Advertisement

Abstract

Microbial colonization of mucosal tissues during infancy plays an instrumental role in the development and education of the host mammalian immune system. These early-life events can have long-standing consequences: facilitating tolerance to environmental exposures or contributing to the development of disease in later life, including inflammatory bowel disease, allergy, and asthma. Recent studies have begun to define a critical period during early development in which disruption of optimal host-commensal interactions can lead to persistent and in some cases irreversible defects in the development and training of specific immune subsets. Here, we discuss the role of early-life education of the immune system during this “window of opportunity,” when microbial colonization has a potentially critical impact on human health and disease.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
Sender R., Fuchs S., and Milo R., Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016). 10.1016/j.cell.2016.01.01310.1016/j.cell.2016.01.013
2
Jiménez E., Fernández L., Marín M. L., Martín R., Odriozola J. M., Nueno-Palop C., Narbad A., Olivares M., Xaus J., and Rodríguez J. M., Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 51, 270–274 (2005). 10.1007/s00284-005-0020-310.1007/s00284-005-0020-3
3
Moles L., Gómez M., Heilig H., Bustos G., Fuentes S., de Vos W., Fernández L., Rodríguez J. M., and Jiménez E., Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLOS ONE 8, e66986 (2013). 10.1371/journal.pone.006698610.1371/journal.pone.0066986
4
Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., and Knight R., Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U.S.A. 107, 11971–11975 (2010). 10.1073/pnas.100260110710.1073/pnas.1002601107
5
Benson A. K., Kelly S. A., Legge R., Ma F., Low S. J., Kim J., Zhang M., Oh P. L., Nehrenberg D., Hua K., Kachman S. D., Moriyama E. N., Walter J., Peterson D. A., and Pomp D., Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. U.S.A. 107, 18933–18938 (2010). 10.1073/pnas.100702810710.1073/pnas.1007028107
6
Russell S. L., Gold M. J., Hartmann M., Willing B. P., Thorson L., Wlodarska M., Gill N., Blanchet M. R., Mohn W. W., McNagny K. M., and Finlay B. B., Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13, 440–447 (2012). 10.1038/embor.2012.3210.1038/embor.2012.32
7
Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., Sogin M. L., Jones W. J., Roe B. A., Affourtit J. P., Egholm M., Henrissat B., Heath A. C., Knight R., and Gordon J. I., A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009). 10.1038/nature0754010.1038/nature07540
8
Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., and Brown P. O., Development of the human infant intestinal microbiota. PLOS Biol. 5, e177 (2007).17594176
9
Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., Magris M., Hidalgo G., Baldassano R. N., Anokhin A. P., Heath A. C., Warner B., Reeder J., Kuczynski J., Caporaso J. G., Lozupone C. A., Lauber C., Clemente J. C., Knights D., Knight R., and Gordon J. I., Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).22699611
10
Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R., Angenent L. T., and Ley R. E., Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108 (Suppl 1), 4578–4585 (2011). 10.1073/pnas.100008110710.1073/pnas.1000081107
11
Pasteur L., Observation relative à la note précédente de M. Duclaux. Compte Rendus Ge Acad. Sci. 100, 68 (1885).
12
Nuttall G. H. F. and Thierfelder H., Thierishes leben ohne bacterien im verdauungskanal. Physiological Chem. 21, 109–121 (1896). 10.1515/bchm2.1896.21.2-3.10910.1515/bchm2.1896.21.2-3.109
13
Reyniers J. A., Trexler P. C., and Ervin R. F., Rearing germ-free albino rats. Lobund Rep. 1, 1–84 (1946).20247584
14
Pleasants J. R., Rearing germfree cesarean-born rats, mice, and rabbits through weaning. Ann. N. Y. Acad. Sci. 78, 116–126 (1959). 10.1111/j.1749-6632.1959.tb53099.x10.1111/j.1749-6632.1959.tb53099.x
15
Gustafsson B. E., Midtvedt T., and Strandberg K., Effects of microbial contamination on the cecum enlargement of germfree rats. Scand. J. Gastroenterol. 5, 309–314 (1970).5429896
16
Abrams G. D. and Bishop J. E., Effect of the normal microbial flora on gastrointestinal motility. Proc. Soc. Exp. Biol. Med. 126, 301–304 (1967). 10.3181/00379727-126-3243010.3181/00379727-126-32430
17
Abrams G. D., Bauer H., and Sprinz H., Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab. Invest. 12, 355–364 (1963).14010768
18
Salzman N. H., Ghosh D., Huttner K. M., Paterson Y., and Bevins C. L., Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003). 10.1038/nature0152010.1038/nature01520
19
Vaishnava S., Behrendt C. L., Ismail A. S., Eckmann L., and Hooper L. V., Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. U.S.A. 105, 20858–20863 (2008). 10.1073/pnas.080872310510.1073/pnas.0808723105
20
Bauer H., Horowitz R. E., Levenson S. M., and Popper H., The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am. J. Pathol. 42, 471–483 (1963).13966929
21
Gordon H. A., Bruckner-Kardoss E., Staley T. E., Wagner M., and Wostmann B. S., Characteristics of the germfree rat. Cells Tissues Organs 64, 367–389 (1966). 10.1159/00014284310.1159/000142843
22
Mosconi I., Geuking M. B., Zaiss M. M., Massacand J. C., Aschwanden C., Kwong Chung C. K., McCoy K. D., and Harris N. L., Intestinal bacteria induce TSLP to promote mutualistic T-cell responses. Mucosal Immunol. 6, 1157–1167 (2013).23515135
23
Macpherson A. J. and Harris N. L., Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004). 10.1038/nri137310.1038/nri1373
24
Baptista A. P., Olivier B. J., Goverse G., Greuter M., Knippenberg M., Kusser K., Domingues R. G., Veiga-Fernandes H., Luster A. D., Lugering A., Randall T. D., Cupedo T., and Mebius R. E., Colonic patch and colonic SILT development are independent and differentially regulated events. Mucosal Immunol. 6, 511–521 (2013). 10.1038/mi.2012.9010.1038/mi.2012.90
25
Spor A., Koren O., and Ley R., Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290 (2011). 10.1038/nrmicro254010.1038/nrmicro2540
26
Geuking M. B., Cahenzli J., Lawson M. A., Ng D. C., Slack E., Hapfelmeier S., McCoy K. D., and Macpherson A. J., Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011). 10.1016/j.immuni.2011.03.02110.1016/j.immuni.2011.03.021
27
Rakoff-Nahoum S. and Medzhitov R., Innate immune recognition of the indigenous microbial flora. Mucosal Immunol. 1 (suppl. 1), S10–S14 (2008). 10.1038/mi.2008.4910.1038/mi.2008.49
28
Ridge J. P., Fuchs E. J., and Matzinger P., Neonatal tolerance revisited: Turning on newborn T cells with dendritic cells. Science 271, 1723–1726 (1996). 10.1126/science.271.5256.172310.1126/science.271.5256.1723
29
Forsthuber T., Yip H. C., and Lehmann P. V., Induction of TH1 and TH2 immunity in neonatal mice. Science 271, 1728–1730 (1996). 10.1126/science.271.5256.172810.1126/science.271.5256.1728
30
Sarzotti M., Robbins D. S., and Hoffman P. M., Induction of protective CTL responses in newborn mice by a murine retrovirus. Science 271, 1726–1728 (1996). 10.1126/science.271.5256.172610.1126/science.271.5256.1726
31
Crabbé P. A., Nash D. R., Bazin H., Eyssen H., and Heremans J. F., Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab. Invest. 22, 448–457 (1970).4911977
32
El Aidy S., Hooiveld G., Tremaroli V., Bäckhed F., and Kleerebezem M., The gut microbiota and mucosal homeostasis: Colonized at birth or at adulthood, does it matter? Gut Microbes 4, 118–124 (2013). 10.4161/gmic.2336210.4161/gmic.23362
33
Umesaki Y., Setoyama H., Matsumoto S., and Okada Y., Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79, 32–37 (1993).8509140
34
Chung H., Pamp S. J., Hill J. A., Surana N. K., Edelman S. M., Troy E. B., Reading N. C., Villablanca E. J., Wang S., Mora J. R., Umesaki Y., Mathis D., Benoist C., Relman D. A., and Kasper D. L., Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578–1593 (2012). 10.1016/j.cell.2012.04.03710.1016/j.cell.2012.04.037
35
Gordon H. A. and Bruckner-Kardoss E., Effect of the normal microbial flora on various tissue elements of the small intestine. Acta Anat. (Basel) 44, 210–225 (1961). 10.1159/00014172310.1159/000141723
36
Kawaguchi M., Nanno M., Umesaki Y., Matsumoto S., Okada Y., Cai Z., Shimamura T., Matsuoka Y., Ohwaki M., and Ishikawa H., Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by T cells expressing gamma delta T-cell antigen receptors. Proc. Natl. Acad. Sci. U.S.A. 90, 8591–8594 (1993). 10.1073/pnas.90.18.859110.1073/pnas.90.18.8591
37
Probert C. S. J., Saubermann L. J., Balk S., and Blumberg R. S., Repertoire of the alpha beta T-cell receptor in the intestine. Immunol. Rev. 215, 215–225 (2007). 10.1111/j.1600-065X.2006.00480.x10.1111/j.1600-065X.2006.00480.x
38
Mazmanian S. K., Liu C. H., Tzianabos A. O., and Kasper D. L., An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005). 10.1016/j.cell.2005.05.00710.1016/j.cell.2005.05.007
39
Gaboriau-Routhiau V., Rakotobe S., Lécuyer E., Mulder I., Lan A., Bridonneau C., Rochet V., Pisi A., De Paepe M., Brandi G., Eberl G., Snel J., Kelly D., and Cerf-Bensussan N., The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009). 10.1016/j.immuni.2009.08.02010.1016/j.immuni.2009.08.020
40
Klaasen H. L., Van der Heijden P. J., Stok W., Poelma F. G., Koopman J. P., Van den Brink M. E., Bakker M. H., Eling W. M., and Beynen A. C., Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect. Immun. 61, 303–306 (1993).8418051
41
Ivanov I. I., Atarashi K., Manel N., Brodie E. L., Shima T., Karaoz U., Wei D., Goldfarb K. C., Santee C. A., Lynch S. V., Tanoue T., Imaoka A., Itoh K., Takeda K., Umesaki Y., Honda K., and Littman D. R., Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). 10.1016/j.cell.2009.09.03310.1016/j.cell.2009.09.033
42
Lathrop S. K., Bloom S. M., Rao S. M., Nutsch K., Lio C. W., Santacruz N., Peterson D. A., Stappenbeck T. S., and Hsieh C. S., Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011). 10.1038/nature1043410.1038/nature10434
43
Cebula A., Seweryn M., Rempala G. A., Pabla S. S., McIndoe R. A., Denning T. L., Bry L., Kraj P., Kisielow P., and Ignatowicz L., Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497, 258–262 (2013). 10.1038/nature1207910.1038/nature12079
44
Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T., Ohba Y., Taniguchi T., Takeda K., Hori S., Ivanov I. I., Umesaki Y., Itoh K., and Honda K., Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011). 10.1126/science.119846910.1126/science.1198469
45
Sefik E., Geva-Zatorsky N., Oh S., Konnikova L., Zemmour D., McGuire A. M., Burzyn D., Ortiz-Lopez A., Lobera M., Yang J., Ghosh S., Earl A., Snapper S. B., Jupp R., Kasper D., Mathis D., and Benoist C., Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells. Science 349, 993–997 (2015). 10.1126/science.aaa942010.1126/science.aaa9420
46
Hapfelmeier S., Lawson M. A., Slack E., Kirundi J. K., Stoel M., Heikenwalder M., Cahenzli J., Velykoredko Y., Balmer M. L., Endt K., Geuking M. B., Curtiss R. 3rd, McCoy K. D., and Macpherson A. J., Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).20576892
47
Macpherson A. J. and Uhr T., Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004). 10.1126/science.109133410.1126/science.1091334
48
Spits H., Artis D., Colonna M., Diefenbach A., Di Santo J. P., Eberl G., Koyasu S., Locksley R. M., McKenzie A. N., Mebius R. E., Powrie F., and Vivier E., Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013). 10.1038/nri336510.1038/nri3365
49
Ganal S. C., Sanos S. L., Kallfass C., Oberle K., Johner C., Kirschning C., Lienenklaus S., Weiss S., Staeheli P., Aichele P., and Diefenbach A., Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012). 10.1016/j.immuni.2012.05.02010.1016/j.immuni.2012.05.020
50
Sanos S. L., Bui V. L., Mortha A., Oberle K., Heners C., Johner C., and Diefenbach A., RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009). 10.1038/ni.168410.1038/ni.1684
51
Satoh-Takayama N., Vosshenrich C. A., Lesjean-Pottier S., Sawa S., Lochner M., Rattis F., Mention J. J., Thiam K., Cerf-Bensussan N., Mandelboim O., Eberl G., and Di Santo J. P., Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008). 10.1016/j.immuni.2008.11.00110.1016/j.immuni.2008.11.001
52
Reynders A., Yessaad N., Vu Manh T. P., Dalod M., Fenis A., Aubry C., Nikitas G., Escalière B., Renauld J. C., Dussurget O., Cossart P., Lecuit M., Vivier E., and Tomasello E., Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt lymphoid cells. EMBO J. 30, 2934–2947 (2011). 10.1038/emboj.2011.20110.1038/emboj.2011.201
53
Sawa S., Lochner M., Satoh-Takayama N., Dulauroy S., Bérard M., Kleinschek M., Cua D., Di Santo J. P., and Eberl G., RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12, 320–326 (2011). 10.1038/ni.200210.1038/ni.2002
54
Peterson L. W. and Artis D., Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014). 10.1038/nri360810.1038/nri3608
55
Cash H. L., Whitham C. V., Behrendt C. L., and Hooper L. V., Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006). 10.1126/science.112711910.1126/science.1127119
56
Natividad J. M. M., Hayes C. L., Motta J. P., Jury J., Galipeau H. J., Philip V., Garcia-Rodenas C. L., Kiyama H., Bercik P., and Verdu E. F., Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950. Appl. Environ. Microbiol. 79, 7745–7754 (2013). 10.1128/AEM.02470-1310.1128/AEM.02470-13
57
Sanos S. L., Vonarbourg C., Mortha A., and Diefenbach A., Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells. Immunology 132, 453–465 (2011). 10.1111/j.1365-2567.2011.03410.x10.1111/j.1365-2567.2011.03410.x
58
He W., Wang M. L., Jiang H. Q., Steppan C. M., Shin M. E., Thurnheer M. C., Cebra J. J., Lazar M. A., and Wu G. D., Bacterial colonization leads to the colonic secretion of RELMβ/FIZZ2, a novel goblet cell-specific protein. Gastroenterology 125, 1388–1397 (2003). 10.1016/j.gastro.2003.07.00910.1016/j.gastro.2003.07.009
59
McVay L. D., Keilbaugh S. A., Wong T. M., Kierstein S., Shin M. E., Lehrke M., Lefterova M. I., Shifflett D. E., Barnes S. L., Cominelli F., Cohn S. M., Hecht G., Lazar M. A., Haczku A., and Wu G. D., Absence of bacterially induced RELMβ reduces injury in the dextran sodium sulfate model of colitis. J. Clin. Invest. 116, 2914–2923 (2006). 10.1172/JCI2812110.1172/JCI28121
60
Matsumoto S., Setoyama H., and Umesaki Y., Differential induction of major histocompatibility complex molecules on mouse intestine by bacterial colonization. Gastroenterology 103, 1777–1782 (1992).1451971
61
Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J. M., Topping D. L., Suzuki T., Taylor T. D., Itoh K., Kikuchi J., Morita H., Hattori M., and Ohno H., Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011). 10.1038/nature0964610.1038/nature09646
62
Sommer F., Nookaew I., Sommer N., Fogelstrand P., and Bäckhed F., Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol. 16, 62 (2015). 10.1186/s13059-015-0614-410.1186/s13059-015-0614-4
63
van Dieren J. M., van der Woude C. J., Kuipers E. J., Escher J. C., Samsom J. N., Blumberg R. S., and Nieuwenhuis E. E., Roles of CD1d-restricted NKT cells in the intestine. Inflamm. Bowel Dis. 13, 1146–1152 (2007). 10.1002/ibd.2016410.1002/ibd.20164
64
Wingender G., Stepniak D., Krebs P., Lin L., McBride S., Wei B., Braun J., Mazmanian S. K., and Kronenberg M., Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology 143, 418–428 (2012). 10.1053/j.gastro.2012.04.01710.1053/j.gastro.2012.04.017
65
Olszak T., An D., Zeissig S., Vera M. P., Richter J., Franke A., Glickman J. N., Siebert R., Baron R. M., Kasper D. L., and Blumberg R. S., Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012). 10.1126/science.121932810.1126/science.1219328
66
An D., Oh S. F., Olszak T., Neves J. F., Avci F. Y., Erturk-Hasdemir D., Lu X., Zeissig S., Blumberg R. S., and Kasper D. L., Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133 (2014). 10.1016/j.cell.2013.11.04210.1016/j.cell.2013.11.042
67
Cahenzli J., Köller Y., Wyss M., Geuking M. B., and McCoy K. D., Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14, 559–570 (2013). 10.1016/j.chom.2013.10.00410.1016/j.chom.2013.10.004
68
Wingender G., Rogers P., Batzer G., Lee M. S., Bai D., Pei B., Khurana A., Kronenberg M., and Horner A. A., Invariant NKT cells are required for airway inflammation induced by environmental antigens. J. Exp. Med. 208, 1151–1162 (2011). 10.1084/jem.2010222910.1084/jem.20102229
69
Gollwitzer E. S., Saglani S., Trompette A., Yadava K., Sherburn R., McCoy K. D., Nicod L. P., Lloyd C. M., and Marsland B. J., Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 20, 642–647 (2014). 10.1038/nm.356810.1038/nm.3568
70
Scharschmidt T. C., Vasquez K. S., Truong H. A., Gearty S. V., Pauli M. L., Nosbaum A., Gratz I. K., Otto M., Moon J. J., Liese J., Abbas A. K., Fischbach M. A., and Rosenblum M. D., A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015). 10.1016/j.immuni.2015.10.01610.1016/j.immuni.2015.10.016
71
Zanvit P., Konkel J. E., Jiao X., Kasagi S., Zhang D., Wu R., Chia C., Ajami N. J., Smith D. P., Petrosino J. F., Abbatiello B., Nakatsukasa H., Chen Q., Belkaid Y., Chen Z. J., and Chen W., Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat. Commun. 6, 8424 (2015). 10.1038/ncomms942410.1038/ncomms9424
72
Chassin C., Kocur M., Pott J., Duerr C. U., Gütle D., Lotz M., and Hornef M. W., miR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe 8, 358–368 (2010). 10.1016/j.chom.2010.09.00510.1016/j.chom.2010.09.005
73
Stockinger S., Hornef M. W., and Chassin C., Establishment of intestinal homeostasis during the neonatal period. Cell. Mol. Life Sci. 68, 3699–3712 (2011). 10.1007/s00018-011-0831-210.1007/s00018-011-0831-2
74
Elahi S., Ertelt J. M., Kinder J. M., Jiang T. T., Zhang X., Xin L., Chaturvedi V., Strong B. S., Qualls J. E., Steinbrecher K. A., Kalfa T. A., Shaaban A. F., and Way S. S., Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504, 158–162 (2013). 10.1038/nature1267510.1038/nature12675
75
Riedler J., Braun-Fahrländer C., Eder W., Schreuer M., Waser M., Maisch S., Carr D., Schierl R., Nowak D., von Mutius E., and ALEX Study Team, Exposure to farming in early life and development of asthma and allergy: A cross-sectional survey. Lancet 358, 1129–1133 (2001). 10.1016/S0140-6736(01)06252-310.1016/S0140-6736(01)06252-3
76
Schuijs M. J., Willart M. A., Vergote K., Gras D., Deswarte K., Ege M. J., Madeira F. B., Beyaert R., van Loo G., Bracher F., von Mutius E., Chanez P., Lambrecht B. N., and Hammad H., Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 349, 1106–1110 (2015). 10.1126/science.aac662310.1126/science.aac6623
77
Schaub B., Liu J., Höppler S., Schleich I., Huehn J., Olek S., Wieczorek G., Illi S., and von Mutius E., Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J. Allergy Clin. Immunol. 123, 774–82.e5 (2009). 10.1016/j.jaci.2009.01.05610.1016/j.jaci.2009.01.056
78
Dicksved J., Flöistrup H., Bergström A., Rosenquist M., Pershagen G., Scheynius A., Roos S., Alm J. S., Engstrand L., Braun-Fahrländer C., von Mutius E., and Jansson J. K., Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl. Environ. Microbiol. 73, 2284–2289 (2007). 10.1128/AEM.02223-0610.1128/AEM.02223-06
79
Antonopoulos D. A., Huse S. M., Morrison H. G., Schmidt T. M., Sogin M. L., and Young V. B., Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect. Immun. 77, 2367–2375 (2009). 10.1128/IAI.01520-0810.1128/IAI.01520-08
80
Dethlefsen L., Huse S., Sogin M. L., and Relman D. A., The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLOS Biol. 6, e280 (2008). 10.1371/journal.pbio.006028010.1371/journal.pbio.0060280
81
Dethlefsen L. and Relman D. A., Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. U.S.A. 108 (Suppl 1), 4554–4561 (2011). 10.1073/pnas.100008710710.1073/pnas.1000087107
82
Zeissig S. and Blumberg R. S., Life at the beginning: Perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat. Immunol. 15, 307–310 (2014). 10.1038/ni.284710.1038/ni.2847
83
Risnes K. R., Belanger K., Murk W., and Bracken M. B., Antibiotic exposure by 6 months and asthma and allergy at 6 years: Findings in a cohort of 1,401 US children. Am. J. Epidemiol. 173, 310–318 (2011). 10.1093/aje/kwq40010.1093/aje/kwq400
84
Mai X.-M., Kull I., Wickman M., and Bergström A., Antibiotic use in early life and development of allergic diseases: Respiratory infection as the explanation. Clin. Exp. Allergy 40, 1230–1237 (2010). 10.1111/j.1365-2222.2010.03532.x10.1111/j.1365-2222.2010.03532.x
85
Shaw S. Y., Blanchard J. F., and Bernstein C. N., Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am. J. Gastroenterol. 105, 2687–2692 (2010). 10.1038/ajg.2010.39810.1038/ajg.2010.398
86
Kronman M. P., Zaoutis T. E., Haynes K., Feng R., and Coffin S. E., Antibiotic exposure and IBD development among children: A population-based cohort study. Pediatrics 130, e794–e803 (2012). 10.1542/peds.2011-388610.1542/peds.2011-3886
87
Azad M. B., Bridgman S. L., Becker A. B., and Kozyrskyj A. L., Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int. J. Obes. (Lond) 38, 1290–1298 (2014). 10.1038/ijo.2014.11910.1038/ijo.2014.119
88
Boursi B., Mamtani R., Haynes K., and Yang Y.-X., The effect of past antibiotic exposure on diabetes risk. Eur. J. Endocrinol. 172, 639–648 (2015). 10.1530/EJE-14-116310.1530/EJE-14-1163
89
Kostic A. D., Gevers D., Siljander H., Vatanen T., Hyötyläinen T., Hämäläinen A. M., Peet A., Tillmann V., Pöhö P., Mattila I., Lähdesmäki H., Franzosa E. A., Vaarala O., de Goffau M., Harmsen H., Ilonen J., Virtanen S. M., Clish C. B., Orešič M., Huttenhower C., Knip M., Xavier R. J., and DIABIMMUNE Study Group, The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17, 260–273 (2015). 10.1016/j.chom.2015.01.00110.1016/j.chom.2015.01.001
90
Markle J. G. M., Frank D. N., Mortin-Toth S., Robertson C. E., Feazel L. M., Rolle-Kampczyk U., von Bergen M., McCoy K. D., Macpherson A. J., and Danska J. S., Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).23328391
91
Blustein J., Attina T., Liu M., Ryan A. M., Cox L. M., Blaser M. J., and Trasande L., Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int. J. Obes. (Lond) 37, 900–906 (2013). 10.1038/ijo.2013.4910.1038/ijo.2013.49
92
Neu J. and Rushing J., Cesarean versus vaginal delivery: Long-term infant outcomes and the hygiene hypothesis. Clin. Perinatol. 38, 321–331 (2011). 10.1016/j.clp.2011.03.00810.1016/j.clp.2011.03.008
93
Thavagnanam S., Fleming J., Bromley A., Shields M. D., and Cardwell C. R., A meta-analysis of the association between Caesarean section and childhood asthma. Clin. Exp. Allergy 38, 629–633 (2008). 10.1111/j.1365-2222.2007.02780.x10.1111/j.1365-2222.2007.02780.x
94
Rajavelu P., Rayapudi M., Moffitt M., Mishra A., and Mishra A., Significance of para-esophageal lymph nodes in food or aeroallergen-induced iNKT cell-mediated experimental eosinophilic esophagitis. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G645–G654 (2012). 10.1152/ajpgi.00223.201110.1152/ajpgi.00223.2011
95
Lexmond W. S., Neves J. F., Nurko S., Olszak T., Exley M. A., Blumberg R. S., and Fiebiger E., Involvement of the iNKT cell pathway is associated with early-onset eosinophilic esophagitis and response to allergen avoidance therapy. Am. J. Gastroenterol. 109, 646–657 (2014). 10.1038/ajg.2014.1210.1038/ajg.2014.12
96
Andreas N. J., Kampmann B., and Mehring Le-Doare K., Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 91, 629–635 (2015). 10.1016/j.earlhumdev.2015.08.01310.1016/j.earlhumdev.2015.08.013
97
Rogier E. W., Frantz A. L., Bruno M. E., Wedlund L., Cohen D. A., Stromberg A. J., and Kaetzel C. S., Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc. Natl. Acad. Sci. U.S.A. 111, 3074–3079 (2014). 10.1073/pnas.131579211110.1073/pnas.1315792111
98
Owen C. G., Martin R. M., Whincup P. H., Smith G. D., and Cook D. G., Effect of infant feeding on the risk of obesity across the life course: A quantitative review of published evidence. Pediatrics 115, 1367–1377 (2005). 10.1542/peds.2004-117610.1542/peds.2004-1176
99
Barclay A. R., Russell R. K., Wilson M. L., Gilmour W. H., Satsangi J., and Wilson D. C., Systematic review: The role of breastfeeding in the development of pediatric inflammatory bowel disease. J. Pediatr. 155, 421–426 (2009). 10.1016/j.jpeds.2009.03.01710.1016/j.jpeds.2009.03.017
100
Gomez de Agüero M., Ganal-Vonarburg S. C., Fuhrer T., Rupp S., Uchimura Y., Li H., Steinert A., Heikenwalder M., Hapfelmeier S., Sauer U., McCoy K. D., and Macpherson A. J., The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016). 10.1126/science.aad257110.1126/science.aad2571

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 352 | Issue 6285
29 April 2016

Submission history

Published in print: 29 April 2016

Permissions

Request permissions for this article.

Acknowledgments

D.L.K. is an inventor on patents licensed to Symbiotic Biotherapies by Brigham and Women’s Hospital and Harvard Medical School related to PSA of B. fragilis and its use as an immunomodulator for treating immune-mediated diseases. D.L.K. and R.S.B. are paid consultants for Symbiotic Biotherapies. R.S.B. is supported by NIH grant DK44319 and the Harvard Digestive Diseases Center (DK0034854). D.L.K is supported by NIH grant R21 AI090102 and the U.S. Department of Defense (W81XWH-15-1-0368).

Authors

Affiliations

Thomas Gensollen
Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.
Shankar S. Iyer
Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.
Dennis L. Kasper
Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
Richard S. Blumberg* [email protected]
Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. The gut microbiota posttranslationally modifies IgA1 in autoimmune glomerulonephritis, Science Translational Medicine, 16, 740, (2024)./doi/10.1126/scitranslmed.adl6149
    Abstract
  2. Gut bacteria–derived serotonin promotes immune tolerance in early life, Science Immunology, 9, 93, (2024)./doi/10.1126/sciimmunol.adj4775
    Abstract
  3. High Prevalence of Clostridioides difficile Ribotype 176 in the University Hospital in Kosice, Pathogens, 12, 3, (430), (2023).https://doi.org/10.3390/pathogens12030430
    Crossref
  4. The Crosstalk between Gut Microbiota and White Adipose Tissue Mitochondria in Obesity, Nutrients, 15, 7, (1723), (2023).https://doi.org/10.3390/nu15071723
    Crossref
  5. Special Issue: The Impact of Early Life Nutrition on Gut Maturation and Later Life Gut Health, Nutrients, 15, 6, (1498), (2023).https://doi.org/10.3390/nu15061498
    Crossref
  6. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma, Nutrients, 15, 3, (486), (2023).https://doi.org/10.3390/nu15030486
    Crossref
  7. In Vitro Fermentation of Pleurotus eryngii Mushrooms by Human Fecal Microbiota: Metataxonomic Analysis and Metabolomic Profiling of Fermentation Products, Journal of Fungi, 9, 1, (128), (2023).https://doi.org/10.3390/jof9010128
    Crossref
  8. Postbiotics against Obesity: Perception and Overview Based on Pre-Clinical and Clinical Studies, International Journal of Molecular Sciences, 24, 7, (6414), (2023).https://doi.org/10.3390/ijms24076414
    Crossref
  9. The Skin Microbiome: Current Landscape and Future Opportunities, International Journal of Molecular Sciences, 24, 4, (3950), (2023).https://doi.org/10.3390/ijms24043950
    Crossref
  10. Release of HMGB1 and Toll-like Receptors 2, 4, and 9 Signaling Are Modulated by Bifidobacterium animalis subsp. lactis BB-12 and Salmonella Typhimurium in a Gnotobiotic Piglet Model of Preterm Infants, International Journal of Molecular Sciences, 24, 3, (2329), (2023).https://doi.org/10.3390/ijms24032329
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media