Skip to main content

Introduction to Probiotics and Their Potential Health Benefits

  • Chapter
  • First Online:
Gut Remediation of Environmental Pollutants

Abstract

The use of probiotics in industrialized era has potential health benefits other than the nutritional effects. These probiotics form synbiotic relationship with prebiotics during simultaneous intake and enhance the health benefits. The application of probiotic bacterial formulations in dairy yields is the most public functional food that beneficially affects the host by positively influencing the microflora. The main goal of the chapter is to discuss the origin of probiotics, the historical description of the identification of potential probiotic strains and their various beneficial effects. Another goal is to find the mechanisms involved in the maintenance of the population of gut microbiota after the consumption of probiotics and their immunomodulatory effects in disease conditions. The main aim of this chapter is to deliberate the history and origin of probiotics with their effect on the gut microbiota. The principal genera for probiotics formulations are Lactobacilli and Bifidobacterium, also reported as the dominating genera of normal gut microflora. The probiotics strains have several limitations in context to tolerance to gastrointestinal environment thus more tolerant strains are required to improve their beneficial effects. Bacillus coagulans has also been reported as a potential probiotic due to its spore formation that can resist the gastrointestinal environment and other health benefits. Probiotics help in the restoration of normal gut flora population under different disease conditions as well as during exposure of heavy metals. Immunomodulatory effects of different bacteria as a probiotic have been studied, that showed a significant increase and maintenance of both innate and adaptive immune response. The introduction of next generation probiotics to target specific disease has been studied that showed the potential of various new species with their specific strains to use as probiotics. The action mechanism of the strains is still not clear thus, there is a need to conduct more standardized clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lilly DM, Stillwell RH (1965) Probiotics: growth-promoting factors produced by microorganisms. Science 147(3659):747–748

    CAS  PubMed  Google Scholar 

  2. Parker RJANH (1974) Probiotics, the other half of the antibiotic story. Anim Nutr Health 29:4–8

    Google Scholar 

  3. Arora M, Baldi A (2015) Regulatory categories of probiotics across the globe: a review representing existing and recommended categorization. Indian J Med Microbiol 33(Suppl):2–10

    PubMed  Google Scholar 

  4. Metchnikoff E (1907) Lactic acid as inhibiting intestinal putrefaction. In: The prolongation of life, optimistic studies. Mitchell Heinemann, London, UK, pp 161–183

    Google Scholar 

  5. Overall C (2004) The prolongation of life: optimistic studies. Gerontologist 44(6):847–851

    Google Scholar 

  6. Tissier H (1906) The treatment of intestinal infections by the method of transformation of bacterial intestinal flora. CR Soc Biol 60:359–361

    Google Scholar 

  7. Ozen M, Dinleyici EC (2015) The history of probiotics: the untold story. Benefic Microbes 6(2):159–165

    CAS  Google Scholar 

  8. Hotel ACP, Cordoba AJP (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 5(1): 1–10.

    Google Scholar 

  9. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    CAS  PubMed  Google Scholar 

  10. Kolida S, Gibson GR (2011) Synbiotics in health and disease. Annu Rev Food Sci Technol 2:373–393

    PubMed  Google Scholar 

  11. Cuello-Garcia C et al (2017) Prebiotics for the prevention of allergies: a systematic review and meta-analysis of randomized controlled trials. Clin Exp Allergy 47(11):1468–1477

    CAS  PubMed  Google Scholar 

  12. Raman M, Ambalam P, Doble M (2019) Probiotics, prebiotics, and fibers in nutritive and functional beverages. Nutrients Beverages 12:315–367

    Google Scholar 

  13. Gritz EC, Bhandari V (2015) The human neonatal gut microbiome: a brief review. Front Pediatr 3:17

    PubMed  PubMed Central  Google Scholar 

  14. Madhavi Rane AM (2013) Effects of probiotic on the growth and survival of Zebra fish (Danio rerio). Int J Sci Res (IJSR) 4(3):1839–1841.

    Google Scholar 

  15. Yamashita MM et al (2017) Probiotic dietary supplementation in Nile tilapia as prophylaxis against streptococcosis. Aquac Nutr 23(6):1235–1243

    CAS  Google Scholar 

  16. Nikoskelainen S et al (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15(5):443–452

    CAS  PubMed  Google Scholar 

  17. Balcazar JL et al (2006) The role of probiotics in aquaculture. Vet Microbiol 114(3–4):173–186

    PubMed  Google Scholar 

  18. Salinas I et al (2005) Dietary administration of Lactobacillus delbrueckii and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses. Fish Shellfish Immunol 19(1):67–77

    CAS  PubMed  Google Scholar 

  19. Backhed F et al (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920

    PubMed  Google Scholar 

  20. Gill SR et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim BS, Jeon YS, Chun J (2013) Current status and future promise of the human microbiome. Pediatr Gastroenterol Hepatol Nutr 16(2):71–79

    PubMed  PubMed Central  Google Scholar 

  22. Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol 6:39–51

    CAS  Google Scholar 

  23. Dixit Y, Wagle A, Vakil B (2016) Patents in the field of probiotics, prebiotics, synbiotics: a review. J Food Microbiol Saf Hyg 01(02): 1–3

    Google Scholar 

  24. Azad MAK et al (2018) Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int 2018:9478630

    PubMed  PubMed Central  Google Scholar 

  25. He M, Shi B (2017) Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci 7:54

    PubMed  PubMed Central  Google Scholar 

  26. Carlucci C, Petrof EO, Allen-Vercoe E (2016) Fecal microbiota-based therapeutics for recurrent clostridium difficile infection, ulcerative colitis and obesity. EBioMedicine 13:37–45

    PubMed  PubMed Central  Google Scholar 

  27. Picard C et al (2005) Review article: bifidobacteria as probiotic agents—physiological effects and clinical benefits. Aliment Pharmacol Ther 22(6):495–512

    CAS  PubMed  Google Scholar 

  28. Yan F, Polk DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27(6):496–501

    PubMed  PubMed Central  Google Scholar 

  29. de Moreno de LeBlanc A, LeBlanc JG (2014) Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World J Gastroenterol 20(44):16518–16528

    PubMed  PubMed Central  Google Scholar 

  30. Lee SJ et al (2014) The effects of co-administration of probiotics with herbal medicine on obesity, metabolic endotoxemia and dysbiosis: a randomized double-blind controlled clinical trial. Clin Nutr 33(6):973–981

    PubMed  Google Scholar 

  31. Park JS et al (2018) Lactobacillus acidophilus improves intestinal inflammation in an Acute Colitis Mouse Model by regulation of Th17 and treg cell balance and fibrosis development. J Med Food 21(3):215–224

    CAS  PubMed  Google Scholar 

  32. Khazaiea K, Zadeh M, Khana MW, Bereb P, Gounaric F, Dennisa K, Blatnera NR, Owenb JL, Klaenhammerd TR, Mohamadzadeha M (2012) Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. PNAS 109:10462–10467

    Google Scholar 

  33. Chen L et al (2015) Lactobacillus acidophilus suppresses colitis-associated activation of the IL-23/Th17 axis. J Immunol Res 2015:909514

    PubMed  PubMed Central  Google Scholar 

  34. Chen LL et al (2013) Efficacy profiles for different concentrations of Lactobacillus acidophilus in experimental colitis. World J Gastroenterol 19(32):5347–5356

    PubMed  PubMed Central  Google Scholar 

  35. Jacouton E et al (2017) Probiotic strain lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front Immunol 8:1553

    PubMed  PubMed Central  Google Scholar 

  36. Bagarolli RA et al (2017) Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 50:16–25

    CAS  PubMed  Google Scholar 

  37. Riazi S, Dover SE, Chikindas ML (2012) Mode of action and safety of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. J Appl Microbiol 113(3):714–722

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Honda H et al (2011) Use of a continuous culture fermentation system to investigate the effect of GanedenBC30 (Bacillus coagulans GBI-30, 6086) supplementation on pathogen survival in the human gut microbiota. Anaerobe 17(1):36–42

    CAS  PubMed  Google Scholar 

  39. Abhari K et al (2016) The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats. Food Nutr Res 60:30876

    PubMed  Google Scholar 

  40. Abdhul K et al (2015) Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari. Int J Biol Macromol 79:800–806

    CAS  PubMed  Google Scholar 

  41. Fukui H et al (2018) Effect of probiotic Bifidobacterium bifidum G9–1 on the relationship between gut microbiota profile and stress sensitivity in maternally separated rats. Sci Rep 8(1):12384

    PubMed  PubMed Central  Google Scholar 

  42. Astolfi ML et al (2019) A prophylactic multi-strain probiotic treatment to reduce the absorption of toxic elements: in-vitro study and biomonitoring of breast milk and infant stools. Environ Int 130:104818

    CAS  PubMed  Google Scholar 

  43. Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78(18):6397–6404

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jaishankar M et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    PubMed  PubMed Central  Google Scholar 

  45. Bhattacharya S (2020) The role of probiotics in the amelioration of cadmium toxicity. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02025-x

  46. Coryell M et al (2018) The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-07803-9

  47. Kwon HK et al (2010) Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci U S A 107(5):2159–2164

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Evrard B et al (2011) Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLoS One 6(4):e18735

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lyons A et al (2010) Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin Exp Allergy 40(5):811–819

    CAS  PubMed  Google Scholar 

  50. Petersen ER et al (2012) Consumption of probiotics increases the effect of regulatory T cells in transfer colitis. Inflamm Bowel Dis 18(1):131–142

    PubMed  Google Scholar 

  51. Miremadi F, Sherkat F, Stojanovska L (2016) Hypocholesterolaemic effect and anti-hypertensive properties of probiotics and prebiotics: a review. J Funct Foods 25:49–510

    Google Scholar 

  52. Mazidi M et al (2016) Gut microbiome and metabolic syndrome. Diabetes Metab Syndr 10(2 Suppl 1):S150–S157

    PubMed  Google Scholar 

  53. Remely M, Haslberger AG (2017) The microbial epigenome in metabolic syndrome. Mol Asp Med 54:71–77

    CAS  Google Scholar 

  54. Lollo PC, Morato PN, Moura CS, Almada CN, Felicio TL, Esmerino EA, Barros ME, Amaya-Farfan J, Sant’Ana AS, Raices RR, Silva MC (2015) Hypertension parameters are attenuated by the continuous consumption of probiotic Minas cheese. Food Res Int 76:611–617

    Google Scholar 

  55. Tonucci LB et al (2017) Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study. Clin Nutr 36(1):85–92

    CAS  PubMed  Google Scholar 

  56. Thakur BK et al (2016) Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response. Int Immunopharmacol 36:39–50

    CAS  PubMed  Google Scholar 

  57. Tang WH, Hazen SL (2014) The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 124(10):4204–4211

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin T-L et al (2019) Investiture of next generation probiotics on amelioration of diseases—Strains do matter. Med Microecol 1–2:100002

    Google Scholar 

  59. Saarela MH (2019) Safety aspects of next generation probiotics. Curr Opin Food Sci 30:8–13

    Google Scholar 

  60. Sun F et al (2019) A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragilis in health. Food Res Int 126:108590

    CAS  PubMed  Google Scholar 

  61. Zhai Q et al (2019) A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr 59(19):3227–3236

    CAS  PubMed  Google Scholar 

  62. Ansaldo E et al (2019) Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364(6446):1179–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang Y et al (2018) Effects of Christensenella minuta lipopolysaccharide on RAW 264.7 macrophages activation. Microb Pathog 125:411–417

    CAS  PubMed  Google Scholar 

  64. Dash S et al (2016) Metabolic modeling of clostridia: current developments and applications. FEMS Microbiol Lett 363(4):fnw004

    PubMed  Google Scholar 

  65. Hosny M et al (2019) Multidisciplinary evaluation of Clostridium butyricum clonality isolated from preterm neonates with necrotizing enterocolitis in South France between 2009 and 2017. Sci Rep 9(1):2077

    PubMed  PubMed Central  Google Scholar 

  66. Selma MV et al (2017) Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin A from ellagic acid. Front Microbiol 8:1521

    PubMed  PubMed Central  Google Scholar 

  67. Vitetta L, Llewellyn H, Oldfield D (2019) Gut dysbiosis and the intestinal microbiome: streptococcus thermophilus a key probiotic for reducing uremia. Microorganisms 7(8):E228

    PubMed  Google Scholar 

  68. Daillere R et al (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45(4):931–943

    CAS  PubMed  Google Scholar 

  69. Gatti S et al (2017) Effects of the exclusive enteral nutrition on the microbiota profile of patients with Crohn’s disease: a systematic review. Nutrients 9(8):832

    PubMed Central  Google Scholar 

  70. Schnadower D et al (2018) Lactobacillus rhamnosus GG versus Placebo for acute gastroenteritis in children. N Engl J Med 379(21):2002–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsung-ru W, Chuan-Sheng L, Chih-Jung C, Tzu-lung L, Jan M, Yun-Fei K, David MO, Chia-chen L, John DY, Hsin-chih L (2018) Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis gut microbiota. Gut. https://doi.org/10.1136/gutjnl-2017-315458

  72. Syakila RN et al (2019) In vitro assessment of pediococci- and lactobacilli-induced cholesterol-lowering effect using digitally enhanced high-performance thin-layer chromatography and confocal microscopy. Anal Bioanal Chem 411(6):1181–1192

    CAS  PubMed  Google Scholar 

  73. Pedersen HK et al (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535(7612):376–381

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa M. El-Dalatony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Dalatony, M.M., Li, X. (2020). Introduction to Probiotics and Their Potential Health Benefits. In: Li, X., Liu, P. (eds) Gut Remediation of Environmental Pollutants. Springer, Singapore. https://doi.org/10.1007/978-981-15-4759-1_3

Download citation

Publish with us

Policies and ethics