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New multiplex PCR method for the detection of Clostridium difficile
toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA ⁄ cdtB) genes
applied to a Danish strain collection
S. Persson, M. Torpdahl and K. E. P. Olsen

Department of Bacteriology, Mycology and Parasitology, Unit of Gastrointestinal Infection, Statens
Serum Institut, Copenhagen, Denmark

ABSTRACT

Isolates of Clostridium difficile from 159 hospitalized Danish patients (2005) were analysed by a new
5-plex PCR method targeting the toxin genes tcdA, tcdB, cdtA and cdtB, and 16S rDNA as an internal
positive control. Additionally, the toxin-regulating gene tcdC was partially sequenced by a new
sequencing-based method that revealed genetic changes that may render the gene product inactive.
Finally tcdA was analysed using a previously published method for the detection of internal deletions.
The 5-plex PCR revealed four different toxin gene profiles: 36 tcdA+, tcdB+, cdtA+ ⁄ cdtB+; one tcdA+, tcdB),
cdtA+ ⁄ cdtB+; 98 tcdA+, tcdB+, cdtA) ⁄ cdtB); and 24 non-toxigenic tcdA), tcdB), cdtA) ⁄ cdtB). Deletion
studies revealed that 26 strains contained a c. 700-bp deletion in tcdA, and 39 strains contained at least
one possible inactivation feature in tcdC. The prevalence of the binary toxin genes was 23%. All strains
with the tcdA+, tcdB+, cdtA+ ⁄ cdtB+ profile were investigated by PCR ribotyping, and this revealed eight
different ribotypes, none of which were 027. The 5-plex PCR method offers a one-step, rapid and specific
screening method for C. difficile toxin genes. This toxin gene profiling, together with deletion studies in
tcdA and tcdC, may allow an evaluation of the pathogenic potential of C. difficile.
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INTRODUCTION

Clostridium difficile is themajor cause of nosocomial
infectious diarrhoea, and toxin-producing C. diffi-
cile isolates are recognized in 10–25% of cases of
antibiotic-associated diarrhoea, and in almost all
cases of pseudomembranous colitis [1–3]. C. diffi-
cile-associated disease in humans may have an
animal origin, as C. difficile has been found in retail
meat for human consumption, and typing studies
have revealed an overlap between strains isolated
from humans and calves [4]. The two major

C. difficile toxins are the large clostridial toxins;
i.e. an enterotoxin, TcdA, and a cytotoxin, TcdB,
encoded by tcdA and tcdB, respectively. The two
genes are part of the PaLoc operon, which also
contains tcdR, tcdE and tcdC, of which tcdC is a
putative negative regulator of tcdA and tcdB [5].
SomeC. difficile strains contain an additional toxin,
the Clostridium difficile binary toxin (CDT),
expressed from the cdtA (enzymatic component)
and cdtB (binding component) operon. C. difficile
can be diagnosed by culturing faecal samples on
selective media, and toxigenic strains producing
TcdA and ⁄ or TcdBmay subsequently be identified
using tissue culture cytotoxin assays or enzyme
immunoassays (EIAs). Both of these methods may
also be applied directly to stool filtrates. However,
methods based on stool filtrates do not allow the
isolation of C. difficile colonies, which is crucial for
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further characterization and epidemiological sur-
veillance, and they may display reduced sensitiv-
ity, due to the loss of cytotoxin activity during
transport and storage of the faecal sample [6].
Furthermore, neither the tissue culture cytotoxin
assays nor the EIAs are currently adequate for
detection of the binary toxin [7–10]. Diagnostic
strategies targeting nucleic acids, including PCR
methods [11–13] and real-time PCR methods
[14,15], have been developed for the detection of
the genes encoding TcdA and ⁄ or TcdB.

C. difficile strains have been found to contain
various alterations in the PaLoc genes. These
include internal deletions and premature stop
codons in tcdC that may render the gene product
inactive, and registered polymorphisms in the
PaLoc genes, which to date have led to the
identification of 24 profiles (toxinotypes) after
PCR–restriction fragment length polymorphism
analysis [16–18]. Antibiotic resistance profiling
has also attracted much attention, as C. difficile-
associated disease may be a consequence of
antibiotic treatment itself, and strains with vary-
ing and extensive resistance profiles have been
observed [19–21]. Both genetic analyses and
antibiotic susceptibility testing have been used
to characterize the various clones isolated from
specific outbreaks and severe infections. Epi-
demic strains of C. difficile associated with severe
disease have been observed in Canada, the USA
and Europe, with the following characteristics:
(i) positive for the binary toxin; (ii) containing an
18-bp deletion in tcdC; and (iii) resistant to
fluoroquinolones. These strains have been typed
as PCR ribotype 027, pulsed-field gel electro-
phoresis type NAP1, restriction endonuclease
analysis (REA) type B1 and toxinotype III [22].
TcdA-negative ⁄TcdB-positive C. difficile strains
have also been involved in nosocomial outbreaks
[23–25]. These variants harbour a deletion in the
3¢-end of tcdA, which encodes the ligand-binding
domain [12,25,26], and for this reason they are
difficult to detect by culture cytotoxin assays
and they are non-detectable by EIAs directed
towards toxin A only.

The aim of the present study was to develop
new molecular methods for the detection of
pathogenic C. difficile isolates, including: (i) a
multiplex PCR for detecting the genes encoding
TcdA, TcdB and CDT; and (ii) a sequencing-based
method for investigating deletions and premature
stop codons in tcdC. These methods, in addition to

a previously published method for tcdA analysis
[27], were applied to bacterial isolates from 159
hospitalized Danish patients.

MATERIALS AND METHODS

Strains and DNA preparation

The following C. difficile reference strains (kindly provided by
M. Rupnik) were used for validation (toxinotype ⁄PCR ribo-
type, if determined, in parentheses): EX623 (I ⁄ 102), AC008
(II ⁄ 103), 44027 (III ⁄ 075), 55767 (IV ⁄ 023), SE881 (V ⁄ 066), 51377
(VI ⁄ 066), 57267 (VII ⁄ 063), 1470 (VIII ⁄ 017), 8864 (X ⁄ 036), as
previously described [17], R12087 (IIIb ⁄ 027), as previously
described [28], IS58 (XIa ⁄ 033), R11402 (XIb ⁄ 033), IS25
(XII ⁄ 056), R9367 (XIII ⁄ 070), R10870 (XIV ⁄ 111), R9385
(XV ⁄ 122), as previously described [29], SUC36 (XVI), J9965
(XVII), GAI00166 (XVIII), TR13 (XIX), TR14 (XX), as previously
described [30], 6223 (XXI), as previously described [31], and
8785 and 597B, as previously described [16]. In total, 159
C. difficile isolates were obtained from hospitalized Danish
patients with diarrhoea during the period April–October 2005.
The strains were collected at hospitals located in five different
counties in Denmark, covering the major eastern areas of the
country.

Primary identification of C. difficile was conducted by
boiling faecal samples in phosphate-buffered saline (pH 7.4),
followed by culturing on cycloserine cefoxitin fructose agar
medium (SSI Diagnostica, Hillerød, Denmark) in an
atmosphere composed of 86% N2, 7% H2 and 7% CO2 at
37�C for 48 h. Bacterial colonies were prepared for PCR in the
following way. Three to five colonies (the equivalent to that
contained in a 1-lL sterile loop) were transferred to 200 lL of
10% Chelex 100 (Bio-Rad, Hercules, CA, USA) in TE (10 mM
Tris-HCl, 1 mM EDTA, pH 8), boiled for 15 min, and then
centrifuged briefly. The supernatant was diluted 1 : 10 in TE,
and 5 lL was used directly in PCRs. DNA was purified for
PCR ribotyping using a ChargeSwitch gDNAMini Bacteria Kit
(Invitrogen Carlsbad, CA, USA).

tcdA, tcdB, cdtA and cdtB analysis

A 5-plex PCR was developed for the detection of tcdA, tcdB,
cdtA, cdtB and 16S rDNA. The PCRs were run in total reaction
volumes of 25 lL containing the following reagents: 1· PCR
buffer (50 mM Tris-HCl, 10 mM KCl, 5 mM (NH4)2SO4,
pH 8.3), 2.6 mM MgCl2, 260 lM each of dATP, dCTP, dGTP
and dTTP, 1.25 U of FastStart Taq polymerase (Roche Diagnos-
tics, Mannheim, Germany), and the 12 primers shown in
Table 1, at the concentrations given. Thermocycler conditions
were 10 min at 94�C, followed by 35 cycles of 50 s at 94�C, 40 s
at 54�C and 50 s at 72�C, and a final extension of 3 min at 72�C.
As a confirmatory analysis of tcdB, the PCRmethod of Spigaglia
et al. (2002), using primers TB1 and TB2, was applied.

tcdA 3¢-end deletion analysis

The tcdA gene was amplified using the PCR method of Kato
et al. (1999), with minor modifications: The total volume of the
PCR was 30 lL, containing the following reagents: 1· PCR
buffer (200 mM Tris-HCl (pH 8.4), 500 mM KCl), 200 lM each
of dATP, dCTP, dGTP and dTTP, 2.8 mM MgCl2, 1 U of
Platinum Taq polymerase (Invitrogen), and the primers as
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listed in Table 1. Thermocycler conditions were: 6 min at 94�C
followed by 37 cycles consisting of 20 s at 95�C, 30 s at 55�C
and 120 s at 60�C.

tcdC gene analysis

The tcdC gene was amplified in a 25-lL PCR containing the
following reagents: 1· PCR buffer (50 mM Tris-HCl, 10 mM
KCl, 5 mM (NH4)2SO4, pH 8.3), 260 lM each of dATP, dCTP,
dGTP and dTTP, 2.6 mM MgCl2, 1.25 U of FastStart Taq
polymerase (Roche Diagnostics) and the primers as listed
in Table 1. Thermocycler conditions were: 6 min at 94�C,
followed by 35 cycles consisting of 50 s at 94�C, 40 s at 47�C
and 50 s at 72�C, and a final extension at 72�C for 3 min. The
PCR product was subsequently sequenced with the reverse
primer (tcdC-R1(+462)) using the BigDye Terminator Sequenc-
ing kit v1.1 (Applied Biosystems, Foster City, CA, USA) on an
ABI Prism 3100 Genetic Analyzer. All gels were run under
standard conditions on 1.5% agarose and stained with ethidi-
um bromide.

PCR ribotyping

PCR ribotyping was performed according to Bidet [32], with
strains positive for the binary toxin ending the reference
strains with known PCR ribotypes. The resulting band pat-
terns were compared and named according to the PCR
ribotype of the reference strains. When no match was found,
new and unique PCR ribotypes were named arbitrarily.

Toxinotyping

A number of strains were kindly toxinotyped [16] at the
laboratory of M. Rupnik.

RESULTS

A 5-plex PCR was developed for the detection of
the four C. difficile toxin genes, tcdA, tcdB, cdtA,
and cdtB, with 16S rDNA as an internal PCR
control (Fig. 1). Primers were chosen to cover all

genetic variants present in GenBank, and ampli-
con sizes were chosen to be distinguishable on
agarose gels. The method was validated on 24
reference strains, each representing a unique
toxinotype, and all genes were identified correctly
according to previous genetic analysis of the
reference strains [16–18,29–31]. The primers used
to amplify tcdA are located upstream of the
repetitive region in the 3¢-end which, in some
strains, contains various deletions that render the
gene product non-detectable by EIA methods.
Therefore, strains that are TcdA-negative due to
3¢-end deletions are still tcdA-positive according
to the present 5-plex PCR. This phenomenon is
also illustrated by the four reference strains, 1470
[17], SUC36 [30], IS58 and R11402 [29], which are
tcdA-positive according to the multiplex PCR,

Table 1. Primers used in the present
analysis

Analysis

Gene

target

Primer

name Sequence (5¢–3¢)

Primer

concentration

(lM)
Amplicon

size (bp)

5-plex PCR tcdA tcdA-F3345 GCATGATAAGGCAACTTCAGTGGTAa 0.6 629
tcdA-R3969 AGTTCCTCCTGCTCCATCAAATG 0.6

tcdB tcdB-F5670 CCAAARTGGAGTGTTACAAACAGGTG 0.4 410
tcdB-R6079A GCATTTCTCCATTCTCAGCAAAGTA 0.2
tcdB-R6079B GCATTTCTCCGTTTTCAGCAAAGTA 0.2

cdtA cdtA-F739A GGGAAGCACTATATTAAAGCAGAAGC 0.05 221
cdtA-F739B GGGAAACATTATATTAAAGCAGAAGC 0.05
cdtA-R958 CTGGGTTAGGATTATTTACTGGACCA 0.1

ctdB ctdB-F617 TTGACCCAAAGTTGATGTCTGATTG 0.1 262
cdtB-R878 CGGATCTCTTGCTTCAGTCTTTATAG 0.1

16S rDNA PS13 GGAGGCAGCAGTGGGGAATA 0.05 1062
PS14 TGACGGGCGGTGTGTACAAG 0.05

tcdC
analysis

tcdC tcdC-F()17) AAAAGGGAGATTGTATTATGTTTTC 0.2 475c

tcdC-R(+462) CAATAACTTGAATAACCTTACCTTCA 0.2
tcdA 3¢-end
deletions

tcdA NK9 CCACCAGCTGCAGCCATAb 0.17 2535c

NKV011 TTTTGATCCTATAGAATYTAACTTAGTAACb 0.17

aThe first 23 nucleotides are the same as in primer YT28 from [50].
bFrom [27], except for one degenerate nucleotide (Y) added at position 18 of primer NKV011.
cAmplicon size when no deletion was present.

16S -
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Fig. 1. Toxin gene profiles of eight selected Clostridium
difficile strains. Lanes 1, 2, 5 and 8: tcdA+, tcdB+, cdtAB+.
Lanes 3, 4 and 7: tcdA+, tcdB+, cdtAB). Lane 6: non-
toxigenic C. difficile. Lane 9: 100-bp DNA marker.
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despite the fact that they all contain 3¢-end
deletions according to their original references.

The 5-plex PCR was applied to 159 C. difficile
strains isolated from Danish patients with diar-
rhoea collected over a period of 7 months. Four
different toxin gene profiles were found, as listed
in Table 2. Thirty-seven strains (23%) possessed
the genes encoding the binary toxin (cdtAB), and
36 of these strains also harboured tcdA and tcdB,
whereas one strain was tcdA-positive and
tcdB-negative. As this latter profile is rather
uncommon, the absent tcdB gene was confirmed
by an alternative PCR method [33].

Ninety-eight strains contained tcdA and tcdB,
and no genes encoding binary toxins, and 24
strains were non-toxigenic. In order to investigate
3¢-end deletions in tcdA, a supplemental PCR was
performed, according to Kato et al. (1999), and a
c. 700-bp deletion was found in 26 strains, all
harbouring the genes encoding the binary toxin
(ctdAB), combined with tcdA and tcdB (25 strains),
and one strain positive for tcdA and negative for
tcdB. The tcdC gene was investigated by partial
sequencing. Thereby, premature stop codons and
internal deletions could be identified. This
revealed that 39 strains contained a gene deletion
of 18, 39 or 54 bp, and that 36 of these strains
contained a C fi T transition at position 184 bp,
which introduces a premature stop codon. The 39-
bp deletion was the most frequently observed
deletion, in 34 strains, whereas 18-bp and 54-bp

deletions were found in one and four strains,
respectively (Table 2).

All of the 37 strains that possessed the binary
toxin (except three strains that died during the
experiments) were subjected to PCR ribotyping,
which revealed eight different types. By compar-
ing the band patterns with those of the available
reference strains, it was possible to assign two
profiles (019 and 023) according to Stubbs et al.
(1999); the remaining were named arbitrarily
(dk1, dk2, dk3, dk10, dk11 and dk12). PCR
ribotype dk2 accounted for 21 strains among the
Danish isolates, and was therefore by far the most
predominant. Among the 21 strains with PCR
ribotype dk2, eight different resistance profiles
were found. Selected strains were analysed by
toxinotyping, and they all belonged to known
toxinotypes. When the strain profiles were com-
pared according to geography and patient age, it
was found that no particular gene profile was
associated with geographical origin or patient age
(data not shown).

DISCUSSION

Pathogenic strains of C. difficile produce TcdA
and ⁄ or TcdB and, in addition to these toxins,
several strains isolated from outbreaks and
severe infections have been shown to harbour
the genes encoding the binary toxin CDT. There-
fore, tcdA, tcdB, cdtA and cdtB were incorporated

Table 2. Genetic profile of the 159 clinical strains of the present study

No. of

strains

found tcdA ⁄ tcdB cdtA ⁄ cdtB

tcdA
deletion

(c. bp)

tcdC
deletion

(bp)

tcdC stop

codon at

184 bp

PCR

ribotypea Toxinotype

1 + ⁄+ + ⁄+ – – ) 019 IX
2 + ⁄+ + ⁄+ – 39 + dk3 V
1 + ⁄+ + ⁄+ – 39 + dk3 V
1 + ⁄+ + ⁄+ – 39 + dk3 ND
4 + ⁄+ + ⁄+ – 54 + 023 IV
1 + ⁄+ + ⁄+ – 39 + dk11 V
1 + ⁄+ + ⁄+ – 39 + dk1 ND
3 + ⁄+ + ⁄+ 700 39 + NA NA
1 + ⁄+ + ⁄+ 700 39 + dk10 ND
7 + ⁄+ + ⁄+ 700 39 + dk2 ND
1 + ⁄+ + ⁄+ 700 39 + dk2 VI
4 + ⁄+ + ⁄+ 700 39 + dk2 ND
2 + ⁄+ + ⁄+ 700 39 + dk2 ND
2 + ⁄+ + ⁄+ 700 39 + dk2 ND
1 + ⁄+ + ⁄+ 700 39 + dk2 ND
2 + ⁄+ + ⁄+ 700 39 + dk2 ND
2 + ⁄+ + ⁄+ 700 39 + dk2 VI
1 + ⁄) + ⁄+ 700 39 + dk12 XIa
2 + ⁄+ ) ⁄) – 39 ) ND ND
1 + ⁄+ ) ⁄) – 18 ) ND ND
95 + ⁄+ ) ⁄) – – ) ND ND
4 ) ⁄) ) ⁄) – – ) ND ND
Total 159

aPCR ribotypes 019 and 023 named according to [28]; the remaining types were arbitrarily named in this study.
NA, not available; ND, not determined.
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in the present multiplex PCR, as they were
considered to be the most relevant genes for
primary characterization of pathogenic C. difficile.
The templates to be analysed were easily pre-
pared by boiling bacterial colonies, and the PCR
conditions were validated by the control band
directed towards a universal 16S rDNA
sequence.

Variant forms of both cdtAB and tcdA have
been found to contain internal deletions. There-
fore, when interpreting the results obtained with
the present 5-plex PCR, several considerations
should be taken into account. (i) Primers for
cdtA and ctdB are located within the region that
has been truncated in strain 630 (accession no.:
AM180355) and, therefore, a negative result does
not exclude the presence of the truncated genes.
However, strains harbouring such deletions do
not produce a functional binary toxin and,
therefore, are considered to be less relevant to
identification from a clinical point of view
[18,34]. (ii) Primers for tcdA are located upstream
of the 3¢-end repetitive region, and strains
harbouring deletions in this region will therefore
produce a positive result. However, more exten-
sively truncated tcdA genes, such as that found
in strain ATCC 8864 (accession no.: AF134592)
with a 5.9-kb deletion of tcdA and tcdC, resulting
in a tcdA of only 2.8 kb, will produce a negative
result [35,35,36]. Although the clinical signifi-
cance of strain ATCC 8864 is still unknown,
strains with deletions restricted to the repetitive
region of tcdA have been isolated in the context
of several outbreaks [23–25,37–39] and severe
infections [26,40,41]. A recent survey of Euro-
pean laboratories has revealed that more than
half of the laboratories use ELISA tests that
detect only TcdA [42]. As these tests are based
on the recognition of the ligand-binding domain
encoded by the repetitive region of tcdA, they
will not be detected. Therefore, in order to detect
such strains, methods, such as the method
described here, must target tcdB and ⁄ or the
5¢-end of tcdA.

The tcdC gene has attracted much attention,
because it is a presumed negative regulator of the
two major C. difficile toxins, TcdA and TcdB, and
because several potential gene inactivations in
this gene have been identified in strains from
severe infections and epidemic outbreaks. There-
fore, it could be presumed that defects in this
gene may be related to elevated toxin expression,

which would explain the relatively high pathoge-
nicity of these strains.

In order to investigate tcdC, PCR and sequenc-
ing primers that allowed the identification of the
first 425 bp were designed, covering previously
identified possible inactivation features, includ-
ing: (i) C-terminal deletions of 18 or 39 bp
[22,33,43]; (ii) a premature stop codon introduced
by a single base-pair deletion at position 117,
characteristic of the Canadian 027 strain [44]; (iii)
a single base-pair deletion in a stretch of adenines
between positions 10 and 17 [35], introducing a
frameshift and, hence, a premature stop codon
resulting in a 22 amino acid product; and (iv)
a C fi T transition at position 184 leading to
a premature stop codon and a truncated protein
of 61 amino acids [33]. The Danish strains con-
tained only one type of premature stop codon,
resulting from the C fi T transition at posi-
tion 184, whereas three different C-terminal dele-
tions of 18, 39 and 54 bp were observed. To the
best of our knowledge, a 54-bp deletion, revealed
by sequence analysis, has not previously been
described, whereas the three different deletion
sizes (18, 39 and 54 bp) may correspond to what
was also observed by Stare et al. (2007) after
PCR– restriction fragment length polymorphism
analysis, where restriction pattern type 4 may
correspond to a 54-bp deletion. Also, restriction
pattern 4 was found in a toxinotype IV strain, as
it was in all strains with a 54-bp deletion in this
study. The meaning of the different alterations in
tcdC remains to be investigated, and it will be
interesting to see whether future experiments will
be able to link different tcdC variants to different
levels of tcdA and tcdB expression and, hence, to a
gradation in the pathogenicity. A recent study
[45] has shown that a tcdC harbouring an 18-bp
deletion does indeed encode an active TcdC that
is able to downregulate toxin expression, and it
was pointed out that the D117 mutation, observed
in the 027 strains, is more likely to be responsible
for the highly pathogenic phenotype. In light of
the different genetic changes that may affect the
functionality of tcdC, the present sequencing-
based method is considered to be a valuable
strategy for investigation of different genetic
characteristics in one analysis.

Thirty-seven strains (23%) contained the
genes encoding the binary toxin (cdtAB) and,
among these, 36 strains harboured a possibly
inactivated tcdC and 26 strains a 700-bp deletion
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in tcdA (Table 2). The prevalence of the binary
toxin genes among the Danish strains is rela-
tively high, as compared to those of between
2.8% and 8.6% that have been reported in other
studies [31, 46–49]. Only one type of tcdA
deletion of 700 bp (estimated after agarose gel
electrophoresis) was observed, by use of the
primer system originally developed by Kato
et al. (1999). This primer system amplifies a
stretch of 2535 bp if no deletion is present, and,
in their study, truncated genes were reduced by
1821 bp, due to two different 3¢-end deletions.
This primer system has also been used by van
der Berg et al. (2004), who observed deletions of
1.8, 1.7 and 0.8 kb. The 0.8-kb deletion was
found in a strain of serogroup S3, and may
correspond to the 0.7-kb deletion observed in
the Danish strains.

Strains that were positive for the binary toxin
were also subjected to PCR ribotyping in order to
investigate relatedness to the highly pathogenic
strain of PCR ribotype 027. No strains in the
present study matched the 027 PCR ribotype. The
Danish strains revealed eight different PCR ribo-
types, with dk2 being the predominant type,
accounting for 21 strains, all with a 700-bp
deletion in tcdA, a 39-bp deletion and a premature
stop codon in tcdC. The PCR ribotype dk2 strains
were not associated with any particular geograph-
ical area, or with any particular patient age group.
For unknown reasons, this particular PCR ribo-
type, with a very homogeneous genetic profile, is
the most prevalent among the Danish isolates.
Unfortunately, it was not possible to label the
different PCR ribotypes according to the nomen-
clature of Stubbs et al. (1999), as this would
require the extensive strain collection for com-
plete band comparison. The initiative taken by the
ESCMID Study Group for C. difficile, to make a
remote-access server available for PCR ribotype
band comparison, seems to be a promising strat-
egy for future strain identification and epidemi-
ological surveillance [22].

We conclude that the new 5-plex PCR method
presented in this article is a valuable tool for
primary characterization of C. difficile. Strains
with relevant toxin profiles may subsequently be
assayed for tcdA and tcdC deletions and subjected
to PCR-based ribotyping. This will allow further
evaluation of their pathogenic potential and
produce data that are important for epidemiolog-
ical studies.
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