quercetin for the Treatment of Diabetes Using Box‐Behnken Design. Particle & Particle Systems Characterization 2024, 41 (3) https://doi.org/10.1002/ppsc.202300037
  34. Matheus Antônio Filiol Belin, Juliana Silva Siqueira, Taynara Aparecida Vieira, Núbia Alves Grandini, Thiago Luiz Novaga Palacio, Erika Tiemi Nakandakare-Maia, Dijon Henrique Salomé de Campos, Fabiane Valentini Francisqueti-Ferron, Ezio Bombardelli, Igor Otávio Minatel, Giancarlo Aldini, Giuseppina Pace Pereira Lima, Camila Renata Correa. Bergamot by-product, a source of biogenic amines, reduces hypertension induced by high sugar-fat diet. Pharmacological Research - Natural Products 2024, 2 , 100022. https://doi.org/10.1016/j.prenap.2024.100022
  35. Mehedi Hasan Bappi, Md. Nayem Mia, Siddique Akber Ansari, Irfan Aamer Ansari, Abdullah Al Shamsh Prottay, Md. Showkoth Akbor, Heba A. S. El‐Nashar, Mohamed El‐Shazly, Mohammad S. Mubarak, Muhammad Torequl Islam. Quercetin increases the antidepressant‐like effects of sclareol and antagonizes diazepam in thiopental sodium‐induced sleeping mice: A possible GABAergic transmission intervention. Phytotherapy Research 2024, 12 https://doi.org/10.1002/ptr.8139
  36. Jiangpeng Pan, Tingting Wu, Lu Chen, Xiaoxi Chen, Chao Zhang, Yanyan Wang, Hao Li, Jiancheng Guo, Wei Jiang. A bimetallic nanozyme coordinated with quercetin for efficient radical scavenging and treatment of acute kidney injury. Nanoscale 2024, 16 (6) , 2955-2965. https://doi.org/10.1039/D3NR05255A
  37. Kuldeep Singh, Jeetendra Kumar Gupta, Shivendra Kumar. The Pharmacological Potential of Resveratrol in Reducing Soft Tissue Damage in Osteoarthritis Patients. Current Rheumatology Reviews 2024, 20 (1) , 27-38. https://doi.org/10.2174/1573397119666230911113134
  38. Girish Tigari, Jamballi G. Manjunatha, Hareesha Nagarajappa, Ammar M. Tighezza, Munirah D. Albaqami, Mika Sillanpaa. Poly(riboflavin)/NaOH/graphene nanoplatelets modified graphite composite paste electrode for the determination of antioxidant rutin. Journal of Food Measurement and Characterization 2024, 18 (2) , 1238-1252. https://doi.org/10.1007/s11694-023-02253-4
  39. PALANATI MAMATHA, BHIKSHAPATHI D. V. R. N.. DETERMINATION OF IN VITRO CYTOTOXICITY OF ENTRECTINIB AND PEMIGATINIB NANOSPONGES TABLETS ON A 498, MCF-7 AND PANC-1 CELL LINES. International Journal of Pharmacy and Pharmaceutical Sciences 2024, , 12-16. https://doi.org/10.22159/ijpps.2024v16i2.49567
  40. Edward J. Calabrese, A. Wallace Hayes, Peter Pressman, Gaurav Dhawan, Rachna Kapoor, Evgenios Agathokleous, Vittorio Calabrese. Quercetin induces its chemoprotective effects via hormesis. Food and Chemical Toxicology 2024, 184 , 114419. https://doi.org/10.1016/j.fct.2023.114419
  41. Szymon Kowalski, Julia Karska, Maciej Tota, Katarzyna Skinderowicz, Julita Kulbacka, Małgorzata Drąg-Zalesińska. Natural Compounds in Non-Melanoma Skin Cancer: Prevention and Treatment. Molecules 2024, 29 (3) , 728. https://doi.org/10.3390/molecules29030728
  42. Lubov Salijanovna Kuchkarova, Khasan Yusuf Ogli Kayumov, Nurali Azamovich Ergashev, Gulchekhra Telgenbaevna Kudeshovа. Effect of Quercetin on the Intestinal Carbohydrases Activity in the Offspring of the Lead Intoxicated Mother. Journal of Natural Remedies 2024, , 391-396. https://doi.org/10.18311/jnr/2024/32682
  43. Devika Sonawane, Varsha Pokharkar. Quercetin-Loaded Nanostructured Lipid Carrier In Situ Gel for Brain Targeting Through Intranasal Route: Formulation, In Vivo Pharmacokinetic and Pharmacodynamic Studies. AAPS PharmSciTech 2024, 25 (2) https://doi.org/10.1208/s12249-024-02736-7
  44. Mihai Victor Curtasu, Natalja P. Nørskov. Quantitative distribution of flavan-3-ols, procyanidins, flavonols, flavanone and salicylic acid in five varieties of organic winter dormant Salix spp. by LC-MS/MS. Heliyon 2024, 10 (3) , e25129. https://doi.org/10.1016/j.heliyon.2024.e25129
  45. Rafia A. Baba, Hilal A. Mir, Taseem A. Mokhdomi, Hina F. Bhat, Ajaz Ahmad, Firdous A. Khanday. Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomas. Frontiers in Pharmacology 2024, 15 https://doi.org/10.3389/fphar.2024.1318797
  46. Roy Dinata, Nisekhoto Nisa, Chettri Arati, Borgohain Rasmita, Chetia Uditraj, Rajkonwar Siddhartha, Baishya Bhanushree, Laskar Saeed-Ahmed, Bose Manikandan, Rema Momin Bidanchi, Giri Abinash, Buragohain Pori, Maurya Khushboo, Vikas Kumar Roy, Guruswami Gurusubramanian. Repurposing immune boosting and anti-viral efficacy of Parkia bioactive entities as multi-target directed therapeutic approach for SARS-CoV-2: exploration of lead drugs by drug likeness, molecular docking and molecular dynamics simulation methods. Journal of Biomolecular Structure and Dynamics 2024, 42 (1) , 43-81. https://doi.org/10.1080/07391102.2023.2192797
  47. Anuradha Urati, Anok Angati, Avtar Singh Gautam, Mangaldeep Dey, Shivam Kumar Pandey, Rakesh Kumar Singh. Neuroprotective responses of quercetin in regulation of biochemical, structural, and neurobehavioral effects in 28-day oral exposure of iron in rats. Toxicology Mechanisms and Methods 2024, 34 (1) , 57-71. https://doi.org/10.1080/15376516.2023.2256840
  48. Zahra Salmasi, Parisa Saberi-Hasanabadi, Hamidreza Mohammadi, Rezvan Yazdian-Robati. Different combination therapies pertaining to pancreatic cancer. 2024, 15-34. https://doi.org/10.1016/B978-0-443-19142-8.00018-8
  49. Ranjit K. Harwansh, Rohitas Deshmukh. Recent Insight into UV-induced Oxidative Stress and Role of Herbal Bioactives in the Management of Skin Aging. Current Pharmaceutical Biotechnology 2024, 25 (1) , 16-41. https://doi.org/10.2174/1389201024666230427110815
  50. Moupriya Mondal, Sumanta Das, Indrani Chandra. Effect of individual plant growth regulators on modulation of secondary metabolites production in an important medicinal plant Gloriosa superba L.. Plant Cell, Tissue and Organ Culture (PCTOC) 2024, 156 (1) https://doi.org/10.1007/s11240-023-02637-w
  51. Sakshi Bajaj, Supriya Singh, Prateek Sharma. Role of antioxidants in neutralizing oxidative stress. 2024, 353-378. https://doi.org/10.1016/B978-0-443-18951-7.00020-7
  52. Pawan K Agrawal, Gerald Blunden, Claus Jacob. Antiviral Significance of Isoquercetin (Quercetin-3- O -Glucoside) With Special Reference to its Anti-Coronaviral Potential. Natural Product Communications 2024, 19 (1) https://doi.org/10.1177/1934578X231219560
  53. Shashank Kumar Maurya, Rajnikant Mishra. Modulation of neuroinflammation by natural molecules. 2024, 171-197. https://doi.org/10.1016/B978-0-443-23763-8.00008-7
  54. Mehrab Pourmadadi, Alireza Tajiki, Majid Abdouss, Alireza Beig Mohammadi, Zelal Kharaba, Abbas Rahdar, Ana M. Díez-Pascual. Novel carbon quantum dots incorporated polyacrylic acid/polyethylene glycol pH-sensitive nanoplatform for drug delivery. Inorganic Chemistry Communications 2024, 159 , 111814. https://doi.org/10.1016/j.inoche.2023.111814
  55. Ludmila FMF Cardozo, Peter Stenvinkel, Denise Mafra. Functional properties of foods in chronic kidney disease. 2024, 95-104. https://doi.org/10.1016/B978-0-323-91747-6.00008-1
  56. Kriangkrai Chawansuntati, Sayamon Hongjaisee, Kittichai Sirita, Kornkamon Kingkaew, Kritsadee Rattanathammethee, Benjawan Kumrapich, Sakaewan Ounjaijean, Aphisek Kongkaew, Nongkran Lumjuan. Effects of quercetin and extracts from Phyllanthus emblica, Morus alba, and Ginkgo biloba on platelet recovery in a rat model of chemotherapy-induced thrombocytopenia. Heliyon 2024, 10 (2) , e25013. https://doi.org/10.1016/j.heliyon.2024.e25013
  57. Sakdithep Chaiyarit, Somsakul Phuangkham, Visith Thongboonkerd. Quercetin inhibits calcium oxalate crystallization and growth but promotes crystal aggregation and invasion. Current Research in Food Science 2024, 8 , 100650. https://doi.org/10.1016/j.crfs.2023.100650
  58. Priya Godara, K. Sony Reddy, Welka Sahu, Biswajit Naik, Varshita Srivastava, Rusham Das, Ajay Mahor, Prateek Kumar, Rajanish Giri, Jivanage Anirudh, Harshita Tak, Hemanth Naick Banavath, Tarun Kumar Bhatt, Amit Kumar Goyal, Dhaneswar Prusty. Structure-based virtual screening against multiple Plasmodium falciparum kinases reveals antimalarial compounds. Molecular Diversity 2023, 93 https://doi.org/10.1007/s11030-023-10770-z
  59. G. Thirumala Reddy, Sri Lakshmi Aluri, A. R. Shashikala. Metal-Infused Polyphenol-enriched Phyto-fabricated Nanoparticles: an In-depth Review of their Potent Prebiotic Properties. Journal of Mines, Metals and Fuels 2023, , 1764-1774. https://doi.org/10.18311/jmmf/2023/35062
  60. Khaled Y. Mahmoud, Nahla A. Elhesaisy, Abdelrahman R. Rashed, Ebram S. Mikhael, Mahmoud I. Fadl, Mahmoud S. Elsadek, Merna A. Mohamed, Merna A. Mostafa, Mohamed A. Hassan, Omar M. Halema, Youssef H. Elnemer, Shady A. Swidan. Exploring the potential of intranasally administered naturally occurring quercetin loaded into polymeric nanocapsules as a novel platform for the treatment of anxiety. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-27665-6
  61. Atefeh Khodakarami, Mahsa Afsari Kashani, Atefeh Nazer, Armin Mahmoudsalehi Kheshti, Bentolhoda Rashidi, Vahid Karpisheh, Ali Masjedi, Shiva Abolhasani, Sepideh Izadi, Rafieh Bagherifar, Seyyed Sina Hejazian, Hamed Mohammadi, AliAkbar Movassaghpour, Abbas Ali Hosseinpour Feizi, Mohammad Hojjat-Farsangi, Farhad Jadidi-Niaragh. Targeted Silencing of NRF2 by rituximab-conjugated nanoparticles increases the sensitivity of chronic lymphoblastic leukemia cells to Cyclophosphamide. Cell Communication and Signaling 2023, 21 (1) https://doi.org/10.1186/s12964-023-01213-1
  62. Daniel Muthee Gaichu, Patricia Mathabe, Mathew Piero Ngugi. Evaluation of cardiopreventive effects of Ximenia americana (Linn.) and Pappea capensis (Eckl. and Zeyh.) leaf aqueous extracts in rat models with myocardial infarction. Future Journal of Pharmaceutical Sciences 2023, 9 (1) https://doi.org/10.1186/s43094-023-00491-3
  63. Hemant Joshi, Dhruv Sanjay Gupta, Ginpreet Kaur, Tejveer Singh, Seema Ramniwas, Katrin Sak, Diwakar Aggarwal, Raunak Singh Chhabra, Madhu Gupta, Adesh K. Saini, Hardeep Singh Tuli. Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies. Naunyn-Schmiedeberg's Archives of Pharmacology 2023, 396 (12) , 3443-3458. https://doi.org/10.1007/s00210-023-02625-z
  64. Alokali Kiba, Dipankar Saha, Bhrigu Kumar Das. Exploration of the anti-diabetic potential of hydro-ethanolic leaf extract of Koenigia polystachya L.: an edible wild plant from Northeastern India. Laboratory Animal Research 2023, 39 (1) https://doi.org/10.1186/s42826-023-00174-3
  65. P. C. Agu, C. A. Afiukwa, O. U. Orji, E. M. Ezeh, I. H. Ofoke, C. O. Ogbu, E. I. Ugwuja, P. M. Aja. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-40160-2
  66. Enrico V. Perrino, Zuhair N. A. Mahmoud, Francesca Valerio, Valeria Tomaselli, Robert P. Wagensommer, Antonio Trani. Synecology of Lagoecia cuminoides L. in Italy and evaluation of functional compounds presence in its water or hydroalcoholic extracts. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-48065-w
  67. Meenu Bhatiya, Surajit Pathak, Ganesan Jothimani, Asim K. Duttaroy, Antara Banerjee. A Comprehensive Study on the Anti-cancer Effects of Quercetin and Its Epigenetic Modifications in Arresting Progression of Colon Cancer Cell Proliferation. Archivum Immunologiae et Therapiae Experimentalis 2023, 71 (1) https://doi.org/10.1007/s00005-023-00669-w
  68. Bander Albogami. Evaluation of the Antiparasitic, Antihepatotoxicity, and Antioxidant Efficacy of Quercetin and Chitosan, Either Alone or in Combination, against Infection Induced by Giardia lamblia in Male Rats. Life 2023, 13 (12) , 2316. https://doi.org/10.3390/life13122316
  69. Jawahar Tulsidas Jethwa. Alternative Medical Therapy. Indian Journal of Orthopaedics 2023, 57 (S1) , 245-259. https://doi.org/10.1007/s43465-023-01035-w
  70. Srimay Pradhan, Swati Rituparna, Haripriya Dehury, Monalisa Dhall, Yengkhom Disco Singh. Nutritional profile and pharmacological aspect of Houttuynia cordata Thunb. and their therapeutic applications. Pharmacological Research - Modern Chinese Medicine 2023, 9 , 100311. https://doi.org/10.1016/j.prmcm.2023.100311
  71. Agatha Ngukuran Jikah, Great Iruoghene Edo. Mechanisms of action by sulphur compounds in Allium sativum. A review. Pharmacological Research - Modern Chinese Medicine 2023, 9 , 100323. https://doi.org/10.1016/j.prmcm.2023.100323
  72. Karishma Naidoo, Andile Khathi. The Potential Role of Gossypetin in the Treatment of Diabetes Mellitus and Its Associated Complications: A Review. International Journal of Molecular Sciences 2023, 24 (24) , 17609. https://doi.org/10.3390/ijms242417609
  73. Nikitas Georgiou, Margarita Georgia Kakava, Efthymios Alexandros Routsi, Errikos Petsas, Nikolaos Stavridis, Christoforos Freris, Nikoletta Zoupanou, Kalliopi Moschovou, Sofia Kiriakidi, Thomas Mavromoustakos. Quercetin: A Potential Polydynamic Drug. Molecules 2023, 28 (24) , 8141. https://doi.org/10.3390/molecules28248141
  74. Ahmed F. Essa, Mohamed Teleb, Dina M. El-Kersh, Abd El-Nasser G. El Gendy, Abdelsamed I. Elshamy, Mohamed A. Farag. Natural acylated flavonoids: their chemistry and biological merits in context to molecular docking studies. Phytochemistry Reviews 2023, 22 (6) , 1469-1508. https://doi.org/10.1007/s11101-022-09840-1
  75. Daniel A. Abugri, Sandani V. T. Wijerathne, Homa Nath Sharma, Joseph A. Ayariga, Audrey Napier, Boakai K. Robertson. Quercetin inhibits Toxoplasma gondii tachyzoite proliferation and acts synergically with azithromycin. Parasites & Vectors 2023, 16 (1) https://doi.org/10.1186/s13071-023-05849-3
  76. Isadora Cunha Ribeiro, João Victor Badaró de Moraes, Christiane Mariotini-Moura, Marcelo Depolo Polêto, Nancy da Rocha Torres Pavione, Raissa Barbosa de Castro, Izabel Luzia Miranda, Suélen Karine Sartori, Kryssia Lohayne Santos Alves, Gustavo Costa Bressan, Raphael de Souza Vasconcellos, José Roberto Meyer-Fernandes, Gaspar Diaz-Muñoz, Juliana Lopes Rangel Fietto. Synthesis of new non-natural l-glycosidic flavonoid derivatives and their evaluation as inhibitors of Trypanosoma cruzi ecto-nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase1). Purinergic Signalling 2023, 1 https://doi.org/10.1007/s11302-023-09974-7
  77. Camilla Nicolucci, Milena Padovani, Fernanda de Castro Rodrigues, Laura Nagy Fritsch, Ana Cristina Santos, Denise Gonçalves Priolli, Juliana M. Sciani. Flavonoids: the use in mental health and related diseases. Natural Product Research 2023, , 1-11. https://doi.org/10.1080/14786419.2023.2275275
  78. Sakshi M. Kothawade, Harpal Singh Buttar, Hardeep Singh Tuli, Ginpreet Kaur. Therapeutic potential of flavonoids in the management of obesity-induced Alzheimer’s disease: an overview of preclinical and clinical studies. Naunyn-Schmiedeberg's Archives of Pharmacology 2023, 396 (11) , 2813-2830. https://doi.org/10.1007/s00210-023-02529-y
  79. Ieshita Pan, Suganiya Umapathy, Praveen Kumar Issac, Md. Mostafizur Rahman, Ajay Guru, Jesu Arockiaraj. The bioaccessibility of adsorped heavy metals on biofilm-coated microplastics and their implication for the progression of neurodegenerative diseases. Environmental Monitoring and Assessment 2023, 195 (11) https://doi.org/10.1007/s10661-023-11890-7
  80. Showmik Rohman Talukder, Md. Akhlakur Rahman, Protyasha Sikdar, Dipto Kumer Sarker, Lopa Saha, Khondoker Shahin Ahmed, Hemayet Hossain, Pritam Kundu, Samir Kumar Sadhu. HPLC profiling and anti-inflammatory potential of Citrus macroptera leaves along with in silico analysis. Phytomedicine Plus 2023, 3 (4) , 100499. https://doi.org/10.1016/j.phyplu.2023.100499
  81. Arne Matteo Jörgensen, Richard Wibel, Florina Veider, Barbara Hoyer, Joseph Chamieh, Hervé Cottet, Andreas Bernkop-Schnürch. Self-emulsifying drug delivery systems (SEDDS): How organic solvent release governs the fate of their cargo. International Journal of Pharmaceutics 2023, 647 , 123534. https://doi.org/10.1016/j.ijpharm.2023.123534
  82. Claire Alexander, Ali Parsaee, Maryam Vasefi. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer’s Disease. Biology 2023, 12 (11) , 1453. https://doi.org/10.3390/biology12111453
  83. Zehe Ge, Miao Xu, Yuqian Ge, Guang Huang, Dongyin Chen, Xiuquan Ye, Yibei Xiao, Hongyu Zhu, Rong Yin, Hua Shen, Gaoxiang Ma, Lianwen Qi, Guining Wei, Dongmei Li, Shaofeng Wei, Meng Zhu, Hongxia Ma, Zhumei Shi, Xiuxing Wang, Xin Ge, Xu Qian. Inhibiting G6PD by quercetin promotes degradation of EGFR T790M mutation. Cell Reports 2023, 42 (11) , 113417. https://doi.org/10.1016/j.celrep.2023.113417
  84. Allison D. Zieschang, Kevin F. Hoffseth, Tammy R. Dugas, Carlos E. Astete, Dorin Boldor. Method for assessing coating uniformity of angioplasty balloons coated with poly(lactic-co-glycolic acid) nanoparticles loaded with quercetin. Particulate Science and Technology 2023, 5 , 1-11. https://doi.org/10.1080/02726351.2023.2269881
  85. Hosakatte Niranjana Murthy, Kadanthottu Sebastian Joseph, Kee Yoeup Paek, So Young Park. Nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites in cell and organ cultures: current status and future outlooks. Plant Growth Regulation 2023, 47 https://doi.org/10.1007/s10725-023-01086-x
  86. Prerna Khagar, Atul V Wankhade, Sarvesh Sabarathinam. Synthesis of quercetin–iron (Fe) complex and its in silico and in vitro confirmation towards antibacterial activity. Future Medicinal Chemistry 2023, 12 https://doi.org/10.4155/fmc-2023-0007
  87. Jyotsana Dwivedi, Pranjal Sachan, Pranay Wal, Sumeet Dwivedi, Mukesh Chandra Sharma, Surada Prakash Rao. Detailed review on phytosomal formulation attenuating new pharmacological therapies. Advances in Traditional Medicine 2023, 281 https://doi.org/10.1007/s13596-023-00712-3
  88. Nhung Au, Brendan D. Stamper. Leveraging a hypothesis-generating transcriptomics approach to elucidate molecular pathways that contribute to the biologic effects of quercetin in the liver. 2023https://doi.org/10.5772/intechopen.1003072
  89. Apoorv Sharma, Abhishek Kumar Singh. Molecular mechanism of caloric restriction mimetics-mediated neuroprotection of age-related neurodegenerative diseases: an emerging therapeutic approach. Biogerontology 2023, 24 (5) , 679-708. https://doi.org/10.1007/s10522-023-10045-y
  90. Arya Gargi, Jyoti Singh, Prasad Rasane, Sawinder Kaur, Jaspreet Kaur, Mukul Kumar, D. Sowdhanya, Mahendra Gunjal, Ravish Choudhary, Sezai Ercisli. Effect of drying methods on the nutritional and phytochemical properties of pumpkin flower (Cucurbita maxima) and its characterization. Journal of Food Measurement and Characterization 2023, 17 (5) , 5330-5343. https://doi.org/10.1007/s11694-023-02026-z
  91. Mukta Gupta, Awanish Mishra. Bioactive Flavonoids: A Comparative Overview of the Biogenetic and Chemical Synthesis Approach. Mini-Reviews in Medicinal Chemistry 2023, 23 (18) , 1818-1837. https://doi.org/10.2174/1389557523666230214101821
  92. Milica Radan, Jelena Živković, Snežana Kuzmanović Nedeljković, Teodora Janković, Zorica Lazarević, Dubravka Bigović, Katarina Šavikin. Influence of hydroxypropyl-β-cyclodextrin complexation on the extraction efficiency of rutin, quercetin and total polyphenols from Fagopyrum esculentum Moench. Sustainable Chemistry and Pharmacy 2023, 35 , 101220. https://doi.org/10.1016/j.scp.2023.101220
  93. Andrzej Hudecki, Iwona Rzeszutek, Anna Lewińska, Tymon Warski, Anna Baranowska-Korczyc, Renata Wojnarowska-Nowak, Gabriela Betlej, Anna Deręgowska, Jacek Hudecki, Dorota Łyko-Morawska, Wirginia Likus, Aleksandra Moskal, Piotr Krzemiński, Małgorzata Cieślak, Małgorzata Kęsik-Brodacka, Aleksandra Kolano-Burian, Maciej Wnuk. Electrospun fiber-based micro- and nano-system for delivery of high concentrated quercetin to cancer cells. Biomaterials Advances 2023, 153 , 213582. https://doi.org/10.1016/j.bioadv.2023.213582
  94. J. Sureshkumar, C. Jenipher, V. Sriramavaratharajan, S.S. Gurav, G. Rajiv Gandhi, K. Ravichandran, M. Ayyanar. Genus Equisetum L: Taxonomy, toxicology, phytochemistry and pharmacology. Journal of Ethnopharmacology 2023, 314 , 116630. https://doi.org/10.1016/j.jep.2023.116630
  95. A. M. Katsev, S. L. Safronyuk, Y. V. Burtseva, S. Y. Osmanova. Could Bioluminescent Bacteria be Used in the Search for New Plant-derived Antibacterial Substances?. Drug development & registration 2023, https://doi.org/10.33380/2305-2066-2023-12-4-1592
  96. Kgaogelo Edwin Ramatsetse, Shonisani Eugenia Ramashia, Mpho Edward Mashau. A review on health benefits, antimicrobial and antioxidant properties of Bambara groundnut ( Vigna subterranean ). International Journal of Food Properties 2023, 26 (1) , 91-107. https://doi.org/10.1080/10942912.2022.2153864
  97. Benedict Chukwuebuka Okoro, Titilope Modupe Dokunmu, Esther Okafor, Ibukunoluwa Adedoyinsola Sokoya, Emmanuel Nsedu Israel, Daniel Oluwaremilekun Olusegun, Mercy Bella-Omunagbe, Uche Miracle Ebubechi, Eziuche Amadike Ugbogu, Emeka Eze Joshua Iweala. The ethnobotanical, bioactive compounds, pharmacological activities and toxicological evaluation of garlic (Allium sativum): A review. Pharmacological Research - Modern Chinese Medicine 2023, 8 , 100273. https://doi.org/10.1016/j.prmcm.2023.100273
  98. Shisuo Jing, Huayuan Chen, Ergang Liu, Meng Zhang, Feng Zeng, Huan Shen, Yuefei Fang, Bahtiyor Muhitdinov, Yongzhuo Huang. Oral pectin/oligochitosan microspheres for colon-specific controlled release of quercetin to treat inflammatory bowel disease. Carbohydrate Polymers 2023, 316 , 121025. https://doi.org/10.1016/j.carbpol.2023.121025
  99. Nandini Nalika, Mohammad Waseem, Pooja Kaushik, Mohd Salman, Syed Suhail Andrabi, Azfar Jamal, Suhel Parvez. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sciences 2023, 328 , 121403. https://doi.org/10.1016/j.lfs.2023.121403
  100. Puja Bhavsar, Lalit Lata Jha, Kinjal Bera, Shraddha Patel. Phytoconstituents Loaded Liposomes Fabricated Based on Box Behnken Design for Metabolic Syndrome: In Vitro and In Vivo Characterization. Journal of Natural Remedies 2023, , 1035-1052. https://doi.org/10.18311/jnr/2023/33735
Load more citations
  • Abstract

    Figure 1

    Figure 1. Chemical structure of Quercetin.

    Figure 2

    Figure 2. Lipinski’s rule-of-five quercetin-like properties.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 288 other publications.

    1. 1
      Spencer, J. P.; Vauzour, D.; Rendeiro, C. Flavonoids and cognition: the molecular mechanisms underlying their behavioral effects. Arch. Biochem. Biophys. 2009, 492, 19,  DOI: 10.1016/j.abb.2009.10.003
    2. 2
      Kaşıkcı, M. B.; Bağdatlıoğlu, N. Bioavailability of quercetin. Curr. Res. Nutr. Food Sci. 2016, 4, 146151,  DOI: 10.12944/CRNFSJ.4.Special-Issue-October.20
    3. 3
      David, A. V. A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 8489,  DOI: 10.4103/0973-7847.194044
    4. 4
      Sytar, O.; Kosyan, A.; Taran, N.; Smetanska, I. Anthocyanin’s as marker for selection of buckwheat plants with high rutin content. Gesunde Pflanzen 2014, 66, 165,  DOI: 10.1007/s10343-014-0331-z
    5. 5
      Miles, S. L.; McFarland, M.; Niles, R. M. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human diseases. Nutr. Rev. 2014, 72, 720734,  DOI: 10.1111/nure.12152
    6. 6
      Guo, Y.; Bruno, R. S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem. 2015, 26, 201210,  DOI: 10.1016/j.jnutbio.2014.10.008
    7. 7
      Russo, M.; Spangnulo, C.; Tedesco, I.; Bilotto, S.; Russo, G. L. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol. 2012, 83, 615,  DOI: 10.1016/j.bcp.2011.08.010
    8. 8
      Sultana, B.; Anwar, F. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 2008, 108, 879888,  DOI: 10.1016/j.foodchem.2007.11.053
    9. 9
      Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the phenol-explorer database. Eur. J. Clin. Nutr. 2010, 64, S112S120,  DOI: 10.1038/ejcn.2010.221
    10. 10
      Dinelli, G.; Bonetti, A.; Minelli, M.; Marotti, I.; Catizone, P.; Mazzanti, A. Content of flavonols in Italian bean (Phaseolus vulgaris L.) ecotypes. Food Chem. 2006, 99, 105114,  DOI: 10.1016/j.foodchem.2005.07.028
    11. 11
      Sytar, O.; Bruckova, K.; Hunkova, E.; Zivcak, M.; Konate, K.; Brestic, M. The application of muliplex flourimetric sensor for analysis flavonoids content in the medical herbs family Asteraceae, Lamiaceae, Rosaceae. Biol. Res. 2015, 48, 5,  DOI: 10.1186/0717-6287-48-5
    12. 12
      Sokól-Lętowska, A.; Osmianski, J.; Wojdylo, A. Antioxidant activity of phenolic compounds of hawthorn, pine and skullcap. Food Chem. 2007, 103, 853859,  DOI: 10.1016/j.foodchem.2006.09.036
    13. 13
      Haenen, G. R.; Paquay, J. B.; Korthouwer, R. E.; Bast, A. Peroxynitrite scavenging by flavonoids. Biochem. Biophys. Res. Commun. 1997, 236, 591593,  DOI: 10.1006/bbrc.1997.7016
    14. 14
      Dell’Albani, P.; Di Marco, B.; Grasso, S.; Rocco, C.; Foti, M. C. Quercetin derivatives as potent inducers of selective cytotoxicity in glioma cells. Eur. J. Pharm. Sci. 2017, 101, 5665,  DOI: 10.1016/j.ejps.2017.01.036
    15. 15
      Mouradov, A.; Spangenberg, G. Flavonoids: a metabolic network mediating plants adaptation to their real estate. Front. Plant Sci. 2014, 5, 620,  DOI: 10.3389/fpls.2014.00620
    16. 16
      Jacobs, M.; Rubery, P. H. Naturally occurring auxin transport regulators. Science 1988, 241, 346349,  DOI: 10.1126/science.241.4863.346
    17. 17
      Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol. 2012, 143, 383396,  DOI: 10.1016/j.jep.2012.07.005
    18. 18
      Chirumbolo, S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflammation Allergy: Drug Targets 2010, 9, 263285,  DOI: 10.2174/187152810793358741
    19. 19
      Adewole, S. O.; Caxton-Martins, E. A.; Ojewole, J. A. Protective effect of quercetin on the morphology of pancreatic beta-cells of streptozotocin-treated diabetic rats. Afr. J. Tradit., Complementary Altern. Med. 2006, 4, 6474
    20. 20
      Kim, J. H.; Kang, M. J.; Choi, H. N.; Jeong, S. M.; Lee, Y. M.; Kim, J. I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr. Res. Pract. 2011, 5, 107111,  DOI: 10.4162/nrp.2011.5.2.107
    21. 21
      Shi, G. J.; Li, Y.; Cao, Q. H.; Wu, H. X.; Tang, X. Y.; Gao, X. H.; Yu, J. Q.; Chen, Z.; Yang, Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed. Pharmacother. 2019, 109, 10851099,  DOI: 10.1016/j.biopha.2018.10.130
    22. 22
      Youl, E.; Bardy, G.; Magous, R.; Cros, G.; Sejalon, F.; Virsolvy, A.; Richard, S.; Quignard, J. F.; Gross, R.; Petit, P.; Bataille, D.; Oiry, C. Quercetin potentiates insulin secretion and protects INS-1 pancreatic beta-cells against oxidative damage via the ERK1/2 pathway. Br. J. Pharmacol. 2010, 161, 799814,  DOI: 10.1111/j.1476-5381.2010.00910.x
    23. 23
      Yang, D. K.; Kang, H. S. Anti-Diabetic Effect of Cotreatment with Quercetin and Resveratrol in Streptozotocin-Induced Diabetic Rats. Biomol. Ther. 2018, 26, 130138,  DOI: 10.4062/biomolther.2017.254
    24. 24
      Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 2003, 135, 357364,  DOI: 10.1016/S1532-0456(03)00140-6
    25. 25
      Alam, M. M.; Meerza, D.; Naseem, I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci. 2014, 109, 814,  DOI: 10.1016/j.lfs.2014.06.005
    26. 26
      Mahesh, T.; Menon, V. P. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytother. Res. 2004, 18, 123127,  DOI: 10.1002/ptr.1374
    27. 27
      Srinivasan, P.; Vijayakumar, S.; Kothandaraman, S.; Palani, M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J. Pharm. Anal. 2018, 8, 109118,  DOI: 10.1016/j.jpha.2017.10.005
    28. 28
      Sharma, G.; Kumar, S.; Sharma, M.; Upadhyay, N.; Kumar, S.; Ahmed, Z.; Mahindroo, N. Anti-Diabetic, Anti-oxidant and anti-adipogenic potential of quercetin rich ethyl acetate fraction of Prunus persica. Pharmacogn. J. 2018, 10, 463469,  DOI: 10.5530/pj.2018.3.76
    29. 29
      Gaballah, H. H.; Zakaria, S. S.; Mwafy, S. E.; Tahoon, N. M.; Ebeid, A. M. Mechanistic insights into the effects of quercetin and/or GLP-1 analogue liraglutide on high-fat diet/streptozotocin-induced type 2 diabetes in rats. Biomed. Pharmacother. 2017, 92, 331339,  DOI: 10.1016/j.biopha.2017.05.086
    30. 30
      Jeong, S. M.; Kang, M. J.; Choi, H. N.; Kim, J. H.; Kim, J. I. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr. Res. Pract. 2012, 6, 201207,  DOI: 10.4162/nrp.2012.6.3.201
    31. 31
      Hamilton, K. E.; Rekman, J. F.; Gunnink, L. K.; Busscher, B. M.; Scott, J. L.; Tidball, A. M.; Stehouwer, N. R.; Johnecheck, G. N.; Looyenga, B. D.; Louters, L. L. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1. Biochimie 2018, 151, 107114,  DOI: 10.1016/j.biochi.2018.05.012
    32. 32
      Dai, X.; Ding, Y.; Zhang, Z.; Cai, X.; Bao, L.; Li, Y. Quercetin but not quercitrin ameliorates tumor necrosis factor-alpha-induced insulin resistance in C2C12 skeletal muscle cells. Biol. Pharm. Bull. 2013, 36, 788795,  DOI: 10.1248/bpb.b12-00947
    33. 33
      Henagan, T. M.; Cefalu, W. T.; Ribnicky, D. M.; Noland, R. C.; Dunville, K.; Campbell, W. W.; Stewart, L. K.; Forney, L. A.; Gettys, T. W.; Chang, J. S.; Morrison, C. D. In vivo effects of dietary quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria, metabolism, and insulin sensitivity. Genes Nutr. 2015, 10, 451,  DOI: 10.1007/s12263-014-0451-1
    34. 34
      Dias, A. S.; Porawski, M.; Alonso, M.; Marroni, N.; Collado, P. S.; Gonzalez-Gallego, J. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. The. J. Nutr. 2005, 135, 22992304,  DOI: 10.1093/jn/135.10.2299
    35. 35
      Sirovina, D.; Orsolic, N.; Koncic, M. Z.; Kovacevic, G.; Benkovic, V.; Gregorovic, G. Quercetin vs chrysin: effect on liver histopathology in diabetic mice. Hum. Exp. Toxicol. 2013, 32, 10581066,  DOI: 10.1177/0960327112472993
    36. 36
      Khaki, A.; Nouri, M.; Fathiazad, F.; Ahmadi-Ashtiani, H.; Rastgar, H.; Rezazadeh, S. Protective Effects of Quercetin on Spermatogenesis in Streptozotocin-induced Diabetic Rat. J. Med. Plants 2009, 1, 5764
    37. 37
      Khaki, A. A. Evaluation Effects of Quercetin on Liver Apoptosis in Streptozotocin-induced Diabetic Rat. J. Med. Plants 2009, 1, 7078
    38. 38
      Jahan, S.; Iftikhar, N.; Ullah, H.; Rukh, G.; Hussain, I. Alleviative effect of quercetin on rat testis against arsenic: a histological and biochemical study. Syst. Biol. Reprod. Med. 2015, 61, 8995,  DOI: 10.3109/19396368.2014.998350
    39. 39
      Kanter, M.; Aktas, C.; Erboga, M. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis. Food Chem. Toxicol. 2012, 50, 719725,  DOI: 10.1016/j.fct.2011.11.051
    40. 40
      Nuckols, T. K.; Keeler, E.; Anderson, L. J.; Green, J.; Morton, S. C.; Doyle, B. J.; Shetty, K.; Arifkhanova, A.; Booth, M.; Shanman, R.; Shekelle, P. Economic Evaluation of Quality Improvement Interventions Designed to Improve Glycemic Control in Diabetes: A Systematic Review and Weighted Regression Analysis. Diabetes care 2018, 41, 985993,  DOI: 10.2337/dc17-1495
    41. 41
      Sundstrom, J. M.; Hernandez, C.; Weber, S. R.; Zhao, Y.; Dunklebarger, M.; Tiberti, N.; Laremore, T.; Simo-Servat, O.; Garcia-Ramirez, M.; Barber, A. J.; Gardner, T. W.; Simo, R. Proteomic Analysis of Early Diabetic Retinopathy Reveals Mediators of Neurodegenerative Brain Diseases. Invest Ophthalmol. Visual Sci. 2018, 59, 22642274,  DOI: 10.1167/iovs.17-23678
    42. 42
      Li, X. H.; Xin, X.; Wang, Y.; Wu, J. Z.; Jin, Z. D.; Ma, L. N.; Nie, C. J.; Xiao, X.; Hu, Y.; Jin, M. W. Pentamethylquercetin protects against diabetes-related cognitive deficits in diabetic Goto-Kakizaki rats. J. Alzheimer’s Dis. 2013, 34, 755767,  DOI: 10.3233/JAD-122017
    43. 43
      Chen, B.; He, T.; Xing, Y.; Cao, T. Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy. Exp. Ther. Med. 2017, 14, 60226026,  DOI: 10.3892/etm.2017.5275
    44. 44
      Porcu, E. P.; Cossu, M.; Rassu, G.; Giunchedi, P.; Cerri, G.; Pourova, J.; Najmanova, I.; Migkos, T.; Pilarova, V.; Novakova, L.; Mladenka, P.; Gavini, E. Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. Int. J. Pharm. 2018, 541, 224233,  DOI: 10.1016/j.ijpharm.2018.02.036
    45. 45
      Häckl, L. P. N.; Cuttle, G.; Dovichi, S. S.; Lima-Landman, M. T.; Nicolau, M. Inhibition of angiotesin-converting enzyme by quercetin alters the vascular response to brandykinin and angiotensin I. Pharmacology 2002, 65, 182186,  DOI: 10.1159/000064341
    46. 46
      Linz, W.; Wiemer, G.; Gohlke, P.; Unger, T.; Scholkens, B. A. Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol. Rev. 1995, 47, 2549
    47. 47
      Jalili, T.; Takeishi, Y.; Song, G.; Ball, N. A.; Howles, G.; Walsh, R. A. PKC translocation without changes in Galphaq and PLC-beta protein abundance in cardiac hypertrophy and failure. J. Am. Phys. 1999, 277, H2298H2304,  DOI: 10.1152/ajpheart.1999.277.6.H2298
    48. 48
      Collins, J. F.; Pawloski-Dahm, C.; Davis, M. G.; Ball, N.; Dorn, G. W., 2nd; Walsh, R. A. The role of the cytoskeleton in left ventricular pressure overload hypertrophy and failure. J. Mol. Cell. Cardiol. 1996, 28, 14351443,  DOI: 10.1006/jmcc.1996.0134
    49. 49
      Sánchez, M.; Galisteo, M.; Vera, R.; Villar, I. C.; Zarzuelo, A.; Tamargo, J.; Perez-Vizcaino, F.; Duarte, J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J. Hypertens. 2006, 24, 7584,  DOI: 10.1097/01.hjh.0000198029.22472.d9
    50. 50
      Machha, A.; Achike, F. I.; Mustafa, A. M.; Mustafa, M. R. Quercetin, a flavonoid antioxidant, modulates endothelium-derived nitric oxide bioavailability in diabetic rat aortas. Nitric Oxide 2007, 16, 442447,  DOI: 10.1016/j.niox.2007.04.001
    51. 51
      Mezesova, L.; Bartekova, M.; Javorkova, V.; Vlkovicova, J.; Breier, A.; Vrbjar, N. Effect of quercetin on kinetic properties of renal Na,K-ATPase in normotensive and hypertensive rats. J. Physiol. Pharmacol. 2010, 61, 593598
    52. 52
      Prince, P. S.; Sathya, B. Pretreatment with quercetin ameliorates lipids, lipoproteins and marker enzymes of lipid metabolism in isoproterenol treated cardiotoxic male Wistar rats. Eur. J. Pharmacol. 2010, 635, 142148,  DOI: 10.1016/j.ejphar.2010.02.019
    53. 53
      Rezabakhsh, A.; Rahbarghazi, R.; Malekinejad, H.; Fathi, F.; Montaseri, A.; Garjani, A. Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy. Phytomedicine 2019, 56, 183193,  DOI: 10.1016/j.phymed.2018.11.008
    54. 54
      He, Y.; Cao, X.; Guo, P.; Li, X.; Shang, H.; Liu, J.; Xie, M.; Xu, Y.; Liu, X. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radical Biol. Med. 2017, 103, 165176,  DOI: 10.1016/j.freeradbiomed.2016.12.016
    55. 55
      Li, Y.; Chen, M.; Wang, J.; Guo, X.; Xiao, L.; Liu, P.; Liu, L.; Tang, Y.; Yao, P. Quercetin ameliorates autophagy in alcohol liver disease associated with lysosome through mTOR-TFEB pathway. J. Funct. Foods 2019, 52, 177185,  DOI: 10.1016/j.jff.2018.10.033
    56. 56
      Godoy, J. A.; Lindsay, C. B.; Quintanilla, R. A.; Carvajal, F. J.; Cerpa, W.; Inestrosa, N. C. Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and Abeta Aggregates in Hippocampal Neurons: the Role of Mitochondria. Mol. Neurobiol. 2017, 54, 71167128,  DOI: 10.1007/s12035-016-0203-x
    57. 57
      Chen, L. C.; Chen, Y. C.; Su, C. Y.; Hong, C. S.; Ho, H. O.; Sheu, M. T. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. Int. J. Nanomed. 2016, 11, 15571566,  DOI: 10.2147/IJN.S103681
    58. 58
      Moreno, L.; Puerta, E.; Suarez-Santiago, J. E.; Santos-Magalhaes, N. S.; Ramirez, M. J.; Irache, J. M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int. J. Pharm. 2017, 517, 5057,  DOI: 10.1016/j.ijpharm.2016.11.061
    59. 59
      Palle, S.; Neerati, P. Quercetin nanoparticles attenuates scopolamine induced spatial memory deficits and pathological damages in rats. Bull. Fac. Pharm. 2017, 55, 101106,  DOI: 10.1016/j.bfopcu.2016.10.004
    60. 60
      Sharma, D. R.; Wani, W. Y.; Sunkaria, A.; Kandimalla, R. J.; Sharma, R. K.; Verma, D.; Bal, A.; Gill, K. D. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience 2016, 324, 163176,  DOI: 10.1016/j.neuroscience.2016.02.055
    61. 61
      Sabogal-Guáqueta, A. M.; Munoz-Manco, J. I.; Ramirez-Pineda, J. R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gomez, G. P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015, 93, 134145,  DOI: 10.1016/j.neuropharm.2015.01.027
    62. 62
      Zhang, X.; Hu, J.; Zhong, L.; Wang, N.; Yang, L.; Liu, C. C.; Li, H.; Wang, X.; Zhou, Y.; Zhang, Y.; Xu, H.; Bu, G.; Zhuang, J. Quercetin stabilizes apolipoprotein E and reduces brain Abeta levels in amyloid model mice. Neuropharmacology 2016, 108, 179192,  DOI: 10.1016/j.neuropharm.2016.04.032
    63. 63
      JUNG, S. H.; Murphy, E. A.; McClellan, J. L.; Carmichael, M. D.; Davis, J. M. The dietary flavonoid quercetin decreases neuroinflammation in a mouse model of Alzheimer’s disease. FASEB J. 2010, 24, 604617
    64. 64
      Dong, Y. S.; Wang, J. L.; Feng, D. Y.; Qin, H. Z.; Wen, H.; Yin, Z. M.; Gao, G. D.; Li, C. Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. Int. J. Med. Sci. 2014, 11, 282290,  DOI: 10.7150/ijms.7634
    65. 65
      Ansari, M. A.; Abdul, H. M.; Joshi, G.; Opii, W. O.; Butterfield, D. A. Protective effect of quercetin in primary neurons against Abeta(1-42): relevance to Alzheimer’s disease. J. Nutr. Biochem. 2009, 20, 269275,  DOI: 10.1016/j.jnutbio.2008.03.002
    66. 66
      Heo, H. J.; Lee, C. Y. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J. Agric. Food Chem. 2004, 52, 75147517,  DOI: 10.1021/jf049243r
    67. 67
      Braidy, N.; Behzad, S.; Habtemariam, S.; Ahmed, T.; Daglia, M.; Nabavi, S. M.; Sobarzo-Sanchez, E.; Nabavi, S. F. Neuroprotective Effects of Citrus Fruit-Derived Flavonoids, Nobiletin and Tangeretin in Alzheimer’s and Parkinson’s Disease. CNS Neurol. Disord.: Drug Targets 2017, 16, 387397,  DOI: 10.2174/1871527316666170328113309
    68. 68
      Kant, V.; Jangir, B. L.; Nigam, A.; Kumar, V.; Sharma, S. Dose regulated cutaneous wound healing potential of quercetin in male rats. Wound Med. 2017, 19, 8287,  DOI: 10.1016/j.wndm.2017.10.004
    69. 69
      Borghi, S. M.; Mizokami, S. S.; Pinho-Ribeiro, F. A.; Fattori, V.; Crespigio, J.; Clemente-Napimoga, J. T.; Napimoga, M. H.; Pitol, D. L.; Issa, J. P. M.; Fukada, S. Y.; Casagrande, R.; Verri, W. A., Jr. The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. J. Nutr. Biochem. 2018, 53, 8195,  DOI: 10.1016/j.jnutbio.2017.10.010
    70. 70
      Haleagrahara, N.; Miranda-Hernandez, S.; Alim, M. A.; Hayes, L.; Bird, G.; Ketheesan, N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed. Pharmacother. 2017, 90, 3846,  DOI: 10.1016/j.biopha.2017.03.026
    71. 71
      Li, G.; Shen, X.; Wei, Y.; Si, X.; Deng, X.; Wang, J. Quercetin reduces Streptococcus suis virulence by inhibiting suilysin activity and inflammation. Int. Immunopharmacol. 2019, 69, 7178,  DOI: 10.1016/j.intimp.2019.01.017
    72. 72
      Bustos, P. S.; Deza-Ponzio, R.; Paez, P. L.; Albesa, I.; Cabrera, J. L.; Virgolini, M. B.; Ortega, M. G. Protective effect of quercetin in gentamicin-induced oxidative stress in vitro and in vivo in blood cells. Effect on gentamicin antimicrobial activity. Environ. Toxicol. Pharmacol. 2016, 48, 253264,  DOI: 10.1016/j.etap.2016.11.004
    73. 73
      Zeng, H.; Guo, X.; Zhou, F.; Xiao, L.; Liu, J.; Jiang, C.; Xing, M.; Yao, P. Quercetin alleviates ethanol-induced liver steatosis associated with improvement of lipophagy. Food Chem. Toxicol. 2019, 125, 2128,  DOI: 10.1016/j.fct.2018.12.028
    74. 74
      Akinmoladun, A. C.; Oladejo, C. O.; Josiah, S. S.; Famusiwa, C. D.; Ojo, O. B.; Olaleye, M. T. Catechin, quercetin and taxifolin improve redox and biochemical imbalances in rotenone-induced hepatocellular dysfunction: Relevance for therapy in pesticide-induced liver toxicity?. Pathophysiology 2018, 25, 365371,  DOI: 10.1016/j.pathophys.2018.07.002
    75. 75
      Adeoye, A. O.; Ojowu, J.; Daniel, O. O.; Olorunsogo, O. O. Inhibition of liver mitochondrial membrane permeability transition pore opening by quercetin and vitamin E in streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun. 2018, 504, 460469,  DOI: 10.1016/j.bbrc.2018.08.114
    76. 76
      Lee, K. S.; Park, S. N. Cytoprotective effects and mechanisms of quercetin, quercitrin and avicularin isolated from Lespedeza cuneata G. Don against ROS-induced cellular damage. J. Ind. Eng. Chem. 2019, 71, 160166,  DOI: 10.1016/j.jiec.2018.11.018
    77. 77
      Nile, S. H.; Nile, A. S.; Keum, Y. S.; Sharma, K. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chem. 2017, 235, 119126,  DOI: 10.1016/j.foodchem.2017.05.043
    78. 78
      Rastogi, S.; Haldar, C. Comparative effect of melatonin and quercetin in counteracting LPS induced oxidative stress in bone marrow mononuclear cells and spleen of Funambulus pennanti. Food Chem. Toxicol. 2018, 120, 243252,  DOI: 10.1016/j.fct.2018.06.062
    79. 79
      Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 6875,  DOI: 10.1016/j.jff.2017.10.047
    80. 80
      Luangaram, S.; Kukongviriyapan, U.; Pakdeechote, P.; Kukongviriyapan, V.; Pannangpetch, P. Protective effects of quercetin against phenylhydrazine-induced vascular dysfunction and oxidative stress in rats. Food Chem. Toxicol. 2007, 45, 448455,  DOI: 10.1016/j.fct.2006.09.008
    81. 81
      Moreira, L.; Araujo, I.; Costa, T.; Correia-Branco, A.; Faria, A.; Martel, F.; Keating, E. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp. Cell Res. 2013, 319, 17841795,  DOI: 10.1016/j.yexcr.2013.05.001
    82. 82
      Dhanya, R.; Arya, A. D.; Nisha, P.; Jayamurthy, P. Quercetin, a Lead Compound against Type 2 Diabetes Ameliorates Glucose Uptake via AMPK Pathway in Skeletal Muscle Cell Line. Front. Pharmacol. 2017, 8, 336,  DOI: 10.3389/fphar.2017.00336
    83. 83
      Choi, H.-N.; Jeong, S.-M.; Huh, G. H.; Kim, J.-I. Quercetin ameliorates insulin sensitivity and liver steatosis partly by increasing adiponectin expression in ob/ob mice. Food Sci. Biotechnol. 2015, 24, 273279,  DOI: 10.1007/s10068-015-0036-9
    84. 84
      Babacanoglu, C.; Yildirim, N.; Sadi, G.; Pektas, M. B.; Akar, F. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats. Food Chem. Toxicol. 2013, 60, 160167,  DOI: 10.1016/j.fct.2013.07.026
    85. 85
      Dey, A.; Kumar, S. M. Cytochrome P450 2E1 and hyperglycemia-induced liver injury. Cell Biol. Toxicol. 2011, 27, 285310,  DOI: 10.1007/s10565-011-9188-4
    86. 86
      Maksymchuk, O.; Shysh, A.; Rosohatska, I.; Chashchyn, M. Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacol. Rep. 2017, 69, 13861392,  DOI: 10.1016/j.pharep.2017.05.020
    87. 87
      Xu, X.; Chen, P.; Zheng, Q.; Wang, Y.; Chen, W. Effect of pioglitazone on diabetic nephropathy and expression of HIF-1alpha and VEGF in the renal tissues of type 2 diabetic rats. Diabetes Res. Clin. Pract. 2011, 93, 6369,  DOI: 10.1016/j.diabres.2011.03.019
    88. 88
      Chen, P.; Chen, J.; Zheng, Q.; Chen, W.; Wang, Y.; Xu, X. Pioglitazone, extract of compound Danshen dripping pill, and quercetin ameliorate diabetic nephropathy in diabetic rats. J. Endocrinol. Invest. 2013, 36, 422427,  DOI: 10.3275/8763
    89. 89
      Roth, G.; Kotzka, J.; Kremer, L.; Lehr, S.; Lohaus, C.; Meyer, H. E.; Krone, W.; Muller-Wieland, D. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. The. J. Biol. Chem. 2000, 275, 3330233307,  DOI: 10.1074/jbc.M005425200
    90. 90
      Elbe, H.; Vardi, N.; Esrefoglu, M.; Ates, B.; Yologlu, S.; Taskapan, C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum. Exp. Toxicol. 2015, 34, 100113,  DOI: 10.1177/0960327114531995
    91. 91
      Thomas, A. A.; Feng, B.; Chakrabarti, S. ANRIL: A Regulator of VEGF in Diabetic Retinopathy. Invest Ophthalmol. Visual Sci. 2017, 58, 470480,  DOI: 10.1167/iovs.16-20569
    92. 92
      Kumar, B.; Gupta, S. K.; Srinivasan, B. P.; Nag, T. C.; Srivastava, S.; Saxena, R.; Jha, K. A. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc. Res. 2013, 87, 6574,  DOI: 10.1016/j.mvr.2013.01.002
    93. 93
      Ibarra, J.; Bland, M.; Gonzalez, M.; Garcia, C. Quercetin ameliorates hyperglycemia-induced inflammation and apoptosis in the retina and lateral geniculate nucleus in a rat model of type 2 diabetes mellitus (688.8). FASEB J. 2014, 28, 688-8
    94. 94
      Greindling, K. K.; Lassegue, B.; Alexander, R. W. Angiotensin receptors and their therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 1996, 36, 281306,  DOI: 10.1146/annurev.pa.36.040196.001433
    95. 95
      Suri, S.; Liu, X. H.; Rayment, S.; Hughes, D. A.; Kroon, P. A.; Needs, P. W.; Taylor, M. A.; Tribolo, S.; Wilson, V. G. Quercetin and its major metabolites selectively modulate cyclic GMP-dependent relaxations and associated tolerance in pig isolated coronary artery. Br. J. Pharmacol. 2010, 159, 566575,  DOI: 10.1111/j.1476-5381.2009.00556.x
    96. 96
      Ganz, P.; Vita, J. A. Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation 2003, 108, 20492053,  DOI: 10.1161/01.CIR.0000089507.19675.F9
    97. 97
      Wan, L. L.; Xia, J.; Ye, D.; Liu, J.; Chen, J.; Wang, G. Effects of quercetin on gene and protein expression of NOX and NOS after myocardial ischemia and reperfusion in rabbit. Cardiovasc. Ther. 2009, 27, 2833,  DOI: 10.1111/j.1755-5922.2009.00071.x
    98. 98
      Ahmed, L. A.; Salem, H. A.; Attia, A. S.; El-Sayed, M. E. Enhancement of amlodipine cardioprotection by quercetin in ischaemia/reperfusion injury in rats. J. Pharm. Pharmacol. 2009, 61, 12331241,  DOI: 10.1211/jpp.61.09.0014
    99. 99
      Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M. J.; Wielinga, P. Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 2011, 218, 4452,  DOI: 10.1016/j.atherosclerosis.2011.04.023
    100. 100
      Yan, L.; Zhang, J. D.; Wang, B.; Lv, Y. J.; Jiang, H.; Liu, G. L.; Qiao, Y.; Ren, M.; Guo, X. F. Quercetin inhibits left ventricular hypertrophy in spontaneously hypertensive rats and inhibits angiotensin II-induced H9C2 cells hypertrophy by enhancing PPAR-gamma expression and suppressing AP-1 activity. PLoS One 2013, 8, e72548  DOI: 10.1371/journal.pone.0072548
    101. 101
      Satoh, H.; Nishida, S. Cardio-electopharmacology and vasodilating mechanisms of quercetin. Med. Chem. 2014, 4, 523530,  DOI: 10.4172/2161-0444.1000189
    102. 102
      Wang, Y.; Zhang, Z. Z.; Wu, Y.; Ke, J. J.; He, X. H.; Wang, Y. L. Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas 2013, 46, 861867,  DOI: 10.1590/1414-431X20133036
    103. 103
      Knekt, P.; Kumpulainen, J.; Jarvinen, R.; Rissanen, H.; Heliovaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. The American journal of clinical nutrition 2002, 76, 560568,  DOI: 10.1093/ajcn/76.3.560
    104. 104
      Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Kurbitz, C.; Settler, U.; Plachta-Danielzik, S.; Wagner, A. E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; Wolffram, S.; Muller, M. J. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br. J. Nutr. 2009, 102, 10651074,  DOI: 10.1017/S0007114509359127
    105. 105
      Chekalina, N.; Burmak, Y.; Petrov, Y.; Borisova, Z.; Manusha, Y.; Kazakov, Y.; Kaidashev, I. Quercetin reduces the transcriptional activity of NF-kB in stable coronary artery disease. Indian Heart J. 2018, 70, 593597,  DOI: 10.1016/j.ihj.2018.04.006
    106. 106
      Zahedi, M.; Ghiasvand, R.; Feizi, A.; Asgari, G.; Darvish, L. Does Quercetin Improve Cardiovascular Risk factors and Inflammatory Biomarkers in Women with Type 2 Diabetes: A Double-blind Randomized Controlled Clinical Trial. Int. J. Prev. Med. 2013, 4, 777785
    107. 107
      Nakayama, H.; Tsuge, N.; Sawada, H.; Higashi, Y. Chronic intake of onion extract containing quercetin improved postprandial endothelial dysfunction in healthy men. Journal of the American College of Nutrition 2013, 32, 160164,  DOI: 10.1080/07315724.2013.797858
    108. 108
      Xie, M.; Morales, C. R.; Lavandero, S.; Hill, J. A. Tuning flux: autophagy as a target of heart disease therapy. Curr. Opin. Cardiol. 2011, 26, 216222,  DOI: 10.1097/HCO.0b013e328345980a
    109. 109
      Sasaki, Y.; Ikeda, Y.; Iwabayashi, M.; Akasaki, Y.; Ohishi, M. The Impact of Autophagy on Cardiovascular Senescence and Diseases. Int Heart J 2017, 58, 666673,  DOI: 10.1536/ihj.17-246
    110. 110
      Suganthy, N.; Devi, K. P.; Nabavi, S. F.; Braidy, N.; Nabavi, S. M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother. 2016, 84, 892908,  DOI: 10.1016/j.biopha.2016.10.011
    111. 111
      Jiménez-Aliaga, K.; Bermejo-Bescos, P.; Benedi, J.; Martin-Aragon, S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011, 89, 939945,  DOI: 10.1016/j.lfs.2011.09.023
    112. 112
      McGeer, P. L.; McGeer, E. G. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013, 126, 479497,  DOI: 10.1007/s00401-013-1177-7
    113. 113
      Anand, R.; Gill, K. D.; Mahdi, A. A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014, 76, 2750,  DOI: 10.1016/j.neuropharm.2013.07.004
    114. 114
      Maciel, R. M.; Carvalho, F. B.; Olabiyi, A. A.; Schmatz, R.; Gutierres, J. M.; Stefanello, N.; Zanini, D.; Rosa, M. M.; Andrade, C. M.; Rubin, M. A.; Schetinger, M. R.; Morsch, V. M.; Danesi, C. C.; Lopes, S. T. A. Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities. Biomed. Pharmacother. 2016, 84, 559568,  DOI: 10.1016/j.biopha.2016.09.069
    115. 115
      Richetti, S. K.; Blank, M.; Capiotti, K. M.; Piato, A. L.; Bogo, M. R.; Vianna, M. R.; Bonan, C. D. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav. Brain Res. 2011, 217, 1015,  DOI: 10.1016/j.bbr.2010.09.027
    116. 116
      Islam, M. R.; Zaman, A.; Jahan, I.; Chakravorty, R.; Chakraborty, S. In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer’s disease. J. Young Pharm. 2013, 5, 173179,  DOI: 10.1016/j.jyp.2013.11.005
    117. 117
      Ochiai, A.; Tanaka, S.; Imai, Y.; Yoshida, H.; Kanaoka, T.; Tanaka, T.; Taniguchi, M. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues. J. Biosci. Bioeng. 2016, 121, 607613,  DOI: 10.1016/j.jbiosc.2015.10.010
    118. 118
      Hridya, H.; Amrita, A.; Mohan, S.; Gopalakrishnan, M.; Dakshinamurthy, T. K.; Doss, G. P.; Siva, R. Functionality study of santalin as tyrosinase inhibitor: A potential depigmentation agent. Int. J. Biol. Macromol. 2016, 86, 383389,  DOI: 10.1016/j.ijbiomac.2016.01.098
    119. 119
      Hu, Y. H.; Zhuang, J. X.; Yu, F.; Cui, Y.; Yu, W. W.; Yan, C. L.; Chen, Q. X. Inhibitory effects of cefotaxime on the activity of mushroom tyrosinase. J. Biosci. Bioeng. 2016, 121, 385389,  DOI: 10.1016/j.jbiosc.2015.08.005
    120. 120
      Oyama, T.; Takahashi, S.; Yoshimori, A.; Yamamoto, T.; Sato, A.; Kamiya, T.; Abe, H.; Abe, T.; Tanuma, S. I. Discovery of a new type of scaffold for the creation of novel tyrosinase inhibitors. Bioorg. Med. Chem. 2016, 24, 45094515,  DOI: 10.1016/j.bmc.2016.07.060
    121. 121
      Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res. Int. 2017, 100, 226233,  DOI: 10.1016/j.foodres.2017.07.010
    122. 122
      Athanasiou, K. A.; Darling, E. M.; Hu, J. C.; DuRaine, G. D.; Reddi, A. H. Articular Cartilage; CRC Press, 2017.
    123. 123
      Laev, S. S.; Salakhutdinov, N. F. Anti-arthritic agents: Progress and potential. Bioorg. Med. Chem. 2015, 23, 30593080,  DOI: 10.1016/j.bmc.2015.05.010
    124. 124
      Cobelli, N.; Scharf, B.; Crisi, G. M.; Hardin, J.; Santambrogio, L. Mediators of the inflammatory response to joint replacement devices. Nat. Rev. Rheumatol. 2011, 7, 600608,  DOI: 10.1038/nrrheum.2011.128
    125. 125
      Xu, J. G.; Jing, H. Q.; Ye, C. Y. Highly virulent Streptococcus suis infection and problems involved in the disease prevention and control in China. Zhonghua Liu Xing Bing Xue Za Zhi 2005, 26, 629632
    126. 126
      Gao, Z. Y.; Zhuang, H. Human infection due to Streptococcus suis. Zhonghua Liu Xing Bing Xue Za Zhi 2005, 26, 645648
    127. 127
      Huang, Y. T.; Teng, L. J.; Ho, S. W.; Hsueh, P. R. Streptococcus suis infection. J. Microbiol. Immunol. Infect. 2005, 38, 306313
    128. 128
      Abdel-Misih, S. R. Z.; Bloomston, M. Liver Anatomy. Surg. Clin. North Am. 2010, 90, 643653,  DOI: 10.1016/j.suc.2010.04.017
    129. 129
      Asrani, S. K.; Devarbhavi, H.; Eaton, J.; Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151171,  DOI: 10.1016/j.jhep.2018.09.014
    130. 130
      Sanders, L. H.; Timothy Greenamyre, J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radical Biol. Med. 2013, 62, 111120,  DOI: 10.1016/j.freeradbiomed.2013.01.003
    131. 131
      Wu, T.-C.; Chan, S.-T.; Chang, C.-N.; Yu, P.-S.; Chuang, C.-H.; Yeh, S.-L. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem.-Biol. Interact. 2018, 292, 101109,  DOI: 10.1016/j.cbi.2018.07.010
    132. 132
      Teekaraman, D.; Elayapillai, S. P.; Viswanathan, M. P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem.-Biol. Interact. 2019, 300, 91100,  DOI: 10.1016/j.cbi.2019.01.008
    133. 133
      Zhao, J.; Fang, Z.; Zha, Z.; Sun, Q.; Wang, H.; Sun, M.; Qiao, B. Quercetin inhibits cell viability, migration and invasion by regulating miR-16/HOXA10 axis in oral cancer. Eur. J. Pharmacol. 2019, 847, 1118,  DOI: 10.1016/j.ejphar.2019.01.006
    134. 134
      Huang, D.-Y.; Dai, Z.-R.; Li, W.-M.; Wang, R.-G.; Yang, S.-M. Inhibition of EGF expression and NF-κB activity by treatment with quercetin leads to suppression of angiogenesis in nasopharyngeal carcinoma. Saudi J. Biol. Sci. 2018, 25, 826831,  DOI: 10.1016/j.sjbs.2016.11.011
    135. 135
      Wang, C.; Qu, Z.; Kong, L.; Xu, L.; Zhang, M.; Liu, J.; Yang, Z. Quercetin ameliorates lipopolysaccharide-caused inflammatory damage via down-regulation of miR-221 in WI-38 cells. Exp. Mol. Pathol. 2019, 108, 18,  DOI: 10.1016/j.yexmp.2019.03.002
    136. 136
      Li, X.; Zhou, N.; Wang, J.; Liu, Z.; Wang, X.; Zhang, Q.; Liu, Q.; Gao, L.; Wang, R. Quercetin suppresses breast cancer stem cells (CD44+/CD24−) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci. 2018, 196, 5662,  DOI: 10.1016/j.lfs.2018.01.014
    137. 137
      Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci. 2018, 208, 123130,  DOI: 10.1016/j.lfs.2018.07.027
    138. 138
      Araújo, K. C. F.; de MB Costa, E. M.; Pazini, F.; Valadares, M. C.; de Oliveira, V. Bioconversion of quercetin and rutin and the cytotoxicity activities of the transformed products. Food Chem. Toxicol. 2013, 51, 9396,  DOI: 10.1016/j.fct.2012.09.015
    139. 139
      Sánchez-González, P. D.; López-Hernández, F. J.; Dueñas, M.; Prieto, M.; Sánchez-López, E.; Thomale, J.; Ruiz-Ortega, M.; López-Novoa, J. M.; Morales, A. I. Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food Chem. Toxicol. 2017, 107, 226236,  DOI: 10.1016/j.fct.2017.06.047
    140. 140
      Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, O.; Doganlar, Z. B.; Bilir, A.; Oktem, G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother. 2018, 107, 793805,  DOI: 10.1016/j.biopha.2018.08.061
    141. 141
      Li, S.; Pei, Y.; Wang, W.; Liu, F.; Zheng, K.; Zhang, X. Quercetin suppresses the proliferation and metastasis of metastatic osteosarcoma cells by inhibiting parathyroid hormone receptor 1. Biomed. Pharmacother. 2019, 114, 108839  DOI: 10.1016/j.biopha.2019.108839
    142. 142
      Chen, K.-C.; Hsu, W.-H.; Ho, J.-Y.; Lin, C.-W.; Chu, C.-Y.; Kandaswami, C. C.; Lee, M.-T.; Cheng, C.-H. Flavonoids Luteolin and Quercetin Inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. J. Food Drug Anal. 2018, 26, 11801191,  DOI: 10.1016/j.jfda.2018.01.012
    143. 143
      Srivastava, N. S.; Srivastava, R. A. K. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine 2019, 52, 117128,  DOI: 10.1016/j.phymed.2018.09.224
    144. 144
      Elmadany, N.; Khalil, E.; Vaccari, L.; Birarda, G.; Yousef, I.; Abu-Dahab, R. Antiproliferative activity of the combination of doxorubicin/quercetin on MCF7 breast cancer cell line: A combined study using colorimetric assay and synchrotron infrared microspectroscopy. Infrared Phys. Technol. 2018, 95, 141147,  DOI: 10.1016/j.infrared.2018.10.014
    145. 145
      Shan, B.-E.; Wang, M.-X.; Li, R.-q. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway. Cancer invest. 2009, 27, 604612,  DOI: 10.1080/07357900802337191
    146. 146
      Kim, H.; Seo, E.-M.; Sharma, A. R.; Ganbold, B.; Park, J.; Sharma, G.; Kang, Y.-H.; Song, D.-K.; Lee, S.-S.; Nam, J.-S. Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. Int. J. Oncol. 2013, 43, 13191325,  DOI: 10.3892/ijo.2013.2036
    147. 147
      Jeong, J. H.; An, J. Y.; Kwon, Y. T.; Rhee, J. G.; Lee, Y. J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem. 2009, 106, 7382,  DOI: 10.1002/jcb.21977
    148. 148
      Maurya, A. K.; Vinayak, M. Modulation of PKC signaling and induction of apoptosis through suppression of reactive oxygen species and tumor necrosis factor receptor 1 (TNFR1): key role of quercetin in cancer prevention. Tumor Biol. 2015, 36, 89138924,  DOI: 10.1007/s13277-015-3634-5
    149. 149
      Mead, J.; McNair, N. Antiparasitic activity of flavonoids and isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiol. Lett. 2006, 259, 153157,  DOI: 10.1111/j.1574-6968.2006.00263.x
    150. 150
      Calzada, F.; Correa-Basurto, J.; Barbosa, E.; Mendez-Luna, D.; Yepez-Mulia, L. Antiprotozoal Constituents from Annona cherimola Miller, a Plant Used in Mexican Traditional Medicine for the Treatment of Diarrhea and Dysentery. Pharmacogn. Mag. 2017, 13, 148152,  DOI: 10.4103/0973-1296.203976
    151. 151
      Fonseca-Silva, F.; Inacio, J. D.; Canto-Cavalheiro, M. M.; Almeida-Amaral, E. E. Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One 2011, 6, e14666  DOI: 10.1371/journal.pone.0014666
    152. 152
      Cataneo, A. H. D.; Tomiotto-Pellissier, F.; Miranda-Sapla, M. M.; Assolini, J. P.; Panis, C.; Kian, D.; Yamauchi, L. M.; Colado Simao, A. N.; Casagrande, R.; Pinge-Filho, P.; Costa, I. N.; Verri, W. A., Jr; Conchon-Costa, I.; Pavanelli, W. R. Quercetin promotes antipromastigote effect by increasing the ROS production and anti-amastigote by upregulating Nrf2/HO-1 expression, affecting iron availability. Biomed. Pharmacother. 2019, 113, 108745  DOI: 10.1016/j.biopha.2019.108745
    153. 153
      Jean-Moreno, V.; Rojas, R.; Goyeneche, D.; Coombs, G. H.; Walker, J. Leishmania donovani: differential activities of classical topoisomerase inhibitors and antileishmanials against parasite and host cells at the level of DNA topoisomerase I and in cytotoxicity assays. Exp. Parasitol. 2006, 112, 2130,  DOI: 10.1016/j.exppara.2005.08.014
    154. 154
      de Sousa, L. R.; Wu, H.; Nebo, L.; Fernandes, J. B.; da Silva, M. F.; Kiefer, W.; Schirmeister, T.; Vieira, P. C. Natural products as inhibitors of recombinant cathepsin L of Leishmania mexicana. Exp. Parasitol. 2015, 156, 4248,  DOI: 10.1016/j.exppara.2015.05.016
    155. 155
      Cortázar, T. M.; Coombs, G. H.; Walker, J. Leishmania panamensis: comparative inhibition of nuclear DNA topoisomerase II enzymes from promastigotes and human macrophages reveals anti-parasite selectivity of fluoroquinolones, flavonoids and pentamidine. Exp. Parasitol. 2007, 116, 475482,  DOI: 10.1016/j.exppara.2007.02.018
    156. 156
      Ganesh, D.; Fuehrer, H. P.; Starzengruber, P.; Swoboda, P.; Khan, W. A.; Reismann, J. A.; Mueller, M. S.; Chiba, P.; Noedl, H. Antiplasmodial activity of flavonol quercetin and its analogues in Plasmodium falciparum: evidence from clinical isolates in Bangladesh and standardized parasite clones. Parasitol. Res. 2012, 110, 22892295,  DOI: 10.1007/s00436-011-2763-z
    157. 157
      Penna-Coutinho, J.; Aguiar, A. C.; Krettli, A. U. Commercial drugs containing flavonoids are active in mice with malaria and in vitro against chloroquine-resistant Plasmodium falciparum. Mem. Inst. Oswaldo Cruz 2018, 113, e180279  DOI: 10.1590/0074-02760180279
    158. 158
      Kerboeuf, D.; Riou, M.; Guegnard, F. Flavonoids and related compounds in parasitic disease control. Mini-Rev. Med. Chem. 2008, 8, 116128,  DOI: 10.2174/138955708783498168
    159. 159
      Smith, P.; Ho, C. K.; Takagi, Y.; Djaballah, H.; Shuman, S. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase. mBio 2016, 7, e00058  DOI: 10.1128/mBio.00058-16
    160. 160
      Dodson, H. C.; Lyda, T. A.; Chambers, J. W.; Morris, M. T.; Christensen, K. A.; Morris, J. C. Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1. Exp. Parasitol. 2011, 127, 423428,  DOI: 10.1016/j.exppara.2010.10.011
    161. 161
      Worthen, C.; Jensen, B. C.; Parsons, M. Diverse effects on mitochondrial and nuclear functions elicited by drugs and genetic knockdowns in bloodstream stage Trypanosoma brucei. PLoS Neglected Trop. Dis. 2010, 4, e678  DOI: 10.1371/journal.pntd.0000678
    162. 162
      Mamani-Matsuda, M.; Rambert, J.; Malvy, D.; Lejoly-Boisseau, H.; Daulouede, S.; Thiolat, D.; Coves, S.; Courtois, P.; Vincendeau, P.; Mossalayi, M. D. Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob. Agents Chemother. 2004, 48, 924929,  DOI: 10.1128/AAC.48.3.924-929.2004
    163. 163
      Pérez-Cruz, F.; Serra, S.; Delogu, G.; Lapier, M.; Maya, J. D.; Olea-Azar, C.; Santana, L.; Uriarte, E. Antitrypanosomal and antioxidant properties of 4-hydroxycoumarins derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 55695573,  DOI: 10.1016/j.bmcl.2012.07.013
    164. 164
      Calzada, F.; Alanis, A. D. Additional antiprotozoal flavonol glycosides of the aerial parts of Helianthemum glomeratum. Phytother. Res. 2007, 21, 7880,  DOI: 10.1002/ptr.2031
    165. 165
      El Souda, S. S.; Matloub, A. A.; Nepveuc, F.; Valentin, A.; Roques, C. Phenolic composition and prospective anti-infectious properties of Atriplex lindleyi. Asian Pac. J. Trop. Dis. 2015, 5, 786791,  DOI: 10.1016/S2222-1808(15)60931-8
    166. 166
      Oliveira, F. Q.; Andrade-Neto, V.; Krettli, A. U.; Brandao, M. G. New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J. Ethnopharmacol. 2004, 93, 3942,  DOI: 10.1016/j.jep.2004.03.026
    167. 167
      Montrieux, E.; Perera, W. H.; Garcia, M.; Maes, L.; Cos, P.; Monzote, L. In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol. Res. 2014, 113, 29252932,  DOI: 10.1007/s00436-014-3954-1
    168. 168
      Muzitano, M. F.; Falcao, C. A.; Cruz, E. A.; Bergonzi, M. C.; Bilia, A. R.; Vincieri, F. F.; Rossi-Bergmann, B.; Costa, S. S. Oral metabolism and efficacy of Kalanchoe pinnata flavonoids in a murine model of cutaneous leishmaniasis. Planta Med. 2009, 75, 307311,  DOI: 10.1055/s-0028-1088382
    169. 169
      Pereira, C. A. J.; Oliveira, L. L. S.; Coaglio, A. L.; Santos, F. S. O.; Cezar, R. S. M.; Mendes, T.; Oliveira, F. L. P.; Conzensa, G.; Lima, W. S. Anti-helminthic activity of Momordica charantia L. against Fasciola hepatica eggs after twelve days of incubation in vitro. Vet. Parasitol. 2016, 228, 160166,  DOI: 10.1016/j.vetpar.2016.08.025
    170. 170
      Vila-Nova, N. S.; Morais, S. M.; Falcão, M. J. C.; Bevilaqua, C. M. L.; Rondon, F. C. M.; Wilson, M. E.; Vieira, I. G. P.; Andrade, H. F. Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds of Dimorphandra gardneriana and Platymiscium floribundum, native plants from Caatinga biome. Pesq. Vet. Bras. 2012, 32, 11641168,  DOI: 10.1590/S0100-736X2012001100015
    171. 171
      Kheirandish, F.; Delfan, B.; Mahmoudvand, H.; Moradi, N.; Ezatpour, B.; Ebrahimzadeh, F.; Rashidipour, M. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed. Pharmacother. 2016, 82, 208215,  DOI: 10.1016/j.biopha.2016.04.040
    172. 172
      Jansen, O.; Tchinda, A. T.; Loua, J.; Esters, V.; Cieckiewicz, E.; Ledoux, A.; Toukam, P. D.; Angenot, L.; Tits, M.; Balde, A. M.; Frederich, M. Antiplasmodial activity of Mezoneuron benthamianum leaves and identification of its active constituents. J. Ethnopharmacol. 2017, 203, 2026,  DOI: 10.1016/j.jep.2017.03.021
    173. 173
      Calixto Júnior, J. T.; de Morais, S. M.; Gomez, C. V.; Molas, C. C.; Rolon, M.; Boligon, A. A.; Athayde, M. L.; de Morais Oliveira, C. D.; Tintino, S. R.; Henrique Douglas, M. C. Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast “Cerrado”. Saudi J. Biol. Sci. 2016, 23, 434440,  DOI: 10.1016/j.sjbs.2015.10.009
    174. 174
      Cunha, N. L.; Uchoa, C. J.; Cintra, L. S.; de Souza, H. C.; Peixoto, J. A.; Silva, C. P.; Magalhaes, L. G.; Gimenez, V. M.; Groppo, M.; Rodrigues, V.; da Silva Filho, A. A.; Andrade, E. S. M. L.; Cunha, W. R.; Pauletti, P. M.; Januario, A. H. In vitro schistosomicidal activity of some brazilian cerrado species and their isolated compounds. J. Evidence-Based Complementary Altern. Med. 2012, 2012, 173614  DOI: 10.1155/2012/173614
    175. 175
      Iwu, M. M.; Obidoa, O.; Anazodo, M. Biochemical mechanism of the antimalarial activity of Azadirachta indica leaf extract. Pharmacol. Res. Commun. 1986, 18, 8191,  DOI: 10.1016/0031-6989(86)90161-X
    176. 176
      Houël, E.; Nardella, F.; Jullian, V.; Valentin, A.; Vonthron-Senecheau, C.; Villa, P.; Obrecht, A.; Kaiser, M.; Bourreau, E.; Odonne, G.; Fleury, M.; Bourdy, G.; Eparvier, V.; Deharo, E.; Stien, D. Wayanin and guaijaverin, two active metabolites found in a Psidium acutangulum Mart. ex DC (syn. P. persoonii McVaugh) (Myrtaceae) antimalarial decoction from the Wayana Amerindians. J. Ethnopharmacol. 2016, 187, 241248,  DOI: 10.1016/j.jep.2016.04.053
    177. 177
      de Souza, C. E. S.; da Silva, A. R. P.; Gomez, M. C. V.; Rolom, M.; Coronel, C.; da Costa, J. G. M.; Sousa, A. K.; Rolim, L. A.; de Souza, F. H. S.; Coutinho, H. D. M. Anti-Trypanosoma, anti-Leishmania and cytotoxic activities of natural products from Psidium brownianum Mart. ex DC. and Psidium guajava var. Pomifera analysed by LC-MS. Acta Trop. 2017, 176, 380384,  DOI: 10.1016/j.actatropica.2017.09.009
    178. 178
      Méabed, E. M. H.; Abou-Sreea, A. I. B.; Roby, M. H. H. Chemical analysis and giardicidal effectiveness of the aqueous extract of Cymbopogon citratus Stapf. Parasitol. Res. 2018, 117, 17451755,  DOI: 10.1007/s00436-018-5855-1
    179. 179
      Das, B. B.; Sen, N.; Roy, A.; Dasgupta, S. B.; Ganguly, A.; Mohanta, B. C.; Dinda, B.; Majumder, H. K. Differential induction of Leishmania donovani bi-subunit topoisomerase I-DNA cleavage complex by selected flavones and camptothecin: activity of flavones against camptothecin-resistant topoisomerase I. Nucleic Acids Res. 2006, 34, 11211132,  DOI: 10.1093/nar/gkj502
    180. 180
      Khalid, S. A.; Farouk, A.; Geary, T. G.; Jensen, J. B. Potential antimalarial candidates from African plants: and in vitro approach using Plasmodium falciparum. J. Ethnopharmacol. 1986, 15, 201209,  DOI: 10.1016/0378-8741(86)90156-X
    181. 181
      Gibellini, L.; Pinti, M.; Nasi, M.; Montagna, J. P.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cooper, E. L.; Cossarizza, A. Quercetin and cancer chemoprevention. J. Evidence-Based Complementary Altern. Med. 2011, 2011, 591356  DOI: 10.1093/ecam/neq053
    182. 182
      Shafabakhsh, R.; Asemi, Z. Quercetin: a natural compound for ovarian cancer treatment. J. Ovarian Res. 2019, 12, 55  DOI: 10.1186/s13048-019-0530-4
    183. 183
      Alper, M.; Güneş, H. The anticancer and anti-inflammatory effects of Centaurea solstitialis extract on human cancer cell lines. Turk. J. Pharm. Sci. 2019, 16, 273281,  DOI: 10.4274/tjps.galenos.2018.27146
    184. 184
      Murakami, A.; Ashida, H.; Terao, J. Multitargeted cancer prevention by quercetin. Cancer letters 2008, 269, 315325,  DOI: 10.1016/j.canlet.2008.03.046
    185. 185
      Zhou, W.; Kallifatidis, G.; Baumann, B.; Rausch, V.; Mattern, J.; Gladkich, J.; Giese, N.; Moldenhauer, G.; Wirth, T.; Buchler, M. W.; Salnikov, A. V.; Herr, I. Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int. J. Oncol. 2010, 37, 551561,  DOI: 10.3892/ijo_00000704
    186. 186
      Serri, C.; Quagliariello, V.; Iaffaioli, R. V.; Fusco, S.; Botti, G.; Mayol, L.; Biondi, M. Combination therapy for the treatment of pancreatic cancer through hyaluronic acid-decorated nanoparticles loaded with quercetin and gemcitabine: A preliminary in vitro study. J. Cell. Physiol. 2019, 234, 49594969,  DOI: 10.1002/jcp.27297
    187. 187
      Nessa, M. U.; Beale, P.; Chan, C.; Yu, J. Q.; Huq, F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res. 2011, 31, 37893797
    188. 188
      Lesser, S.; Wolffram, S. Oral bioavailability of the flavonol quercetin - A review. Curr. Top. Nutraceutical Res. 2006, 4, 239256
    189. 189
      Singhal, R. L.; Yeh, Y. A.; Praja, N.; Olah, E.; Sledge, G. W., Jr; Weber, G. Quercetin down-regulates signal transduction in human breast carcinoma cells. Biochem. Biophys. Res. Commun. 1995, 208, 425431,  DOI: 10.1006/bbrc.1995.1355
    190. 190
      Staedler, D.; Idrizi, E.; Kenzaoui, B. H.; Juillerat-Jeanneret, L. Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother. Pharmacol. 2011, 68, 11611172,  DOI: 10.1007/s00280-011-1596-x
    191. 191
      Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-kappaB inhibition. Eur. J. Pharmacol. 2010, 649, 8491,  DOI: 10.1016/j.ejphar.2010.09.020
    192. 192
      Calgarotto, A. K.; Maso, V.; Junior, G. C. F.; Nowill, A. E.; Filho, P. L.; Vassallo, J.; Saad, S. T. O. Antitumor activities of Quercetin and Green Tea in xenografts of human leukemia HL60 cells. Sci. Rep. 2018, 8, 3459  DOI: 10.1038/s41598-018-21516-5
    193. 193
      Naimi, A.; Entezari, A.; Hagh, M. F.; Hassanzadeh, A.; Saraei, R.; Solali, S. Quercetin sensitizes human myeloid leukemia KG-1 cells against TRAIL-induced apoptosis. J. Cell. Physiol. 2019, 234, 1323313241,  DOI: 10.1002/jcp.27995
    194. 194
      Kim, W. K.; Bang, M. H.; Kim, E. S.; Kang, N. E.; Jung, K. C.; Cho, H. J.; Park, J. H. Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J. Nutr. Biochem. 2005, 16, 155162,  DOI: 10.1016/j.jnutbio.2004.10.010
    195. 195
      Baron, B. W.; Thirman, M. J.; Giurcanu, M. C.; Baron, J. M. Quercetin Therapy for Selected Patients with PIM1 Kinase-Positive Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: A Pilot Study. Acta Haematol. 2018, 139, 132139,  DOI: 10.1159/000486361
    196. 196
      Ranelletti, F. O.; Ricci, R.; Larocca, L. M.; Maggiano, N.; Capelli, A.; Scambia, G.; Benedetti-Panici, P.; Mancuso, S.; Rumi, C.; Piantelli, M. Growth-inhibitory effect of quercetin and presence of type-II estrogen-binding sites in human colon-cancer cell lines and primary colorectal tumors. Int. J. Cancer 1992, 50, 486492,  DOI: 10.1002/ijc.2910500326
    197. 197
      Ranelletti, F. O.; Maggiano, N.; Serra, F. G.; Ricci, R.; Larocca, L. M.; Lanza, P.; Scambia, G.; Fattorossi, A.; Capelli, A.; Piantelli, M. Quercetin inhibits p21-RAS expression in human colon cancer cell lines and in primary colorectal tumors. Int. J. Cancer 2000, 85, 438445,  DOI: 10.1002/(SICI)1097-0215(20000201)85:3<438::AID-IJC22>3.0.CO;2-F
    198. 198
      Yoshida, M.; Sakai, T.; Hosokawa, N.; Marui, N.; Matsumoto, K.; Fujioka, A.; Nishino, H.; Aoike, A. The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Lett. 1990, 260, 1013,  DOI: 10.1016/0014-5793(90)80053-L
    199. 199
      Shang, H. S.; Lu, H. F.; Lee, C. H.; Chiang, H. S.; Chu, Y. L.; Chen, A.; Lin, Y. F.; Chung, J. G. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ. Toxicol. 2018, 33, 11681181,  DOI: 10.1002/tox.22623
    200. 200
      Chen, Z.; Yuan, Q.; Xu, G.; Chen, H.; Lei, H.; Su, J. Effects of Quercetin on Proliferation and H2O2-Induced Apoptosis of Intestinal Porcine Enterocyte Cells. Molecules 2018, 23, 2012,  DOI: 10.3390/molecules23082012
    201. 201
      Chuang, C. H.; Chan, S. T.; Chen, C. H.; Yeh, S. L. Quercetin enhances the antitumor activity of trichostatin A through up-regulation of p300 protein expression in p53 null cancer cells. Chem.-Biol. Interact. 2019, 306, 5461,  DOI: 10.1016/j.cbi.2019.04.006
    202. 202
      Ackland, M. L.; van de Waarsenburg, S.; Jones, R. Synergistic antiproliferative action of the flavonols quercetin and kaempferol in cultured human cancer cell lines. In Vivo 2005, 19, 6976
    203. 203
      Yalçın, A. S.; Yılmaz, A. M.; Altundağ, E. M.; Koçtürk, S. Kurkumin, kuersetin ve çay kateşinlerinin anti-kanser etkileri. Marmara Pharm. J. 2016, 21, 1929,  DOI: 10.12991/marupj.259877
    204. 204
      Vargas, A. J.; Burd, R. Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management. Nutrition reviews 2010, 68, 418428,  DOI: 10.1111/j.1753-4887.2010.00301.x
    205. 205
      Nam, J. S.; Sharma, A. R.; Nguyen, L. T.; Chakraborty, C.; Sharma, G.; Lee, S. S. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine. Molecules 2016, 21, 108,  DOI: 10.3390/molecules21010108
    206. 206
      Aguirre, L.; Arias, N.; Macarulla, M. T.; Gracia, A.; Portillo, M. P. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J. 2011, 4, 189198,  DOI: 10.2174/1876396001104010189
    207. 207
      Chen, S.; Jiang, H.; Wu, X.; Fang, J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediators Inflammation 2016, 2016, 9340637  DOI: 10.1155/2016/9340637
    208. 208
      Ostadmohammadi, V.; Milajerdi, A.; Ayati, E.; Kolahdooz, F.; Asemi, Z. Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 13301340,  DOI: 10.1002/ptr.6334
    209. 209
      Chondrogianni, N.; Kapeta, S.; Chinou, I.; Vassilatou, K.; Papassideri, I.; Gonos, E. S. Anti-ageing and rejuvenating effects of quercetin. Exp. Gerontol. 2010, 45, 763771,  DOI: 10.1016/j.exger.2010.07.001
    210. 210
      Geng, L.; Liu, Z.; Zhang, W.; Li, W.; Wu, Z.; Wang, W.; Ren, R.; Su, Y.; Wang, P.; Sun, L.; Ju, Z.; Chan, P.; Song, M.; Qu, J.; Liu, G. H. Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell 2019, 10, 417435,  DOI: 10.1007/s13238-018-0567-y
    211. 211
      Larson, A. J.; Symons, J. D.; Jalili, T. Quercetin: A Treatment for Hypertension?-A Review of Efficacy and Mechanisms. Pharmaceuticals 2010, 3, 237250,  DOI: 10.3390/ph3010237
    212. 212
      Gormaz, J. G.; Quintremil, S.; Rodrigo, R. Cardiovascular Disease: A Target for the Pharmacological Effects of Quercetin. Curr. Top. Med. Chem. 2015, 15, 17351742,  DOI: 10.2174/1568026615666150427124357
    213. 213
      Khurana, S.; Venkataraman, K.; Hollingsworth, A.; Piche, M.; Tai, T. C. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 2013, 5, 37793827,  DOI: 10.3390/nu5103779
    214. 214
      Tribolo, S.; Lodi, F.; Connor, C.; Suri, S.; Wilson, V. G.; Taylor, M. A.; Needs, P. W.; Kroon, P. A.; Hughes, D. A. Comparative effects of quercetin and its predominant human metabolites on adhesion molecule expression in activated human vascular endothelial cells. Atherosclerosis 2008, 197, 5056,  DOI: 10.1016/j.atherosclerosis.2007.07.040
    215. 215
      Carrasco-Pozo, C.; Cires, M. J.; Gotteland, M. Quercetin and Epigallocatechin Gallate in the Prevention and Treatment of Obesity: From Molecular to Clinical Studies. J. Med. food 2019, 22, 753770,  DOI: 10.1089/jmf.2018.0193
    216. 216
      Patel, R. V.; Mistry, B. M.; Shinde, S. K.; Syed, R.; Singh, V.; Shin, H. S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem. 2018, 155, 889904,  DOI: 10.1016/j.ejmech.2018.06.053
    217. 217
      D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications?. Fitoterapia 2015, 106, 256271,  DOI: 10.1016/j.fitote.2015.09.018
    218. 218
      Boots, A. W.; Haenen, G. R.; Bast, A. Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325337,  DOI: 10.1016/j.ejphar.2008.03.008
    219. 219
      Kook, D.; Wolf, A. H.; Yu, A. L.; Neubauer, A. S.; Priglinger, S. G.; Kampik, A.; Welge-Lussen, U. C. The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol. Visual Sci. 2008, 49, 17121720,  DOI: 10.1167/iovs.07-0477
    220. 220
      Suematsu, N.; Hosoda, M.; Fujimori, K. Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci. Lett. 2011, 504, 223227,  DOI: 10.1016/j.neulet.2011.09.028
    221. 221
      Carullo, G.; Cappello, A. R.; Frattaruolo, L.; Badolato, M.; Armentano, B.; Aiello, F. Quercetin and derivatives: useful tools in inflammation and pain management. Future Med. Chem. 2017, 9, 7993,  DOI: 10.4155/fmc-2016-0186
    222. 222
      Gokhale, J. P.; Mahajan, H. S.; Surana, S. J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed. Pharmacother. 2019, 112, 108622  DOI: 10.1016/j.biopha.2019.108622
    223. 223
      Dietrich-Muszalska, A.; Olas, B. Inhibitory effects of polyphenol compounds on lipid peroxidation caused by antipsychotics (haloperidol and amisulpride) in human plasma in vitro. World J. Biol. Psychiatry 2010, 11, 276281,  DOI: 10.3109/15622970902718790
    224. 224
      Rabinovich, L.; Kazlouskaya, V. Herbal sun protection agents: Human studies. Clin. Dermatol. 2018, 36, 369375,  DOI: 10.1016/j.clindermatol.2018.03.014
    225. 225
      Gaudry, A.; Bos, S.; Viranaicken, W.; Roche, M.; Krejbich-Trotot, P.; Gadea, G.; Despres, P.; El-Kalamouni, C. The Flavonoid Isoquercitrin Precludes Initiation of Zika Virus Infection in Human Cells. Int. J. Mol. Sci. 2018, 19, 1093,  DOI: 10.3390/ijms19041093
    226. 226
      Gargouri, B.; Mansour, R. B.; Abdallah, F. B.; Elfekih, A.; Lassoued, S.; Khaled, H. Protective effect of quercetin against oxidative stress caused by dimethoate in human peripheral blood lymphocytes. Lipids Health Dis. 2011, 10, 149,  DOI: 10.1186/1476-511X-10-149
    227. 227
      Choi, M. H.; Shin, H. J. Anti-melanogenesis effect of quercetin. Cosmetics 2016, 3, 18,  DOI: 10.3390/cosmetics3020018
    228. 228
      Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct. 2015, 6, 13991417,  DOI: 10.1039/C4FO01178C
    229. 229
      Graefe, E. U.; Wittig, J.; Mueller, S.; Riethling, A.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; H, H. D.; Veit, M. Pharmacokinetics and Bioavailability of Quercetin Glycosides in Humans. J. Clin. Psychopharmacol. 2001, 41, 492499,  DOI: 10.1177/00912700122010366
    230. 230
      Almeida, A. F.; Borge, G. I. A.; Piskula, M.; Tudose, A.; Tudoreanu, L.; Valentová, K.; Williamson, G.; Santos, C. N. Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Compr. Rev. Food Sci. Food Saf. 2018, 17, 714731,  DOI: 10.1111/1541-4337.12342
    231. 231
      Mukhopadhyay, P.; Prajapati, A. K. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers – a review. RSC Adv. 2015, 5, 9754797562,  DOI: 10.1039/C5RA18896B
    232. 232
      Rizvi, S. A. A.; Saleh, A. M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018, 26, 6470,  DOI: 10.1016/j.jsps.2017.10.012
    233. 233
      Baksi, R.; Singh, D. P.; Borse, S. P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother. 2018, 106, 15131526,  DOI: 10.1016/j.biopha.2018.07.106
    234. 234
      de Oliveira Pedro, R.; Hoffmann, S.; Pereira, S.; Goycoolea, F. M.; Schmitt, C. C.; Neumann, M. G. Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. Eur. J. Pharm. Biopharm. 2018, 131, 203210,  DOI: 10.1016/j.ejpb.2018.08.009
    235. 235
      Penalva, R.; Gonzalez-Navarro, C. J.; Gamazo, C.; Esparza, I.; Irache, J. M. Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 103110,  DOI: 10.1016/j.nano.2016.08.033
    236. 236
      Halder, A.; Mukherjee, P.; Ghosh, S.; Mandal, S.; Chatterji, U.; Mukherjee, A. Smart PLGA nanoparticles loaded with Quercetin: Cellular uptake and in-vitro anticancer study. Mater. Today: Proc. 2018, 5, 96989705,  DOI: 10.1016/j.matpr.2017.10.156
    237. 237
      Lou, M.; Zhang, L. N.; Ji, P. G.; Feng, F. Q.; Liu, J. H.; Yang, C.; Li, B. F.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother. 2016, 84, 19,  DOI: 10.1016/j.biopha.2016.08.055
    238. 238
      Chitkara, D.; Nikalaje, S. K.; Mittal, A.; Chand, M.; Kumar, N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Delivery Transl. Res. 2012, 2, 112123,  DOI: 10.1007/s13346-012-0063-5
    239. 239
      Tan, B. J.; Liu, Y.; Chang, K. L.; Lim, B. K.; Chiu, G. N. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomed. 2012, 7, 651661,  DOI: 10.2147/IJN.S26538
    240. 240
      Zhou, H.; Wang, X. Spectrometric study on the interaction of sodium cholate aggregates with quercetin. Colloids Surf., A 2015, 481, 3137,  DOI: 10.1016/j.colsurfa.2015.04.023
    241. 241
      Sadhukhan, P.; Kundu, M.; Chatterjee, S.; Ghosh, N.; Manna, P.; Das, J.; Sil, P. C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng., C 2019, 100, 129140,  DOI: 10.1016/j.msec.2019.02.096
    242. 242
      Braga, L. R.; Pérez, L. M.; Soazo, M. dV.; Machado, F. Evaluation of the antimicrobial, antioxidant and physicochemical properties of Poly(Vinyl chloride) films containing quercetin and silver nanoparticles. Lwt 2019, 101, 491498,  DOI: 10.1016/j.lwt.2018.11.082
    243. 243
      Yang, X.; Zhang, W.; Zhao, Z.; Li, N.; Mou, Z.; Sun, D.; Cai, Y.; Wang, W.; Lin, Y. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorg. Biochem. 2017, 167, 3648,  DOI: 10.1016/j.jinorgbio.2016.11.023
    244. 244
      Lee, G. H.; Lee, S. J.; Jeong, S. W.; Kim, H. C.; Park, G. Y.; Lee, S. G.; Choi, J. H. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloids Surf., B 2016, 143, 511517,  DOI: 10.1016/j.colsurfb.2016.03.060
    245. 245
      Aghapour, F.; Moghadamnia, A. A.; Nicolini, A.; Kani, S. N. M.; Barari, L.; Morakabati, P.; Rezazadeh, L.; Kazemi, S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun. 2018, 500, 860865,  DOI: 10.1016/j.bbrc.2018.04.174
    246. 246
      Niazvand, F.; Orazizadeh, M.; Khorsandi, L.; Abbaspour, M.; Mansouri, E.; Khodadadi, A. Effects of Quercetin-Loaded Nanoparticles on MCF-7 Human Breast Cancer Cells. Medicina 2019, 55, 114,  DOI: 10.3390/medicina55040114
    247. 247
      Hatahet, T.; Morille, M.; Hommoss, A.; Devoisselle, J. M.; Muller, R. H.; Begu, S. Liposomes, lipid nanocapsules and smartCrystals(R): A comparative study for an effective quercetin delivery to the skin. Int. J. Pharm. 2018, 542, 176185,  DOI: 10.1016/j.ijpharm.2018.03.019
    248. 248
      Vijayakumar, A.; Baskaran, R.; Jang, Y. S.; Oh, S. H.; Yoo, B. K. Quercetin-Loaded Solid Lipid Nanoparticle Dispersion with Improved Physicochemical Properties and Cellular Uptake. AAPS PharmSciTech 2017, 18, 875883,  DOI: 10.1208/s12249-016-0573-4
    249. 249
      Liu, L.; Tang, Y.; Gao, C.; Li, Y.; Chen, S.; Xiong, T.; Li, J.; Du, M.; Gong, Z.; Chen, H.; Liu, L.; Yao, P. Characterization and biodistribution in vivo of quercetin-loaded cationic nanostructured lipid carriers. Colloids Surf., B 2014, 115, 125131,  DOI: 10.1016/j.colsurfb.2013.11.029
    250. 250
      Srinivas, K.; King, J. W.; Howard, L. R.; Monrad, J. K. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng. 2010, 100, 208218,  DOI: 10.1016/j.jfoodeng.2010.04.001
    251. 251
      Biasutto, L.; Marotta, E.; Garbisa, S.; Zoratti, M.; Paradisi, C. Determination of quercetin and resveratrol in whole blood--implications for bioavailability studies. Molecules 2010, 15, 65706579,  DOI: 10.3390/molecules15096570
    252. 252
      Kumari, A.; Kumar, V.; Yadav, S. K. Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PLoS One 2012, 7, e41230  DOI: 10.1371/journal.pone.0041230
    253. 253
      Souza, M. P.; Vaz, A. F. M.; Correia, M. T. S.; Cerqueira, M. A.; Vicente, A. A.; Carneiro-da-Cunha, M. G. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food Bioprocess Technol. 2014, 7, 11491159,  DOI: 10.1007/s11947-013-1160-2
    254. 254
      Gugler, R.; Leschik, M.; Dengler, H. J. Disposition of quercetin in man after single oral and intravenous doses. Eur. J. Clin. Pharmacol. 1975, 9, 229234,  DOI: 10.1007/BF00614022
    255. 255
      Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technol. 2004, 1, 337341,  DOI: 10.1016/j.ddtec.2004.11.007
    256. 256
      Kawai, Y. Understanding metabolic conversions and molecular actions of flavonoids in vivo:toward new strategies for effective utilization of natural polyphenols in human health. J. Med. Invest. 2018, 65, 162165,  DOI: 10.2152/jmi.65.162
    257. 257
      de Boer, V. C.; Dihal, A. A.; van der Woude, H.; Arts, I. C.; Wolffram, S.; Alink, G. M.; Rietjens, I. M.; Keijer, J.; Hollman, P. C. Tissue distribution of quercetin in rats and pigs. J. Nutr. 2005, 135, 17181725,  DOI: 10.1093/jn/135.7.1718
    258. 258
      Olthof, M. R.; Hollman, P. C.; Vree, T. B.; Katan, M. B. Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans. J. Nutr. 2000, 130, 12001203,  DOI: 10.1093/jn/130.5.1200
    259. 259
      Stopa, J. D.; Neuberg, D.; Puligandla, M.; Furie, B.; Flaumenhaft, R.; Zwicker, J. I. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation. JCI insight 2017, 2, e89373  DOI: 10.1172/jci.insight.89373
    260. 260
      Day, A. J.; Mellon, F.; Barron, D.; Sarrazin, G.; Morgan, M. R.; Williamson, G. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radical Res. 2001, 35, 941952,  DOI: 10.1080/10715760100301441
    261. 261
      Hollman, P. C. H.; Arts, I. C. W. Flavonols, flavones and flavanols – nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 10811093,  DOI: 10.1002/(SICI)1097-0010(20000515)80:7<1081::AID-JSFA566>3.0.CO;2-G
    262. 262
      Manach, C.; Donovan, J. L. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radical Res. 2004, 38, 771785,  DOI: 10.1080/10715760410001727858
    263. 263
      Li, W.; Yi, S.; Wang, Z.; Chen, S.; Xin, S.; Xie, J.; Zhao, C. Self-nanoemulsifying drug delivery system of persimmon leaf extract: Optimization and bioavailability studies. Int. J. Pharm. 2011, 420, 161171,  DOI: 10.1016/j.ijpharm.2011.08.024
    264. 264
      Sarkar, S.; Mandal, S.; Sinha, J.; Mukhopadhyay, S.; Das, N.; Basu, M. K. Quercetin: critical evaluation as an antileishmanial agent in vivo in hamsters using different vesicular delivery modes. J. Drug Targeting 2002, 10, 573578,  DOI: 10.1080/106118021000072681
    265. 265
      Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Controlled Release 2009, 133, 238244,  DOI: 10.1016/j.jconrel.2008.10.002
    266. 266
      Ghosh, D.; Ghosh, S.; Sarkar, S.; Ghosh, A.; Das, N.; Das Saha, K.; Mandal, A. K. Quercetin in vesicular delivery systems: evaluation in combating arsenic-induced acute liver toxicity associated gene expression in rat model. Chem.-Biol. Interact. 2010, 186, 6171,  DOI: 10.1016/j.cbi.2010.03.048
    267. 267
      Chakraborty, S.; Stalin, S.; Das, N.; Choudhury, S. T.; Ghosh, S.; Swarnakar, S. The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials 2012, 33, 29913001,  DOI: 10.1016/j.biomaterials.2011.12.037
    268. 268
      Ghosh, S.; Sarkar, S.; Choudhury, S. T.; Ghosh, T.; Das, N. Triphenyl phosphonium coated nano-quercetin for oral delivery: Neuroprotective effects in attenuating age related global moderate cerebral ischemia reperfusion injury in rats. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 24392450,  DOI: 10.1016/j.nano.2017.08.002
    269. 269
      Sousa-Batista, A. J.; Poletto, F. S.; Philipon, C.; Guterres, S. S.; Pohlmann, A. R.; Rossi-Bergmann, B. Lipid-core nanocapsules increase the oral efficacy of quercetin in cutaneous leishmaniasis. Parasitology 2017, 144, 17691774,  DOI: 10.1017/S003118201700097X
    270. 270
      Tian, F.; Dahmani, F. Z.; Qiao, J.; Ni, J.; Xiong, H.; Liu, T.; Zhou, J.; Yao, J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater. 2018, 75, 398412,  DOI: 10.1016/j.actbio.2018.05.050
    271. 271
      Saha, C.; Kaushik, A.; Das, A.; Pal, S.; Majumder, D. Anthracycline Drugs on Modified Surface of Quercetin-Loaded Polymer Nanoparticles: A Dual Drug Delivery Model for Cancer Treatment. PLoS One 2016, 11, e0155710  DOI: 10.1371/journal.pone.0155710
    272. 272
      Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep. 2016, 43, 99105,  DOI: 10.1007/s11033-016-3942-x
    273. 273
      Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci. 2018, 509, 4757,  DOI: 10.1016/j.jcis.2017.08.097
    274. 274
      Zhu, B.; Yu, L.; Yue, Q. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed. Pharmacother. 2017, 91, 287294,  DOI: 10.1016/j.biopha.2017.02.112
    275. 275
      Rezvani, M.; Mohammadnejad, J.; Narmani, A.; Bidaki, K. Synthesis and in vitro study of modified chitosan-polycaprolactam nanocomplex as delivery system. Int. J. Biol. Macromol. 2018, 113, 12871293,  DOI: 10.1016/j.ijbiomac.2018.02.141
    276. 276
      Mu, Y.; Fu, Y.; Li, J.; Yu, X.; Li, Y.; Wang, Y.; Wu, X.; Zhang, K.; Kong, M.; Feng, C.; Chen, X. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr. Polym. 2019, 203, 1018,  DOI: 10.1016/j.carbpol.2018.09.020
    277. 277
      Li, J.; He, Z.; Yu, S.; Li, S.; Ma, Q.; Yu, Y.; Zhang, J.; Li, R.; Zheng, Y.; He, G.; Song, X. Micelles based on methoxy poly(ethylene glycol)-cholesterol conjugate for controlled and targeted drug delivery of a poorly water soluble drug. J. Biomed. Nanotechnol. 2012, 8, 809817,  DOI: 10.1166/jbn.2012.1433
    278. 278
      Gupta, P.; Authimoolam, S. P.; Hilt, J. Z.; Dziubla, T. D. Quercetin conjugated poly(beta-amino esters) nanogels for the treatment of cellular oxidative stress. Acta Biomater. 2015, 27, 194204,  DOI: 10.1016/j.actbio.2015.08.039
    279. 279
      Catauro, M.; Bollino, F.; Nocera, P.; Piccolella, S.; Pacifico, S. Entrapping quercetin in silica/poly(ethylene glycol) hybrid materials: Chemical characterization and biocompatibility. Mater. Sci. Eng., C 2016, 68, 205212,  DOI: 10.1016/j.msec.2016.05.082
    280. 280
      Abd-Rabou, A. A.; Ahmed, H. H. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line. Adv. Med. Sci. 2017, 62, 357367,  DOI: 10.1016/j.advms.2017.01.003
    281. 281
      Das, S.; Roy, P.; Mondal, S.; Bera, T.; Mukherjee, A. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf., B 2013, 107, 2734,  DOI: 10.1016/j.colsurfb.2013.01.061
    282. 282
      Rezaei-Sadabady, R.; Eidi, A.; Zarghami, N.; Barzegar, A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif. Cells, Nanomed., Biotechnol. 2016, 44, 128134,  DOI: 10.3109/21691401.2014.926456
    283. 283
      Huang, X.; Chen, X.; Chen, Q.; Yu, Q.; Sun, D.; Liu, J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater. 2016, 30, 397407,  DOI: 10.1016/j.actbio.2015.10.041
    284. 284
      Kumar, P.; Sharma, G.; Kumar, R.; Singh, B.; Malik, R.; Katare, O. P.; Raza, K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int. J. Pharm. 2016, 515, 307314,  DOI: 10.1016/j.ijpharm.2016.10.024
    285. 285
      Lozano-Pérez, A. A.; Rivero, H. C.; Perez Hernandez, M. D. C.; Pagan, A.; Montalban, M. G.; Villora, G.; Cenis, J. L. Silk fibroin nanoparticles: Efficient vehicles for the natural antioxidant quercetin. Int. J. Pharm. 2017, 518, 1119,  DOI: 10.1016/j.ijpharm.2016.12.046
    286. 286
      Abd El-Fattah, A. I.; Fathy, M. M.; Ali, Z. Y.; El-Garawany, A. E. A.; Mohamed, E. K. Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chem.-Biol. Interact. 2017, 271, 3038,  DOI: 10.1016/j.cbi.2017.04.026
    287. 287
      Singh, J.; Mittal, P.; Vasant Bonde, G.; Ajmal, G.; Mishra, B. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus(R)/P407 micelles in diabetes treatment. Artif. Cells, Nanomed., Biotechnol. 2018, 46, S546S555,  DOI: 10.1080/21691401.2018.1501379
    288. 288
      Habas, K.; Abdulmwli, M.; Demir, E.; Jacob, B. K.; Najafzadeh, M.; Anderson, D. DNA damage protection by bulk and nano forms of quercetin in lymphocytes of patients with chronic obstructive pulmonary disease exposed to the food mutagen 2-amino-3-methylimidazo [4,5-f]quinolone (IQ). Environ. Res. 2018, 166, 1015,  DOI: 10.1016/j.envres.2018.05.012

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect