Skip to main content

Bacillus spp. in Aquaculture - Mechanisms and Applications: An Update View

  • Chapter
  • First Online:
Probiotic Bacteria and Postbiotic Metabolites: Role in Animal and Human Health

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 2))

Abstract

Probiotics have been widely applied in aquaculture industry as sustainable and environmentally friendly tools to sustain host’s health and the well-being. Among probiotics, Bacillus species have great potential applications in aquaculture because they can form the spores that makes them able to survive in the harsh environmental conditions. Moreover, they are nonpathogenic and nontoxic to aquacultural environments and animals. In addition, Bacillus species are able to produce antimicrobial substances making them more suitable candidates compared to other probiotics. In this chapter, we discussed the role of Bacillus in sustainable aquaculture as alternative strategies to enhance growth performance, disease resistance, and immune response of different aquaculture farmed animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarike ED, Cai J, Lu Y, Yu H, Chen L, Jian J et al (2018a) Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 82:229–238

    Article  CAS  PubMed  Google Scholar 

  • Abarike ED, Jian J, Tang J, Cai J, Yu H, Lihua C, Jun L (2018b) Influence of traditional Chinese medicine and Bacillus species (TCMBS) on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Aquac Res 49(7):2366–2375

    Article  CAS  Google Scholar 

  • Abd El-Rhman AM, Khattab YAE, Shalaby AME (2009) Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 27(2):175–180. https://doi.org/10.1016/j.fsi.2009.03.020

    Article  PubMed  Google Scholar 

  • Abriouel H, Franz CM, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35(1):201–232

    Article  CAS  PubMed  Google Scholar 

  • Addo S, Carrias AA, Williams MA, Liles MR, Terhune JS, Davis DA (2017a) Effects of Bacillus subtilis strains and the prebiotic Previda® on growth, immune parameters and susceptibility to Aeromonas hydrophila infection in Nile tilapia, Oreochromis niloticus. Aquac Res 48(9):4798–4810

    Article  CAS  Google Scholar 

  • Addo S, Carrias AA, Williams MA, Liles MR, Terhune JS, Davis DA (2017b) Effects of Bacillus subtilis strains on growth, immune parameters, and Streptococcus iniae susceptibility in Nile tilapia, Oreochromis niloticus. J World Aquac Soc 48(2):257–267

    Article  CAS  Google Scholar 

  • Adel M, Yeganeh S, Dawood MAO, Safari R, Radhakrishnan S (2017) Effects of Pediococcus pentosaceus supplementation on growth performance, intestinal microflora and disease resistance of white shrimp, Litopenaeus vannamei. Aquac Nutr 23(6):1401–1409. https://doi.org/10.1111/anu.12515

    Article  CAS  Google Scholar 

  • Afrilasari W, Meryandini A (2016) Effect of probiotic Bacillus megaterium PTB 1.4 on the population of intestinal microflora, digestive enzyme activity and the growth of catfish (Clarias sp.). HAYATI J Biosci 23(4):168–172. https://doi.org/10.1016/j.hjb.2016.12.005

    Article  Google Scholar 

  • Aftabgard M, Salarzadeh A, Mohseni M, Bahri Shabanipour AH, Zorriehzahra MEJ (2019) The combined efficiency of dietary isomaltooligosaccharides and Bacillus spp. on the growth, hemato-serological, and intestinal microbiota indices of caspian brown Trout (Salmo trutta caspius Kessler, 1877). Probiotics Antimicrob Proteins 11(1):198–206. https://doi.org/10.1007/s12602-017-9361-z

    Article  CAS  PubMed  Google Scholar 

  • Alavandi SV, Muralidhar M, Syama Dayal J, Rajan JS, Ezhil Praveena P, Bhuvaneswari T et al (2019) Investigation on the infectious nature of running mortality syndrome (RMS) of farmed Pacific white leg shrimp, Penaeus vannamei in shrimp farms of India. Aquaculture 500:278–289. https://doi.org/10.1016/j.aquaculture.2018.10.027

    Article  Google Scholar 

  • Ambas I, Fotedar R, Buller N (2017) Synbiotic effect of Bacillus mycoides and organic selenium on immunity and growth of marron, Cherax cainii (Austin, 2002). Aquac Res 48(6):2729–2740. https://doi.org/10.1111/are.13105

    Article  CAS  Google Scholar 

  • Amoah K, Huang Q-C, Tan B-P, Zhang S, Chi S-Y, Yang Q-H et al (2019) Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 87:796–808. https://doi.org/10.1016/j.fsi.2019.02.029

    Article  CAS  PubMed  Google Scholar 

  • Apún-Molina JP, Santamaría-Miranda A, Luna-González A, Martínez-Díaz SF, Rojas-Contreras M (2009) Effect of potential probiotic bacteria on growth and survival of tilapia Oreochromis niloticus L., cultured in the laboratory under high density and suboptimum temperature. Aquac Res 40(8):887–894

    Article  Google Scholar 

  • Arena A, Maugeri TL, Pavone B, Iannello D, Gugliandolo C, Bisignano G (2006) Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int Immunopharmacol 6(1):8–13

    Article  CAS  PubMed  Google Scholar 

  • Ashaolu TJ (2020) Immune boosting functional foods and their mechanisms: a critical evaluation of probiotics and prebiotics. Biomed Pharmacother 130:110625. https://doi.org/10.1016/j.biopha.2020.110625

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6(10):973–979. https://doi.org/10.1038/ni1253

    Article  CAS  PubMed  Google Scholar 

  • Avila EM, Juario JV (1987) Yolk and oil globule utilization and developmental morphology of the digestive tract epithelium in larval rabbitfish, Siganus guttatus (Bloch). Aquaculture 65(3–4):319–331

    Article  Google Scholar 

  • Azarin H, Aramli MS, Imanpour MR, Rajabpour M (2015) Effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis and ferroin solution on growth performance, body composition and haematological parameters in kutum (Rutilus frisii kutum) fry. Probioticsand AntimicrobProteins 7(1):31–37. https://doi.org/10.1007/s12602-014-9180-4

    Article  CAS  Google Scholar 

  • Bairagi A, Ghosh KS, Sen SK, Ray AK (2002) Enzyme producing bacterial flora isolated from fish digestive tracts. Aquac Int 10(2):109–121. https://doi.org/10.1023/a:1021355406412

    Article  CAS  Google Scholar 

  • Bairagi A, Sarkar Ghosh K, Sen S, Ray A (2004) Evaluation of the nutritive value of Leucaena leucocephala leaf meal, inoculated with fish intestinal bacteria Bacillus subtilis and Bacillus circulans in formulated diets for rohu, Labeo rohita (Hamilton) fingerlings. Aquac Res 35(5):436–446

    Article  Google Scholar 

  • Balcázar JL, Rojas-Luna T, Cunningham DP (2007) Effect of the addition of four potential probiotic strains on the survival of pacific white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus. J Invertebr Pathol 96(2):147–150

    Article  PubMed  Google Scholar 

  • Bandyopadhyay P, Sarkar B, Mahanty A, Rathore RM, Patra BC (2015) Dietary administered Bacillus sp. PP9 enhances growth, nutrition and immunity in Cirrhinus mrigala (Hamilton). Proc Natl Acad Sci India Sect B 85(3):759–766. https://doi.org/10.1007/s40011-015-0561-6

    Article  CAS  Google Scholar 

  • Berkeley SA, Chapman C, Sogard SM (2004) Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85(5):1258–1264

    Article  Google Scholar 

  • Bhoj VG, Chen ZJ (2009) Ubiquitylation in innate and adaptive immunity. Nature 458(7237):430–437

    Article  CAS  PubMed  Google Scholar 

  • Bron PA, van Baarlen P, Kleerebezem M (2012) Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10(1):66–78

    Article  CAS  Google Scholar 

  • Butt RL, Volkoff H (2019) Gut microbiota and energy homeostasis in fish. Front Endocrinol 10(9). https://doi.org/10.3389/fendo.2019.00009

  • Cai D, Rao Y, Zhan Y, Wang Q, Chen S (2019) Engineering Bacillus for efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 126(6):1632–1642. https://doi.org/10.1111/jam.14192

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Yu R, Zhang Y, Hu B, Jian S, Wen C et al (2019) Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture 508:106–112. https://doi.org/10.1016/j.aquaculture.2019.04.064

    Article  CAS  Google Scholar 

  • Castex M, Lemaire P, Wabete N, Chim L (2009) Effect of dietary probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress status of shrimp Litopenaeus stylirostris. Aquaculture 294(3–4):306–313

    Article  CAS  Google Scholar 

  • Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J (2019) Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 10:302–302. https://doi.org/10.3389/fmicb.2019.00302

    Article  PubMed  PubMed Central  Google Scholar 

  • Cencic A, Chingwaru W (2010) The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2(6):611–625. https://doi.org/10.3390/nu2060611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerezuela R, Meseguer J, Esteban MA (2011) Current knowledge in synbiotic use for fish aquaculture: a review. Res Aquac Res Dev S1(008). https://doi.org/10.4172/2155-9546.S1-008

  • Cha J-H, Rahimnejad S, Yang S-Y, Kim K-W, Lee K-J (2013) Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives. Aquaculture 402–403:50–57. https://doi.org/10.1016/j.aquaculture.2013.03.030

    Article  CAS  Google Scholar 

  • Chang Y-P, Liu C-H, Wu C-C, Chiang C-M, Lian J-L, Hsieh S-L (2012) Dietary administration of zingerone to enhance growth, non-specific immune response, and resistance to Vibrio alginolyticus in Pacific white shrimp (Litopenaeus vannamei) juveniles. Fish Shellfish Immunol 32(2):284–290

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-Y, Sim SS, Chiew SL, Yeh S-T, Liou C-H, Chen J-C (2012) Dietary administration of a Gracilaria tenuistipitata extract produces protective immunity of white shrimp Litopenaeus vannamei in response to ammonia stress. Aquaculture 370:26–31

    Article  CAS  Google Scholar 

  • Chen M, Chen X-Q, Tian L-X, Liu Y-J, Niu J (2020a) Beneficial impacts on growth, intestinal health, immune responses and ammonia resistance of pacific white shrimp (Litopenaeus vannamei) fed dietary synbiotic (mannan oligosaccharide and Bacillus licheniformis). Aquac Rep 17:100408. https://doi.org/10.1016/j.aqrep.2020.100408

    Article  Google Scholar 

  • Chen M, Chen X-Q, Tian L-X, Liu Y-J, Niu J (2020b) Enhanced intestinal health, immune responses and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary hydrolyzed yeast (Rhodotorula mucilaginosa) and Bacillus licheniformis. Aquac Rep 17:100385. https://doi.org/10.1016/j.aqrep.2020.100385

    Article  Google Scholar 

  • Chien C-C, Lin T-Y, Chi C-C, Liu C-H (2020) Probiotic, Bacillus subtilis E20 alters the immunity of white shrimp, Litopenaeus vannamei via glutamine metabolism and hexosamine biosynthetic pathway. Fish Shellfish Immunol 98:176–185. https://doi.org/10.1016/j.fsi.2020.01.014

    Article  CAS  PubMed  Google Scholar 

  • Chiu L, Bazin T, Truchetet M-E, Schaeverbeke T, Delhaes L, Pradeu T (2017) Protective microbiota: from localized to long-reaching co-immunity. Front Immunol 8:1678. https://doi.org/10.3389/fimmu.2017.01678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang T-H, Ulevitch RJ (2004) Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 5(5):495–502

    Article  CAS  PubMed  Google Scholar 

  • Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci 104(18):7617–7621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220

    Article  PubMed  Google Scholar 

  • da Paixão AEM, dos Santos JC, Pinto MS, Pereira DSP, de Oliveira Ramos CEC, Cerqueira RB et al (2017) Effect of commercial probiotics (Bacillus subtilis and Saccharomyces cerevisiae) on growth performance, body composition, hematology parameters, and disease resistance against Streptococcus agalactiae in tambaqui (Colossoma macropomum). Aquac Int 25(6):2035–2045. https://doi.org/10.1007/s10499-017-0173-7

    Article  CAS  Google Scholar 

  • Dash G, Raman RP, Prasad KP, Makesh M, Pradeep M, Sen S (2015) Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish Shellfish Immunol 43(1):167–174

    Article  CAS  PubMed  Google Scholar 

  • Dawood MA, El-Dakar A, Mohsen M, Abdelraouf E, Koshio S, Ishikawa M, Yokoyama S (2014) Effects of using exogenous digestive enzymes or natural enhancer mixture on growth, feed utilization, and body composition of rabbitfish, Siganus rivulatus. J Agric Sci Technol B 4(3B)

    Google Scholar 

  • Dawood MAO, Koshio S, Ishikawa M, El-Sabagh M, Esteban MA, Zaineldin AI (2016) Probiotics as an environment-friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status. Fish Shellfish Immunol 57:170–178. https://doi.org/10.1016/j.fsi.2016.08.038

    Article  CAS  PubMed  Google Scholar 

  • Dawood MAO, Koshio S, Abdel-Daim MM, Hien DV (2019) Probiotic application for sustainable aquaculture. Rev Aquac 11(3):907–924. https://doi.org/10.1111/raq.12272

    Article  Google Scholar 

  • De D, Ananda Raja R, Ghoshal TK, Mukherjee S, Vijayan KK (2018) Evaluation of growth, feed utilization efficiency and immune parameters in tiger shrimp (Penaeus monodon) fed diets supplemented with or diet fermented with gut bacterium Bacillus sp. DDKRC1. isolated from gut of Asian seabass (Lates calcarifer). Aquac Res 49(6):2147–2155. https://doi.org/10.1111/are.13669

    Article  CAS  Google Scholar 

  • Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y (2010) Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar Drugs 8(4):1153–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias JAR, Abe HA, Sousa NC, Couto MVS, Cordeiro CAM, Meneses JO et al (2018) Dietary supplementation with autochthonous Bacillus cereus improves growth performance and survival in tambaqui Colossoma macropomum. Aquac Res 49(9):3063–3070. https://doi.org/10.1111/are.13767

    Article  CAS  Google Scholar 

  • Duc LH, Hong HA, Cutting SM (2003) Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21(27–30):4215–4224

    Article  CAS  Google Scholar 

  • El-Haroun E, Goda AS, Kabir Chowdhury M (2006) Effect of dietary probiotic Biogen® supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquac Res 37(14):1473–1480

    Article  CAS  Google Scholar 

  • Elshaghabee FM, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2020) The State of World Fisheries and Aquaculture (SOFIA). FAO, Rome

    Google Scholar 

  • FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with liver lactic acid bacteria

    Google Scholar 

  • Fayol-Messaoudi D, Berger CN, Coconnier-Polter M-H, Lievin-Le Moal V, Servin AL (2005) pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium. Appl Environ Microbiol 71(10):6008–6013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei H, Lin G-D, Zheng C-C, Huang M-M, Qian S-C, Wu Z-J et al (2018) Effects of Bacillus amyloliquefaciens and Yarrowia lipolytica lipase 2 on immunology and growth performance of Hybrid sturgeon. Fish Shellfish Immunol 82:250–257. https://doi.org/10.1016/j.fsi.2018.08.031

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Chang X, Zhang Y, Yan X, Zhang J, Nie G (2019) Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. Fish Shellfish Immunol 93:73–81. https://doi.org/10.1016/j.fsi.2019.07.028

    Article  CAS  PubMed  Google Scholar 

  • Fuchs VI, Schmidt J, Slater MJ, Buck BH, Steinhagen D (2017) Influence of immunostimulant polysaccharides, nucleic acids, and Bacillus strains on the innate immune and acute stress response in turbots (Scophthalmus maximus) fed soy bean- and wheat-based diets. Fish Physiol Biochem 43(6):1501–1515. https://doi.org/10.1007/s10695-017-0388-6

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhang M, Li X, Han Y, Wu F, Liu Y (2018) Effects of a probiotic (Bacillus licheniformis) on the growth, immunity, and disease resistance of Haliotis discus hannai Ino. Fish Shellfish Immunol 76:143–152. https://doi.org/10.1016/j.fsi.2018.02.028

    Article  CAS  PubMed  Google Scholar 

  • Giri SS, Sukumaran V, Oviya M (2013) Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 34(2):660–666. https://doi.org/10.1016/j.fsi.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  • Gobi N, Vaseeharan B, Chen J-C, Rekha R, Vijayakumar S, Anjugam M, Iswarya A (2018) Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol 74:501–508. https://doi.org/10.1016/j.fsi.2017.12.066

    Article  CAS  PubMed  Google Scholar 

  • Gómez B, Munekata PES, Zhu Z, Barba FJ, Toldrá F, Putnik P et al (2019) Chapter 7: Challenges and opportunities regarding the use of alternative protein sources: aquaculture and insects. In: Toldrá F (ed) Advances in food and nutrition research, vol 89. Academic Press, San Diego, CA, pp 259–295

    Google Scholar 

  • Gupta A, Verma G, Gupta P (2016) Growth performance, feed utilization, digestive enzyme activity, innate immunity and protection against Vibrio harveyi of freshwater prawn, Macrobrachium rosenbergii fed diets supplemented with Bacillus coagulans. Aquac Int 24(5):1379–1392

    Article  CAS  Google Scholar 

  • Hai NV (2015) The use of probiotics in aquaculture. J Appl Microbiol 119(4):917–935

    Article  CAS  PubMed  Google Scholar 

  • Hammami I, Jaouadi B, Bacha AB, Rebai A, Bejar S, Nesme X, Rhouma A (2012) Bacillus subtilis bacteriocin Bac 14B with a broad inhibitory spectrum: purification, amino acid sequence analysis, and physicochemical characterization. Biotechnol Bioprocess Eng 17(1):41–49

    Article  CAS  Google Scholar 

  • Hamza A, Fdhila K, Zouiten D, Masmoudi AS (2016) Virgibacillus proomii and Bacillus mojavensis as probiotics in sea bass (Dicentrarchus labrax) larvae: effects on growth performance and digestive enzyme activities. Fish Physiol Biochem 42(2):495–507. https://doi.org/10.1007/s10695-015-0154-6

    Article  CAS  PubMed  Google Scholar 

  • Han B, Long W-Q, He J-Y, Liu Y-J, Si Y-Q, Tian L-X (2015) Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 46(2):225–231

    Article  CAS  PubMed  Google Scholar 

  • Hasan MT, Jang WJ, Kim H, Lee B-J, Kim KW, Hur SW et al (2018) Synergistic effects of dietary Bacillus sp. SJ-10 plus β-glucooligosaccharides as a synbiotic on growth performance, innate immunity and streptococcosis resistance in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 82:544–553. https://doi.org/10.1016/j.fsi.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  • Hauville MR, Zambonino-Infante JL, Gordon Bell J, Migaud H, Main KL (2016) Effects of a mix of Bacillus sp. as a potential probiotic for Florida pompano, common snook and red drum larvae performances and digestive enzyme activities. Aquac Nutr 22(1):51–60. https://doi.org/10.1111/anu.12226

    Article  CAS  Google Scholar 

  • Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 6(1):39–51. https://doi.org/10.1177/1756283X12459294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson B, Wilson M, McNab R, Lax A (1999) The innate immune response. B. Henderson, M. Wilson, M, 311–353

    Google Scholar 

  • Hernández AJ, Romero A, Gonzalez-Stegmaier R, Dantagnan P (2016) The effects of supplemented diets with a phytopharmaceutical preparation from herbal and macroalgal origin on disease resistance in rainbow trout against Piscirickettsia salmonis. Aquaculture 454(Supplement C):109–117. https://doi.org/10.1016/j.aquaculture.2015.12.016

    Article  CAS  Google Scholar 

  • Hlordzi V, Kuebutornye FKA, Afriyie G, Abarike ED, Lu Y, Chi S, Anokyewaa MA (2020) The use of Bacillus species in maintenance of water quality in aquaculture: a review. Aquac Rep 18:100503. https://doi.org/10.1016/j.aqrep.2020.100503

    Article  Google Scholar 

  • Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29(4):813–835

    Article  CAS  PubMed  Google Scholar 

  • Hoseinifar SH, Mirvaghefi A, Merrifield DL (2011) The effects of dietary inactive brewer's yeast Saccharomyces cerevisiae var. ellipsoideus on the growth, physiological responses and gut microbiota of juvenile beluga (Huso huso). Aquaculture 318(1–2):90–94

    Article  Google Scholar 

  • Hoseinifar SH, Esteban MÁ, Cuesta A, Sun Y-Z (2015) Prebiotics and fish immune response: a review of current knowledge and future perspectives. Rev Fisher Sci Aquac 23(4):315–328

    Article  Google Scholar 

  • Hoseinifar SH, Dadar M, Ringø E (2017) Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: the functional feed additives scenario. Aquac Res 48(8):3987–4000

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Sun Y-Z, Wang A, Zhou Z (2018) Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front Microbiol 9:2429. https://doi.org/10.3389/fmicb.2018.02429

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosoi T, Hirose R, Saegusa S, Ametani A, Kiuchi K, Kaminogawa S (2003) Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto). Int J Food Microbiol 82(3):255–264. https://doi.org/10.1016/S0168-1605(02)00311-2

    Article  CAS  PubMed  Google Scholar 

  • Huynh T-G, Cheng A-C, Chi C-C, Chiu K-H, Liu C-H (2018) A synbiotic improves the immunity of white shrimp, Litopenaeus vannamei: Metabolomic analysis reveal compelling evidence. Fish Shellfish Immunol 79:284–293

    Article  CAS  PubMed  Google Scholar 

  • Ibrahem MD (2015) Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recent prospectives. J Adv Res 6(6):765–791. https://doi.org/10.1016/j.jare.2013.12.004

    Article  PubMed  Google Scholar 

  • Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25(6):333–342. https://doi.org/10.1046/j.1365-2761.2002.00375.x

    Article  CAS  Google Scholar 

  • Iwashita MKP, Nakandakare IB, Terhune JS, Wood T, Ranzani-Paiva MJT (2015) Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish Shellfish Immunol 43(1):60–66. https://doi.org/10.1016/j.fsi.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  • Jafariyan H, Sahandi J, Taati M, Eslamloo K (2015) The use of Bacillus probiotics in-feed improved stress resistance of Trichopodus trichopterus (Pallas, 1770) larvae. J Coast Life Med 3(10):757–760

    Article  CAS  Google Scholar 

  • Jamali H, Imani A, Abdollahi D, Roozbehfar R, Isari A (2015) Use of probiotic Bacillus spp. in rotifer (Brachionus plicatilis) and artemia (Artemia urmiana) enrichment: effects on growth and survival of Pacific White Shrimp, Litopenaeus vannamei, Larvae. Probiotics Antimicrob Proteins 7(2):118–125. https://doi.org/10.1007/s12602-015-9189-3

    Article  PubMed  Google Scholar 

  • Joseph B, Dhas B, Hena V, Raj J (2013) Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens. Asian Pac J Trop Biomed 3(12):942–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katholnig K, Linke M, Pham H, Hengstschläger M, Weichhart T (2013) Immune responses of macrophages and dendritic cells regulated by mTOR signalling. Biochem Soc Trans 41(4):927–933. https://doi.org/10.1042/BST20130032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katya K, Yun Y-h, Park G, Lee J-Y, Yoo G, Bai SC (2014) Evaluation of the efficacy of fermented by-product of mushroom, pleurotus ostreatus, as a fish meal replacer in Juvenile Amur Catfish, Silurus asotus: effects on growth, serological characteristics and immune responses. Asian Australas J Anim Sci 27(10):1478–1486. https://doi.org/10.5713/ajas.2014.14038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274(1):1–14. https://doi.org/10.1016/j.aquaculture.2007.11.019

    Article  Google Scholar 

  • Kewcharoen W, Srisapoome P (2019) Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish Shellfish Immunol 94:175–189. https://doi.org/10.1016/j.fsi.2019.09.013

    Article  CAS  PubMed  Google Scholar 

  • Khademzade O, Zakeri M, Haghi M, Mousavi SM (2020) The effects of water additive Bacillus cereus and Pediococcus acidilactici on water quality, growth performances, economic benefits, immunohematology and bacterial flora of whiteleg shrimp (Penaeus vannamei Boone, 1931) reared in earthen ponds. Aquac Res 51(5):1759–1770

    Article  CAS  Google Scholar 

  • Kim D-H, Subramanian D, Heo M-S (2017) Dietary effect of probiotic bacteria, Bacillus amyloliquefaciens-JFP2 on growth and innate immune response in rock bream Oplegnathus fasciatus, challenged with Streptococcus iniae

    Google Scholar 

  • Klaenhammer TR, Kleerebezem M, Kopp MV, Rescigno M (2012) The impact of probiotics and prebiotics on the immune system. Nat Rev Immunol 12(10):728–734. https://doi.org/10.1038/nri3312

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen R, Bron P (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34(2):199–230

    Article  CAS  PubMed  Google Scholar 

  • Kuebutornye FK, Abarike ED, Lu Y (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol 87:820–828

    Article  CAS  PubMed  Google Scholar 

  • La Fata G, Weber P, Mohajeri MH (2018) Probiotics and the gut immune system: indirect regulation. Probiotics Antimicrob Proteins 10(1):11–21. https://doi.org/10.1007/s12602-017-9322-6

    Article  CAS  PubMed  Google Scholar 

  • Lauriano ER, Pergolizzi S, Capillo G, Kuciel M, Alesci A, Faggio C (2016) Immunohistochemical characterization of Toll-like receptor 2 in gut epithelial cells and macrophages of goldfish Carassius auratus fed with a high-cholesterol diet. Fish Shellfish Immunol 59:250–255. https://doi.org/10.1016/j.fsi.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  • Lazado CC, Caipang CMA (2014) Mucosal immunity and probiotics in fish. Fish Shellfish Immunol 39(1):78–89. https://doi.org/10.1016/j.fsi.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-K, Puong K-Y, Ouwehand AC, Salminen S (2003) Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J Med Microbiol 52(10):925–930

    Article  PubMed  Google Scholar 

  • Lee S, Katya K, Park Y, Won S, Seong M, Hamidoghli A, Bai SC (2017) Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish Shellfish Immunol 61:201–210. https://doi.org/10.1016/j.fsi.2016.12.035

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Katya K, Hamidoghli A, Hong J, Kim D-J, Bai SC (2018) Synergistic effects of dietary supplementation of Bacillus subtilis WB60 and mannanoligosaccharide (MOS) on growth performance, immunity and disease resistance in Japanese eel, Anguilla japonica. Fish Shellfish Immunol 83:283–291. https://doi.org/10.1016/j.fsi.2018.09.031

    Article  CAS  PubMed  Google Scholar 

  • Li J, Tan B, Mai K, Ai Q, Zhang W, Xu W et al (2006) Comparative study between probiotic bacterium Arthrobacter XE-7 and chloramphenicol on protection of Penaeus chinensis post-larvae from pathogenic vibrios. Aquaculture 253(1):140–147. https://doi.org/10.1016/j.aquaculture.2005.07.040

    Article  CAS  Google Scholar 

  • Li J, Xu Y, Jin L, Li X (2015) Effects of a probiotic mixture (Bacillus subtilis YB-1 and Bacillus cereus YB-2) on disease resistance and non-specific immunity of sea cucumber, Apostichopus japonicus (Selenka). Aquac Res 46(12):3008–3019. https://doi.org/10.1111/are.12453

    Article  CAS  Google Scholar 

  • Li C, Zhang B, Liu C, Zhou H, Wang X, Mai K, He G (2020) Effects of dietary raw or Enterococcus faecium fermented soybean meal on growth, antioxidant status, intestinal microbiota, morphology, and inflammatory responses in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol 100:261–271. https://doi.org/10.1016/j.fsi.2020.02.070

    Article  CAS  PubMed  Google Scholar 

  • Lim S-Y, Loo KW, Wong W-L (2020) Synergistic antimicrobial effect of a seaweed-probiotic blend against acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus. Probiotics Antimicrob Proteins 12(3):906–917

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-S, Saputra F, Chen Y-C, Hu S-Y (2019) Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish Shellfish Immunol 86:410–419. https://doi.org/10.1016/j.fsi.2018.11.047

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Chen ZJ (2011) Expanding role of ubiquitination in NF-κB signaling. Cell Res 21(1):6–21

    Article  PubMed  CAS  Google Scholar 

  • Liu CH, Chiu CS, Ho PL, Wang SW (2009) Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. J Appl Microbiol 107(3):1031–1041. https://doi.org/10.1111/j.1365-2672.2009.04284.x

    Article  CAS  PubMed  Google Scholar 

  • Liu K-F, Chiu C-H, Shiu Y-L, Cheng W, Liu C-H (2010) Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish Shellfish Immunol 28(5–6):837–844

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang S, Cai Y, Guo X, Cao Z, Zhang Y et al (2017) Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish Shellfish Immunol 60:326–333. https://doi.org/10.1016/j.fsi.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  • Liu C-H, Wu K, Chu T-W, Wu T-M (2018) Dietary supplementation of probiotic, Bacillus subtilis E20, enhances the growth performance and disease resistance against Vibrio alginolyticus in parrot fish (Oplegnathus fasciatus). Aquac Int 26(1):63–74. https://doi.org/10.1007/s10499-017-0189-z

    Article  CAS  Google Scholar 

  • Liu B, Zhou W, Wang H, Li C, Wang L, Li Y, Wang J (2020) Bacillus baekryungensis MS1 regulates the growth, non-specific immune parameters and gut microbiota of the sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 102:133–139. https://doi.org/10.1016/j.fsi.2020.04.023

    Article  CAS  PubMed  Google Scholar 

  • Maisak H, Jantrakajorn S, Lukkana M, Wongtavatchai J (2013) Antibacterial activity of tannin from sweet chestnut wood against aeromonas and streptococcal pathogens of tilapia (Oreochromis niloticus). Thai J Vet Med 43(1):105

    Google Scholar 

  • Marcusso PF, Aguinaga JY, da Silva Claudiano G, Eto SF, Fernandes DC, Mello H et al (2015) Influence of temperature on Streptococcus agalactiae infection in Nile tilapia. Braz J Vet Res Anim Sci 52(1):57–62

    Article  Google Scholar 

  • Martínez Cruz P, Ibáñez AL, Monroy Hermosillo OA, Ramírez Saad HC (2012) Use of probiotics in aquaculture. ISRN Microbiol 2012:916845. https://doi.org/10.5402/2012/916845

    Article  PubMed  PubMed Central  Google Scholar 

  • Meidong R, Doolgindachbaporn S, Jamjan W, Sakai K, Tashiro Y, Okugawa Y et al (2017) A novel probiotic Bacillus siamensis B44v isolated from Thai pickled vegetables (Phak-dong) for potential use as a feed supplement in aquaculture. J Gen Appl Microbiol 63(4):246–253

    Article  CAS  PubMed  Google Scholar 

  • Meidong R, Khotchanalekha K, Doolgindachbaporn S, Nagasawa T, Nakao M, Sakai K, Tongpim S (2018) Evaluation of probiotic Bacillus aerius B81e isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Pla-mong Pangasius bocourti. Fish Shellfish Immunol 73:1–10. https://doi.org/10.1016/j.fsi.2017.11.032

    Article  CAS  PubMed  Google Scholar 

  • Menni C, Zierer J, Pallister T, Jackson MA, Long T, Mohney RP et al (2017) Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N, Bruewer M (2009) Probiotic mixture VSL# 3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol

    Google Scholar 

  • Merrifield D, Bradley G, Baker R, Davies S (2010) Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquac Nutr 16(5):496–503

    Article  CAS  Google Scholar 

  • Mohapatra S, Chakraborty T, Prusty A, Das P, Paniprasad K, Mohanta K (2012) Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquac Nutr 18(1):1–11

    Article  CAS  Google Scholar 

  • Mohapatra S, Chakraborty T, Kumar V, DeBoeck G, Mohanta KN (2013) Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr (Berl) 97(3):405–430. https://doi.org/10.1111/j.1439-0396.2012.01301.x

    Article  CAS  Google Scholar 

  • Moriarty DJW (1998) Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164(1–4):351–358. https://doi.org/10.1016/S0044-8486(98)00199-9

    Article  Google Scholar 

  • Morowitz MJ, Carlisle EM, Alverdy JC (2011) Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin North Am 91(4):771–778. https://doi.org/10.1016/j.suc.2011.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Chandra G, Ghosh K (2019) Single or conjoint application of autochthonous Bacillus strains as potential probiotics: effects on growth, feed utilization, immunity and disease resistance in Rohu, Labeo rohita (Hamilton). Aquaculture 512:734302. https://doi.org/10.1016/j.aquaculture.2019.734302

    Article  CAS  Google Scholar 

  • Nair AV, Leo Antony M, Praveen NK, Sayooj P, Raja Swaminathan T, Vijayan KK (2020) Evaluation of in vitro and in vivo potential of Bacillus subtilis MBTDCMFRI Ba37 as a candidate probiont in fish health management. Microb Pathog:104610. https://doi.org/10.1016/j.micpath.2020.104610

  • Nandi A, Banerjee G, Dan SK, Ghosh K, Ray AK (2018) Evaluation of in vivo probiotic efficiency of Bacillus amyloliquefaciens in Labeo rohita challenged by pathogenic strain of Aeromonas hydrophila MTCC 1739. Probiotics Antimicrob Proteins 10(2):391–398

    Article  CAS  PubMed  Google Scholar 

  • Nath S, Matozzo V, Bhandari D, Faggio C (2019) Growth and liver histology of Channa punctatus exposed to a common biofertilizer. Nat Prod Res 33(11):1591–1598. https://doi.org/10.1080/14786419.2018.1428586

    Article  CAS  PubMed  Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14. https://doi.org/10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  • Ock Kim Y, Mahboob S, Viayaraghavan P, Biji D, Abdullah Al-Ghanim K, Al-Misned F et al (2020) Growth promoting activity of Penaeus indicus by secondary metabolite producing probiotic bacterium Bacillus subtilis isolated from the shrimp gut. J King Saud Univ Sci 32(2):1641–1646. https://doi.org/10.1016/j.jksus.2019.12.023

    Article  Google Scholar 

  • Park Y, Kim H, Won S, Hamidoghli A, Hasan MT, Kong I-S, Bai SC (2020) Effects of two dietary probiotics (Bacillus subtilis or licheniformis) with two prebiotics (mannan or fructo oligosaccharide) in Japanese eel, Anguilla japonica. Aquac Nutr 26(2):316–327. https://doi.org/10.1111/anu.12993

    Article  CAS  Google Scholar 

  • Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Adv Nutr (Bethesda, Md) 10(Suppl_1):S49–S66. https://doi.org/10.1093/advances/nmy063

    Article  Google Scholar 

  • Pridmore RD, Pittet A-C, Praplan F, Cavadini C (2008) Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol Lett 283(2):210–215

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Xiang J, Xiong F, Wang G, Zou H, Li W et al (2020) Effects of Bacillus licheniformis on the growth, antioxidant capacity, intestinal barrier and disease resistance of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 97:344–350. https://doi.org/10.1016/j.fsi.2019.12.040

    Article  CAS  PubMed  Google Scholar 

  • Queiroz JF, Boyd CE (1998) Effects of a bacterial inoculum in channel catfish ponds. J World Aquac Soc 29(1):67–73

    Article  Google Scholar 

  • Ramesh D, Souissi S (2018) Effects of potential probiotic Bacillus subtilis KADR1 and its subcellular components on immune responses and disease resistance in Labeo rohita. Aquac Res 49(1):367–377. https://doi.org/10.1111/are.13467

    Article  CAS  Google Scholar 

  • Ramesh D, Vinothkanna A, Rai AK, Vignesh VS (2015) Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila. Fish Shellfish Immunol 45(2):268–276. https://doi.org/10.1016/j.fsi.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  • Ramirez RF, Dixon BA (2003) Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma). Aquaculture 227(1–4):417–426

    Article  CAS  Google Scholar 

  • Ramos MA, Gonçalves JFM, Costas B, Batista S, Lochmann R, Pires MA et al (2017) Commercial Bacillus probiotic supplementation of rainbow trout (Oncorhynchys mykiss) and brown trout (Salmo trutta): growth, immune responses and intestinal morphology. Aquac Res 48(5):2538–2549. https://doi.org/10.1111/are.13090

    Article  CAS  Google Scholar 

  • Rangavajhyala N, Shahani K, Sridevi G, Srikumaran S (1997) Nonlipopolysaccharide components) of Lactobacillus addophilus stimulate (s) the production of interleukin-1α and tumor necrosis factor-α by murine macrophages

    Google Scholar 

  • Rawlings ND, Barrett AJ (1994) [2] Families of serine peptidases. Methods Enzymol:244, 19–261

    Google Scholar 

  • Ray A, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18(5):465–492

    Article  CAS  Google Scholar 

  • Reda RM, Selim KM (2015) Evaluation of Bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus. Aquac Int 23(1):203–217

    Article  CAS  Google Scholar 

  • Reda RM, El-Hady MA, Selim KM, El-Sayed HM (2018) Comparative study of three predominant gut Bacillus strains and a commercial B. amyloliquefaciens as probiotics on the performance of Clarias gariepinus. Fish Shellfish Immunol 80:416–425. https://doi.org/10.1016/j.fsi.2018.06.031

    Article  CAS  PubMed  Google Scholar 

  • Rengpipat S, Phianphak W, Piyatiratitivorakul S, Menasveta P (1998) Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture 167(3):301–313. https://doi.org/10.1016/S0044-8486(98)00305-6

    Article  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2(4):361–367

    Article  CAS  PubMed  Google Scholar 

  • Resende JA, Silva VL, Fontes CO, Souza-Filho JA, de Oliveira TLR, Coelho CM et al (2012) Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. Microbes Environ:ME12049

    Google Scholar 

  • Reverter M, Sarter S, Caruso D, Avarre J-C, Combe M, Pepey E et al (2020) Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun 11(1):1870. https://doi.org/10.1038/s41467-020-15735-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringø E (2011) Evaluation of probiotic strain Bacillus subtilis C-3102 as a feed supplement for koi carp (Cyprinus carpio)

    Google Scholar 

  • Ringø E (2020) Probiotics in shellfish aquaculture. Aquac Fisher 5(1):1–27. https://doi.org/10.1016/j.aaf.2019.12.001

    Article  Google Scholar 

  • Ringø E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK (2018) Lactic acid Bacteria in finfish—An update. Front Microbiol 9(1818). https://doi.org/10.3389/fmicb.2018.01818

  • Romano N (2021) Chapter 5: Probiotics, prebiotics, biofloc systems, and other biocontrol regimens in fish and shellfish aquaculture. In: Kibenge FSB, Baldisserotto B, Chong RS-M (eds) Aquaculture pharmacology. Academic Press, San Diego, CA, pp 219–242

    Chapter  Google Scholar 

  • Ryan KA, O'Hara AM, van Pijkeren J-P, Douillard FP, O'Toole PW (2009) Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori. J Med Microbiol 58(8):996–1005

    Article  CAS  PubMed  Google Scholar 

  • Sadat Hoseini Madani N, Adorian TJ, Ghafari Farsani H, Hoseinifar SH (2018) The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) postlarvae. Aquac Res 49(5):1926–1933

    Article  CAS  Google Scholar 

  • Sánchez-Ortiz AC, Angulo C, Luna-González A, Álvarez-Ruiz P, Mazón-Suástegui JM, Campa-Córdova ÁI (2016) Effect of mixed-Bacillus spp isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence and immune-related gene expression in shrimp Litopenaeus vannamei. Fish Shellfish Immunol 59:95–102. https://doi.org/10.1016/j.fsi.2016.10.022

    Article  CAS  PubMed  Google Scholar 

  • Sanders ME, Morelli L, Tompkins T (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf 2(3):101–110

    Article  CAS  PubMed  Google Scholar 

  • Sangma T, Kamilya D (2015) Dietary Bacillus subtilis FPTB13 and chitin, single or combined, modulate systemic and cutaneous mucosal immunity and resistance of catla, Catla catla (Hamilton) against edwardsiellosis. Comp Immunol Microbiol Infect Dis 43:8–15. https://doi.org/10.1016/j.cimid.2015.09.003

    Article  PubMed  Google Scholar 

  • Santacroce L, Charitos IA, Bottalico L (2019) A successful history: probiotics and their potential as antimicrobials. Expert Rev Anti Infect Ther 17(8):635–645. https://doi.org/10.1080/14787210.2019.1645597

    Article  CAS  PubMed  Google Scholar 

  • Sapcharoen P, Rengpipat S (2013) Effects of the probiotic Bacillus subtilis (BP 11 and BS 11) on the growth and survival of Pacific white shrimp, Litopenaeus vannamei. Aquac Nutr 19(6):946–954

    Article  CAS  Google Scholar 

  • Seghouani H, Garcia-Rangel C-E, Füller J, Gauthier J, Derome N (2017) Walleye autochthonous Bacteria as promising probiotic candidates against Flavobacterium columnare. Front Microbiol 8:1349. https://doi.org/10.3389/fmicb.2017.01349

    Article  PubMed  PubMed Central  Google Scholar 

  • Selim KM, Reda RM (2015) Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish Shellfish Immunol 44(2):496–503. https://doi.org/10.1016/j.fsi.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  • Selim KM, El-Sayed HM, El-Hady M, Reda RM (2019) In vitro evaluation of the probiotic candidates isolated from the gut of Clarias gariepinus with special reference to the in vivo assessment of live and heat-inactivated Leuconostoc mesenteroides and Edwardsiella sp. Aquac Int 27(1):33–51

    Article  CAS  Google Scholar 

  • Serra CR, Almeida EM, Guerreiro I, Santos R, Merrifield DL, Tavares F et al (2019) Selection of carbohydrate-active probiotics from the gut of carnivorous fish fed plant-based diets. Sci Rep 9(1):6384. https://doi.org/10.1038/s41598-019-42716-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi LH, Balakrishnan K, Thiagarajah K, Mohd Ismail NI, Yin OS (2016) Beneficial properties of probiotics. Tropical Life Sci Res 27(2):73–90. https://doi.org/10.21315/tlsr2016.27.2.6

    Article  Google Scholar 

  • Silva TFA, Petrillo TR, Yunis-Aguinaga J, Marcusso PF, da Silva Claudiano G, de Moraes FR, de Moraes JR (2015) Effects of the probiotic Bacillus amyloliquefaciens on growth performance, hematology and intestinal morphometry in cage-reared Nile tilapia. Lat Am J Aquat Res 43(5):963–971

    Article  Google Scholar 

  • Singh ST, Kamilya D, Kheti B, Bordoloi B, Parhi J (2017) Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822). Fish Shellfish Immunol 66:35–42. https://doi.org/10.1016/j.fsi.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  • Sivamaruthi BS, Kesika P, Chaiyasut C (2018) Thai fermented foods as a versatile source of bioactive microorganisms—A comprehensive review. Sci Pharm 86(3):37

    Article  CAS  Google Scholar 

  • Soltani M, Ghosh K, Hoseinifar SH, Kumar V, Lymbery AJ, Roy S, Ringø E (2019) Genus bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev Fisher Sci Aquac 27(3):331–379. https://doi.org/10.1080/23308249.2019.1597010

    Article  Google Scholar 

  • Sookchaiyaporn N, Srisapoome P, Unajak S, Areechon N (2020) Efficacy of Bacillus spp. isolated from Nile tilapia Oreochromis niloticus Linn. on its growth and immunity, and control of pathogenic bacteria. Fisher Sci:1–13

    Google Scholar 

  • Spencer R, Chesson A (1994) The effect of Lactobacillus spp. on the attachment of enterotoxigenic Escherichia coli to isolated porcine enterocytes. J Appl Bacteriol 77(2):215–220

    Article  CAS  PubMed  Google Scholar 

  • Srisapoome P, Areechon N (2017) Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): Laboratory and on-farm trials. Fish Shellfish Immunol 67:199–210. https://doi.org/10.1016/j.fsi.2017.06.018

    Article  CAS  PubMed  Google Scholar 

  • Sugita H, Takahashi J, Deguchi Y (1992) Production and consumption of biotin by the intestinal microflora of cultured freshwater fishes. Biosci Biotechnol Biochem 56(10):1678–1679

    Article  CAS  Google Scholar 

  • Sumi CD, Yang BW, Yeo I-C, Hahm YT (2015) Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61(2):93–103

    Article  CAS  PubMed  Google Scholar 

  • Sun Y-Z, Yang H-L, Ma R-L, Lin W-Y (2010) Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol 29(5):803–809. https://doi.org/10.1016/j.fsi.2010.07.018

    Article  PubMed  Google Scholar 

  • Suzer C, Çoban D, Kamaci HO, Saka Ş, Firat K, Otgucuoğlu Ö, Küçüksari H (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture 280(1–4):140–145

    Article  CAS  Google Scholar 

  • Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta/Protein Struct Mol Enzymol 1543(2):223–238

    Article  CAS  Google Scholar 

  • Swapna B, Venkatrayulu C, Swathi AJEJOEB (2015) Effect of probiotic bacteria Bacillus licheniformis and Lactobacillus rhamnosus on growth of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931). Eur J Exp Biol 5(11):31–36

    CAS  Google Scholar 

  • Tarnecki AM, Wafapoor M, Phillips RN, Rhody NR (2019) Benefits of a Bacillus probiotic to larval fish survival and transport stress resistance. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  • Tepaamorndech S, Chantarasakha K, Kingcha Y, Chaiyapechara S, Phromson M, Sriariyanun M et al (2019) Effects of Bacillus aryabhattai TBRC8450 on vibriosis resistance and immune enhancement in Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 86:4–13. https://doi.org/10.1016/j.fsi.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  • Truong Thy HT, Tri NN, Quy OM, Fotedar R, Kannika K, Unajak S, Areechon N (2017) Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus). Fish Shellfish Immunol 60:391–399. https://doi.org/10.1016/j.fsi.2016.11.016

    Article  CAS  PubMed  Google Scholar 

  • Tseng D-Y, Ho P-L, Huang S-Y, Cheng S-C, Shiu Y-L, Chiu C-S, Liu C-H (2009) Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish Shellfish Immunol 26(2):339–344

    Article  CAS  PubMed  Google Scholar 

  • Ueberschär B (1995) The use of tryptic enzyme activity measurement as a nutritional condition index: laboratory calibration data and field application. Paper presented at the ICES Marine Science Symposia

    Google Scholar 

  • Utami D, Suprayudi MA (2015) Quality of dried Bacillus NP5 and its effect on growth performance of Tilapia (Oreochromis niloticus). Pak J Biol Sci: PJBS 18(2):88–93

    Article  CAS  PubMed  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D (2019) Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol 10(57). https://doi.org/10.3389/fmicb.2019.00057

  • Vijayavel K, Balasubramanian MP (2006) Fluctuations of biochemical constituents and marker enzymes as a consequence of naphthalene toxicity in the edible estuarine crab Scylla serrata. Ecotoxicol Environ Saf 63(1):141–147

    Article  CAS  PubMed  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H (2006) Probiotics in marine larviculture. FEMS Microbiol Rev 30(3):404–427. https://doi.org/10.1111/j.1574-6976.2006.00017.x

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ge C, Wang J, Dai J, Zhang P, Li Y (2017a) Effects of different combinations of Bacillus on immunity and antioxidant activities in common carp. Aquac Int 25(6):2091–2099. https://doi.org/10.1007/s10499-017-0175-5

    Article  CAS  Google Scholar 

  • Wang M, Liu G, Lu M, Ke X, Liu Z, Gao F et al (2017b) Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Aquac Res 48(6):3163–3173

    Article  CAS  Google Scholar 

  • Wang H, Wang C, Tang Y, Sun B, Huang J, Song X (2018) Pseudoalteromonas probiotics as potential biocontrol agents improve the survival of Penaeus vannamei challenged with acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus. Aquaculture 494:30–36

    Article  Google Scholar 

  • Wang C, Liu Y, Sun G, Li X, Liu Z (2019a) Growth, immune response, antioxidant capability, and disease resistance of juvenile Atlantic salmon (Salmo salar L.) fed Bacillus velezensis V4 and Rhodotorula mucilaginosa compound. Aquaculture 500:65–74. https://doi.org/10.1016/j.aquaculture.2018.09.052

    Article  CAS  Google Scholar 

  • Wang A, Ran C, Wang Y, Zhang Z, Ding Q, Yang Y et al (2019b) Use of probiotics in aquaculture of China—a review of the past decade. Fish Shellfish Immunol 86:734–755. https://doi.org/10.1016/j.fsi.2018.12.026

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Chuprom J, Wang Y, Fu L (2020a) Beneficial bacteria for aquaculture: nutrition, bacteriostasis and immunoregulation. J Appl Microbiol 128(1):28–40. https://doi.org/10.1111/jam.14383

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yi M, Lu M, Gao F, Liu Z, Huang Q et al (2020b) Effects of probiotics Bacillus cereus NY5 and Alcaligenes faecalis Y311 used as water additives on the microbiota and immune enzyme activities in three mucosal tissues in Nile tilapia Oreochromis niloticus reared in outdoor tanks. Aquac Rep 17:100309. https://doi.org/10.1016/j.aqrep.2020.100309

    Article  Google Scholar 

  • Wanka KM, Damerau T, Costas B, Krueger A, Schulz C, Wuertz S (2018) Isolation and characterization of native probiotics for fish farming. BMC Microbiol 18(1):119. https://doi.org/10.1186/s12866-018-1260-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M, Stuhlmeier KM et al (2008) The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29(4):565–577

    Article  CAS  PubMed  Google Scholar 

  • Willer DF, Aldridge DC (2019) Microencapsulated diets to improve bivalve shellfish aquaculture for global food security. Glob Food Sec 23:64–73. https://doi.org/10.1016/j.gfs.2019.04.007

    Article  Google Scholar 

  • Won S, Hamidoghli A, Choi W, Bae J, Jang WJ, Lee S, Bai SC (2020a) Evaluation of potential probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on growth performance, immune response, gut histology and immune-related genes in Whiteleg Shrimp, Litopenaeus vannamei. Microorganisms 8(2):281

    Article  CAS  PubMed Central  Google Scholar 

  • Won S, Hamidoghli A, Choi W, Bae J, Jang WJ, Lee S, Bai SCJM (2020b) Evaluation of potential probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on growth performance, immune response, gut histology and immune-related genes in Whiteleg Shrimp. Litopenaeus vannamei 8(2):281

    CAS  Google Scholar 

  • World Health Organization (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva

    Google Scholar 

  • Wu ZX, Feng X, Xie LL, Peng XY, Yuan J, Chen XX (2012) Effect of probiotic Bacillus subtilis Ch9 for grass carp, Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora. J Appl Ichthyol 28(5):721–727. https://doi.org/10.1111/j.1439-0426.2012.01968.x

    Article  Google Scholar 

  • Xia Y, Wang M, Gao F, Lu M, Chen G (2020) Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). Anim Nutr (Zhongguo xu mu shou yi xue hui) 6(1):69–79. https://doi.org/10.1016/j.aninu.2019.07.002

    Article  Google Scholar 

  • Yan F, Polk DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27(6):496–501. https://doi.org/10.1097/MOG.0b013e32834baa4d

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan YY, Xia HQ, Yang HL, Hoseinifar SH, Sun YZ (2016) Effects of dietary live or heat-inactivated autochthonous Bacillus pumilus SE5 on growth performance, immune responses and immune gene expression in grouper Epinephelus coioides. Aquac Nutr 22(3):698–707. https://doi.org/10.1111/anu.12297

    Article  CAS  Google Scholar 

  • Yang HL, Sun YZ, Ma RL, Ye JD (2012) PCR-DGGE analysis of the autochthonous gut microbiota of grouper Epinephelus coioides following probiotic Bacillus clausii administration. Aquac Res 43(4):489–497

    Article  CAS  Google Scholar 

  • Yang S-C, Lin C-H, Sung CT, Fang J-Y (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241–241. https://doi.org/10.3389/fmicb.2014.00241

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G, Tian X, Dong S, Peng M, Wang D (2015) Effects of dietary Bacillus cereus G19, B. cereus BC-01, and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression of immune-related genes in coelomocytes and intestine of the sea cucumber (Apostichopus japonicus Selenka). Fish Shellfish Immunol 45(2):800–807. https://doi.org/10.1016/j.fsi.2015.05.032

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Lü Y, Zhang M, Gong Y, Li Z, Tran NT et al (2019) Lactic acid bacteria, Enterococcus faecalis Y17 and Pediococcus pentosaceus G11, improved growth performance, and immunity of mud crab (Scylla paramamosain). Fish Shellfish Immunol 93:135–143. https://doi.org/10.1016/j.fsi.2019.07.050

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Zhang P, Yue X, Du X, Li W, Yin Y et al (2018) Effect of sub-chronic exposure to lead (Pb) and Bacillus subtilis on Carassius auratus gibelio: bioaccumulation, antioxidant responses and immune responses. Ecotoxicol Environ Saf 161:755–762. https://doi.org/10.1016/j.ecoenv.2018.06.056

    Article  CAS  PubMed  Google Scholar 

  • Zaineldin AI, Hegazi S, Koshio S, Ishikawa M, Bakr A, El-Keredy AM et al (2018) Bacillus subtilis as probiotic candidate for red sea bream: Growth performance, oxidative status, and immune response traits. Fish Shellfish Immunol 79:303–312

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Mai K, Tan B, Ai Q, Qi C, Xu W et al (2009) Effects of dietary administration of probiotic Halomonas sp. B12 on the intestinal microflora, immunological parameters, and midgut histological structure of shrimp. J World Aquac Soc 40(1):58–66

    Article  Google Scholar 

  • Zhang Q, Ma H, Mai K, Zhang W, Liufu Z, Xu W (2010) Interaction of dietary Bacillus subtilis and fructooligosaccharide on the growth performance, non-specific immunity of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol 29(2):204–211

    Article  PubMed  Google Scholar 

  • Zhao Y, Zhang W, Xu W, Mai K, Zhang Y, Liufu Z (2012) Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 32(5):750–755. https://doi.org/10.1016/j.fsi.2012.01.027

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Chen M, Quan C, Fan S (2015) Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. J Fish Dis 38(9):771–786

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Yuan L, Wan J, Sun Z, Wang Y, Sun H (2016) Effects of potential probiotic Bacillus cereus EN25 on growth, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 49:237–242. https://doi.org/10.1016/j.fsi.2015.12.035

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Luo Y e, Zhang Y, Chen X, Wang H, Guo D, Wu Z (2020) Effects of Bacillus subtilis on hepatic lipid metabolism and oxidative stress response in grass carp (Ctenopharyngodon idellus) fed a high-fat diet. Marine Life Sci Technol 2(1):50–59. https://doi.org/10.1007/s42995-019-00005-2

    Article  CAS  Google Scholar 

  • Zhou X, Tian Z, Wang Y, Li W (2010) Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiol Biochem 36(3):501–509

    Article  CAS  PubMed  Google Scholar 

  • Ziaei-Nejad S, Rezaei MH, Takami GA, Lovett DL, Mirvaghefi A-R, Shakouri M (2006) The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 252(2):516–524. https://doi.org/10.1016/j.aquaculture.2005.07.021

    Article  CAS  Google Scholar 

  • Zokaeifar H, Balcázar JL, Saad CR, Kamarudin MS, Sijam K, Arshad A, Nejat N (2012) Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 33(4):683–689

    Article  CAS  PubMed  Google Scholar 

  • Zuo Z-H, Shang B-J, Shao Y-C, Li W-Y, Sun J-S (2019) Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish Immunol 86:160–168. https://doi.org/10.1016/j.fsi.2018.11.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Doan, H. (2021). Bacillus spp. in Aquaculture - Mechanisms and Applications: An Update View. In: Mojgani, N., Dadar, M. (eds) Probiotic Bacteria and Postbiotic Metabolites: Role in Animal and Human Health. Microorganisms for Sustainability, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-16-0223-8_1

Download citation

Publish with us

Policies and ethics