Skip to main content

Early Vascular Aging in Young Adults Is Instrumental as the Screening Tool to Combat CVD Epidemics in the Population

  • Chapter
  • First Online:
All Around Suboptimal Health

Abstract

Cardiovascular diseases (CVD) remain the leading causes of death worldwide. Moreover, rejuvenation of morbidity and mortality from CVD is widely reported. Contextually, more attention should be paid to suboptimal health conditions at young age, in order to cost-effectively protect populations against vascular aging. The key point is to change the paradigm from reactive medical services, applied to patients affected by downstream pathologies such as clinically manifested myocardial infarction and ischemic stroke, among others, to a predictive approach applied to individuals in suboptimal health conditions, in order to protect them against the health-to-disease transition based on a multi-parametric health risk assessment and application of artificial intelligence in medicine. An in-depth analysis presented in this chapter motivates follow-up research on early vacular aging (EVA) syndrome and application of innovative screening programs meeting the needs of young populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABI:

Ankle-brachial index

AC:

Atherogenic coefficient

AGEs:

Advanced glycation end products

AH:

Arterial hypertension

BH:

Burdened heredity

BM:

Body mass

BMI:

Body mass index

BP:

Blood pressure

CAVI:

Cardio-ankle vascular index

CR:

Calorie restriction

CV:

Cardiovascular

CVD:

Cardiovascular diseases

CVRF:

Cardiovascular risk factors

DASH:

Dietary Approaches to Stop Hypertension

DBP:

Diastolic blood pressure

DSR:

Dietary sodium restriction

EDD:

Endothelium-dependent dilation

eNOS:

Endothelial nitric oxide-synthase

ET-1:

Endothelin-1

EVA :

Early vascular aging

HDL:

High-density lipoproteins

HR:

Heart rate

LDL:

Low-density lipoproteins

MitoQ:

Mitochondria-targeted antioxidant

MMPs:

Matrix metalloproteinases

MnSOD:

Manganese superoxide dismutase

mTOR:

Mammalian target of rapamycin

NAD:

Nicotinamide adenine dinucleotide

NMN:

Nicotinamide mononucleotide

NO:

Nitric oxide

NR:

Nicotinamide riboside

PH:

Prehypertension

PWV:

Pulse wave velocity

RF:

Risk factors

ROS:

Reactive oxygen species

SBP:

Systolic blood pressure

SIRT-1:

Sirtuin 1

TC:

Total cholesterol

TG:

Triglycerides

VA:

Vascular age

VS:

Vascular stiffness

YP:

Young people

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS (2023) American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation 147(8):e93–e621. https://doi.org/10.1161/CIR.0000000000001123

  2. Sagris M, Antonopoulos AS, Theofilis P, Oikonomou E, Siasos G, Tsalamandris S, Antoniades C, Brilakis ES, Kaski JC, Tousoulis D (2022) Risk factors profile of young and older patients with myocardial infarction. Cardiovasc Res 118(10):2281–2292. https://doi.org/10.1093/cvr/cvab264

    Article  CAS  PubMed  Google Scholar 

  3. Gooding HC, Gidding SS, Moran AE, Redmond N, Allen NB, Bacha F, Burns TL, Catov JM, Grandner MA, Harris KM, Johnson HM, Kiernan M, Lewis TT, Matthews KA, Monaghan M, Robinson JG, Tate D, Bibbins-Domingo K, Spring B (2020) Challenges and opportunities for the prevention and treatment of cardiovascular disease among young adults: report from a National Heart, Lung, and Blood Institute working group. J Am Heart Assoc 9(19):e016115. https://doi.org/10.1161/JAHA.120.016115

  4. Aatola H, Koivistoinen T, Tuominen H, Juonala M, Lehtimäki T, Viikari JSA, Raitakari OT, Kähönen M, Hutri-Kähönen N (2017) Influence of child and adult elevated blood pressure on adult arterial stiffness: the cardiovascular risk in young Finns study. Hypertension 70(3):531–536. https://doi.org/10.1161/HYPERTENSIONAHA.117.09444. Epub 2017 Jul 3

    Article  CAS  PubMed  Google Scholar 

  5. Evsevyeva MY, Eremin MV, Rostovtseva MV, Sergeeva OV, Rusidi AV, Kudryavtseva VD, Shchetinin EV (2022) Preventive screening of young people from the perspective of vascular aging phenotypes: the role of body weight. Ration Pharmacother Cardiol 18(1):42–48. https://doi.org/10.20996/1819-6446-2022-02-14

    Article  Google Scholar 

  6. Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, Anto EO, Mahara G, Zheng Y, Li B, Wang Y, Guo X, Golubnitschaja O (2021) ALL AROUND SUBOPTIMAL HEALTH. A joint position paper of the suboptimal health study consortium and European Association for Predictive, Preventive and Personalised Medicine. EPMA J 12(4):1–31. https://doi.org/10.1007/s13167-021-00253-2

    Article  Google Scholar 

  7. Evsevieva M, Sergeeva O, Mazurakova A, Koklesova L, Prokhorenko-Kolomoytseva I, Shchetinin E, Birkenbihl C, Costigliola V, Kubatka P, Golubnitschaja O (2022) Pre-pregnancy check-up of maternal vascular status and associated phenotype is crucial for the health of mother and offspring. EPMA J 13(3):351–366. https://doi.org/10.1007/s13167-022-00294-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Golubnitschaja O, Potuznik P, Polivka J Jr, Pesta M, Kaverina O, Pieper CC, Kropp M, Thumann G, Erb C, Karabatsiakis A, Stetkarova I, Polivka J, Costigliola V (2022) Ischemic stroke of unclear aetiology: a case-by-case analysis and call for a multi-professional predictive, preventive and personalised approach. EPMA J 13(4):535–545. https://doi.org/10.1007/s13167-022-00307-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nilsson PM (2015) Early vascular aging (EVA): new directions in cardiovascular protection. Academic, pp 129–136. ISBN 97801280138782015. https://doi.org/10.1016/B978-0-12-801387-8.00013-2

    Book  Google Scholar 

  10. Laurent S, Boutouyrie P, Cunha P, Lacolley P, Nilsson P (2019) Concept of extremes in vascular aging from early vascular aging to supernormal vascular aging. Hypertension 74:218–228. https://doi.org/10.1161/HYPERTENSIONAHA.119.12655

    Article  CAS  PubMed  Google Scholar 

  11. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang KL, Webb DJ, Willum Hansen T, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB (2014) Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant metaanalysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol 63(7):636–646. https://doi.org/10.1016/j.jacc.2013.09.063

  12. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, Vita JA, Levy D, Benjamin EJ (2010) Arterial stiffness and cardiovascular events: the Framingham heart study. Circulation 121(4):505–511. https://doi.org/10.1161/CIRCULATIONAHA.109.886655

  13. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Di Angelantonio E, Franco OH, Halvorsen S, Hobbs FDR, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B, National Cardiac Societies ESC, ESC Scientific Document Group (2021) 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 42(34):3227–3337. https://doi.org/10.1093/eurheartj/ehab484. Erratum in: Eur Heart J. 2022 Nov 7;43(42):4468

    Article  PubMed  Google Scholar 

  14. Teemu JN, Bindu K, Gary FM, Ramachandran SV (2019) Relative contributions of pulse pressure and arterial stiffness to cardiovascular disease. The Framingham Heart Study Hypertension 73(3):712–717. https://doi.org/10.1161/HYPERTENSIONAHA.118.12289

    Article  CAS  Google Scholar 

  15. Nowak KL, Rossman MJ, Chonchol M, Seals DR (2018) Strategies for achieving healthy vascular aging. Hypertension 71(3):389–402. https://doi.org/10.1161/HYPERTENSIONAHA.117.10439

  16. LaRocca TJ, Martens CR, Seals DR (2017) Nutrition and other lifestyle influences on arterial aging. Ageing Res Rev 39:106–119. https://doi.org/10.1016/j.arr.2016.09.002

    Article  PubMed  Google Scholar 

  17. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327. https://doi.org/10.1016/j.jacc.2009.10.061

    Article  PubMed  Google Scholar 

  18. Aatola H, Hutri-Kähönen N, Juonala M, Laitinen TT, Pahkala K, Mikkilä V, Telama R, Koivistoinen T, Lehtimäki T, Viikari JS, Raitakari OT, Kähönen M (2014) Prospective relationship of change in ideal cardiovascular health status and arterial stiffness: the cardiovascular risk in young Finns study. J Am Heart Assoc 3(2):e000532. https://doi.org/10.1161/JAHA.113.000532

  19. Wu F, Ahola-Olli A, Pahkala K, Hakala JO, Juonala M, Salo P, Lehtimäki T, Hutri-Kähönen N, Kähönen M, Laitinen T, Tossavainen P, Taittonen L, Jokinen E, Viikari JSA, Magnussen CG, Raitakari OT, Rovio SP (2022) Risk factor profile in youth, genetic risk, and adulthood cognitive function: the cardiovascular risk in young Finns study. Neuroepidemiology 56(3):201–211. https://doi.org/10.1159/000524986

  20. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A (2018) Mechanisms of vascular aging. Circ Res 123:849–867. https://doi.org/10.1161/CIRCRESAHA.118.311378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clayton ZS, Craighead DH, Darvish S, Coppock M, Ludwig KR, Brunt VE, Seals DR, Rossman MJ (2022) Promoting healthy cardiovascular aging: emerging topics. J Cardiovasc Aging 2:43. https://doi.org/10.20517/jca.2022.27

  22. Kirkman DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG (2021) Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 320(5):H2080–H2100. https://doi.org/10.1152/ajpheart.00917.2020

  23. Pucci G, Martina MR, Bianchini E, D’abbondanza M, Curcio R, Battista F, Anastasio F, Crapa ME, Sanesi L, Gemignani V, Vaudo G (2023) Relationship between measures of adiposity, blood pressure and arterial stiffness in adolescents. The MACISTE study. J Hypertens 41(7):1100–1107. https://doi.org/10.1097/HJH.0000000000003433. Epub 2023 May 19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Agbaje AO (2022) Arterial stiffness precedes hypertension and metabolic risks in youth: a review. J Hypertens 40(10):1887–1896. https://doi.org/10.1097/HJH.0000000000003239

    Article  CAS  PubMed  Google Scholar 

  25. Nilsson PM (2020) Early vascular aging in hypertension. Front Cardiovasc Med 7:6. https://doi.org/10.3389/fcvm.2020.00006

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weisbrod RM, Shiang T, Al Sayah L, Fry JL, Bajpai S, Reinhart-King CA, Lob HE, Santhanam L, Mitchell G, Cohen RA, Seta F (2013) Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension 62:1105–1110. https://doi.org/10.1161/HYPERTENSIONAHA.113.01744

    Article  CAS  PubMed  Google Scholar 

  27. Mitchell GF (2021) Arterial stiffness in aging: does it have a place in clinical practice?: recent advances in hypertension. Hypertension 77(3):768–780. https://doi.org/10.1161/HYPERTENSIONAHA.120.14515

  28. Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KR, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ 2nd, Madhur MS, Harrison DG (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126(1):50–67. https://doi.org/10.1172/JCI80761

  29. Narkiewicz K, Phillips BG, Kato M, Hering D, Bieniaszewski L, Somers VK (2005) Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension 45:522–525. https://doi.org/10.1161/01.HYP.0000160318.46725.46

    Article  CAS  PubMed  Google Scholar 

  30. Valisno JAC, May J, Singh K, Helm EY, Venegas L, Budbazar E, Goodman JB, Nicholson CJ, Avram D, Cohen RA, Mitchell GF, Morgan KG, Seta F (2021) BCL11B regulates arterial stiffness and related target organ damage. Circ Res 128(6):755–768. https://doi.org/10.1161/CIRCRESAHA.120.316666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wadström BN, Engström G, Nilsson P (2021) Exploring and comparing definitions of healthy vascular ageing in the population: characteristics and prospective cardiovascular risk. J Hum Hypertens 35(5):428–436. https://doi.org/10.1038/s41371-020-0353-1

    Article  CAS  Google Scholar 

  32. Miyoshi Т, Ito Н (2021) Arterial stiffness in health and disease: the role of cardio–ankle vascular index review. J Cardiol 78(6):493–501. https://doi.org/10.1016/j.jjcc.2021.07.011

    Article  PubMed  Google Scholar 

  33. Kjøllesdal MKR, Carslake D, Smith GD, Shaikh F, Næss Ø (2022) The role of family factors in the association between early adulthood BMI and risk of cardiovascular disease. An intergenerational study of BMI in early adulthood and cardiovascular mortality in parents, aunts and uncles. Int J Obes 46(1):228–234. https://doi.org/10.1038/s41366-021-00987-z

    Article  Google Scholar 

  34. Catov JM, McNeil RB, Marsh DJ, Mercer BM, Bairey Merz CN, Parker CB, Pemberton VL, Saade GR, Chen YI, Chung JH, Ehrenthal DB, Grobman WA, Haas DM, Parry S, Polito L, Reddy UM, Silver RM, Simhan HN, Wapner RJ, Kominiarek M, Kreutz R, Levine LD, Greenland P (2021) NHLBI nuMoM2b Heart Health Study. Early pregnancy Atherogenic profile in a first pregnancy and hypertension risk 2 to 7 years after delivery. J Am Heart Assoc 10(5):e017216. https://doi.org/10.1161/JAHA.120.017216

  35. Nilsson PM, Laurent S, Cunha PG, Olsen MH, Rietzschel E, Franco OH, Ryliškytė L, Strazhesko I, Vlachopoulos C, Chen CH, Boutouyrie P, Cucca F, Lakatta EG, Scuteri A (2018) Metabolic syndrome, Arteries REsearch (MARE) Consortium. Characteristics of healthy vascular ageing in pooled population-based cohort studies: the global metabolic syndrome and artery REsearch consortium. J Hypertens 36(12):2340–2349. https://doi.org/10.1097/HJH.0000000000001824

  36. Dangardt F, Osika W, Volkmann R, Gan LM, Friberg P (2008) Obese children show increased intimal wall thickness and decreased pulse wave velocity. Clin Physiol Funct Imaging 28:287–293. https://doi.org/10.1111/j.1475-097X.2008.00806.x

    Article  PubMed  Google Scholar 

  37. Corden B, Keenan NG, de Marvao AS, Dawes TJ, Decesare A, Diamond T, Durighel G, Hughes AD, Cook SA, O’Regan DP (2013) Body fat is associated with reduced aortic stiffness until middle age. Hypertension 61(6):1322–1327. https://doi.org/10.1161/HYPERTENSIONAHA.113.01177

  38. Li P, Wang L, Liu C (2017) Overweightness, obesity and arterial stiffness in healthy subjects: a systematic review and metaanalysis of literature studies. J Postgrad Med 129(2):224–230. https://doi.org/10.1080/00325481.2017.1268903

    Article  Google Scholar 

  39. Charakida M, Deanfield JE (2018) BMI trajectories from childhood: the slippery slope to adult obesity and cardiovascular disease. Eur Heart J 39(24):2271–2273. https://doi.org/10.1093/eurheartj/ehy218

    Article  PubMed  Google Scholar 

  40. Lurbe E, Torro I, Garcia-Vicent C, Alvarez J, Fernandez-Fornoso JA, Redon J (2012) Blood pressure and obesity exert independent influences on pulse wave velocity in youth. Hypertension 60(2):550–555. https://doi.org/10.1161/HYPERTENSIONAHA.112.194746

    Article  CAS  PubMed  Google Scholar 

  41. Charakida M, Jones A, Falaschetti E, Khan T, Finer N, Sattar N, Hingorani A, Lawlor DA, Smith GD, Deanfield JE (2012) Childhood obesity and vascular phenotypes: a population study. J Am Coll Cardiol 60:2643–2650. https://doi.org/10.1016/j.jacc.2012.08.1017

  42. Onuh JO, Qiu H (2020) New progress on the study of aortic stiffness in age-related hypertension. J Hypertens 38(10):1871–1877. https://doi.org/10.1097/HJH.0000000000002452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brook RD, Appel LJ, Rubenfire M, Ogedegbe G, Bisognano JD, Elliott WJ, Fuchs FD, Hughes JW, Lackland DT, Staffileno BA, Townsend RR, Rajagopalan S (2013) Beyond medications and diet: alternative approaches to lowering blood pressure: a scientific statement from the American Heart Association. Hypertension 61:1360–1383. https://doi.org/10.1161/HYP.0b013e318293645f

    Article  CAS  PubMed  Google Scholar 

  44. Seals DR, Edward F (1985) Adolph distinguished lecture: the remarkable anti-aging effects of aerobic exercise on systemic arteries. J Appl Physiol 2014(117):425–439. https://doi.org/10.1152/japplphysiol.00362.2014

    Article  CAS  Google Scholar 

  45. Gioscia-Ryan RA, Battson ML, Cuevas LM, Zigler MC, Sindler AL, Seals DR (2016) Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice. Aging (Albany NY) 8:2897–2914. https://doi.org/10.18632/aging.101099

    Article  CAS  PubMed  Google Scholar 

  46. Gioscia-Ryan RA, Clayton ZS, Zigler MC, Richey JJ, Cuevas LM, Rossman MJ, Battson ML, Ziemba BP, Hutton DA, VanDongen NS, Seals DR (2021) Lifelong voluntary aerobic exercise prevents age- and Western diet-induced vascular dysfunction, mitochondrial oxidative stress and inflammation in mice. J Physiol 599(3):911–925. https://doi.org/10.1113/JP280607

    Article  CAS  PubMed  Google Scholar 

  47. Rossman MJ, Kaplon RE, Hill SD, McNamara MN, Santos-Parker JR, Pierce GL, Seals DR, Donato AJ (2017) Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am J Physiol Heart Circ Physiol 313(5):H890–H895. https://doi.org/10.1152/ajpheart.00416.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dębiec-Bąk A, Skrzek A, Podbielska H, Golubnitschaja O, Stefańska M (2021) Superficial temperature distribution patterns before and after physical activity in school children are indicative for personalized exercise coaching and disease prevention. EPMA J 12(4):435–447. https://doi.org/10.1007/s13167-021-00262-1

    Article  PubMed  PubMed Central  Google Scholar 

  49. Weiss EP, Fontana L (2011) Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol 301(4):H1205–H1219. https://doi.org/10.1152/ajpheart.00685.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Donato AJ, Walker AE, Magerko KA, Bramwell RC, Black AD, Henson GD, Lawson BR, Lesniewski LA, Seals DR (2013) Life-long caloric restriction reduces oxidative stress and preserves nitric oxide bioavailability and function in arteries of old mice. Aging Cell 12(5):772–783. https://doi.org/10.1111/acel.12103

    Article  CAS  PubMed  Google Scholar 

  51. Wohlgemuth SE, Julian D, Akin DE, Fried J, Toscano K, Leeuwenburgh C, Dunn WA Jr (2007) Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res 10(3):281–292. https://doi.org/10.1089/rej.2006.0535

    Article  CAS  PubMed  Google Scholar 

  52. Pierce GL, Beske SD, Lawson BR, Southall KL, Benay FJ, Donato AJ, Seals DR (2008) Weight loss alone improves conduit and resistance artery endothelial function in young and older overweight/obese adults. Hypertension 52(1):72–79. https://doi.org/10.1161/HYPERTENSIONAHA.108.111427

  53. Dengo AL, Dennis EA, Orr JS, Marinik EL, Ehrlich E, Davy BM, Davy KP (2010) Arterial destiffening with weight loss in overweight and obese middle-aged and older adults. Hypertension 55(4):855–861. https://doi.org/10.1161/HYPERTENSIONAHA.109.147850

    Article  CAS  PubMed  Google Scholar 

  54. Brinkley TE, Leng I, Bailey MJ, Houston DK, Hugenschmidt CE, Nicklas BJ, Hundley WG (2021) Effects of exercise and weight loss on proximal aortic stiffness in older adults with obesity. Circulation 144(9):684–693. https://doi.org/10.1161/CIRCULATIONAHA.120.051943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. O’Donnell M, Mente A, Yusuf S (2015) Sodium intake and cardiovascular health. Circ Res 116:1046–1057. https://doi.org/10.1161/CIRCRESAHA.116.303771

    Article  CAS  PubMed  Google Scholar 

  56. Svetkey LP, Simons-Morton DG, Proschan MA, Sacks FM, Conlin PR, Harsha D, Moore TJ (2001) Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop. Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 344:3–10. https://doi.org/10.1056/NEJM200101043440101

  57. Jablonski KL, Racine ML, Geolfos CJ, Gates PE, Chonchol M, McQueen MB, Seals DR (2013) Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J Am Coll Cardiol 61:335–343. https://doi.org/10.1016/j.jacc.2012.09.010

  58. Ablonski KL, Fedorova OV, Racine ML, Geolfos CJ, Gates PE, Chonchol M, Fleenor BS, Lakatta EG, Bagrov AY, Seals DR (2013) Dietary sodium restriction and association with urinary marinobufagenin, blood pressure, and aortic stiffness. Clin J Am Soc Nephrol 8:1952–1959. https://doi.org/10.2215/CJN.00900113

  59. Gates PE, Tanaka H, Hiatt WR, Seals DR (2004) Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension. Hypertension 44:35–41. https://doi.org/10.1161/01.HYP.0000132767.74476.64

    Article  CAS  PubMed  Google Scholar 

  60. Kidambi S, Pan X, Yang C, Liu P, Roberts ML, Li Y, Wang T, Laud PW, Liu Y, Rubens M, Thomas R, Widlansky ME, Beyer AM, Liu Y, Cowley AW Jr, Kotchen TA, Munyura Y, Moosreiner A, Mattson DL, Liang M (2021) Dietary sodium restriction results in tissue-specific changes in DNA methylation in humans. Hypertension 78:434–446. https://doi.org/10.1161/HYPERTENSIONAHA.120.17351

  61. Maddock J, Ziauddeen N, Ambrosini GL, Wong A, Hardy R, Ray S (2018) Adherence to a dietary approaches to stop hypertension (DASH)-type diet over the life course and associated vascular function: a study based on the MRC 1946 British birth cohort. Br J Nutr 119:581–589. https://doi.org/10.1017/S0007114517003877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hodson L, Harnden KE, Roberts R, Dennis AL, Frayn KN (2010) Does the DASH diet lower blood pressure by altering peripheral vascular function? J Hum Hypertens 24:312–319. https://doi.org/10.1038/jhh.2009.65

    Article  CAS  PubMed  Google Scholar 

  63. Couch SC, Saelens BE, Khoury PR, Dart KB, Hinn K, Mitsnefes MM, Daniels SR, Urbina EM (2021) Dietary approaches to stop hypertension dietary intervention improves blood pressure and vascular health in youth with elevated blood pressure. Hypertension 77:241–251. https://doi.org/10.1161/HYPERTENSIONAHA.120.16156

  64. Torres-Peña JD, Rangel-Zuñiga OA, Alcala-Diaz JF, Lopez-Miranda J, Delgado-Lista J (2020) Mediterranean diet and endothelial function: a review of its effects at different vascular bed levels. Nutrients 12:2212. https://doi.org/10.3390/nu12082212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA (2013) PREDIMED Study Investigators Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368:1279–1290. https://doi.org/10.1056/NEJMoa1200303

  66. Jennings A, Berendsen AM, de Groot LCPGM, Feskens EJM, Brzozowska A, Sicinska E, Pietruszka B, Meunier N, Caumon E, Malpuech-Brugère C, Santoro A, Ostan R, Franceschi C, Gillings R, O’ Neill CM, Fairweather-Tait SJ, Minihane AM, Cassidy A (2019) Mediterranean-style diet improves systolic blood pressure and arterial stiffness in older adults. Hypertension 73:578–586. https://doi.org/10.1161/HYPERTENSIONAHA.118.12259

  67. Park Y, Subar AF, Hollenbeck A, Schatzkin A (2011) Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch Intern Med 171:1061–1068. https://doi.org/10.1001/archinternmed.2011.18

    Article  PubMed  PubMed Central  Google Scholar 

  68. Todd S, Woodward M, Tunstall-Pedoe H, Bolton-Smith C (1999) Dietary antioxidant vitamins and fiber in the etiology of cardiovascular disease and all-causes mortality: results from the Scottish heart health study. Am J Epidemiol 150:1073–1080. https://doi.org/10.1093/oxfordjournals.aje.a009931

    Article  CAS  PubMed  Google Scholar 

  69. Streppel MT, Ocké MC, Boshuizen HC, Kok FJ, Kromhout D (2008) Dietary fiber intake in relation to coronary heart disease and all-cause mortality over 40 y: the Zutphen study. Am J Clin Nutr 88:1119–1125. https://doi.org/10.1093/ajcn/88.4.1119

    Article  CAS  PubMed  Google Scholar 

  70. Lubin F, Lusky A, Chetrit A, Dankner R (2003) Lifestyle and ethnicity play a role in all-cause mortality. J Nutr 133:1180–1185. https://doi.org/10.1093/jn/133.4.1180

    Article  CAS  PubMed  Google Scholar 

  71. Grooms KN, Ommerborn MJ, Pham DQ, Djoussé L, Clark CR (2013) Dietary fiber intake and cardiometabolic risks among US adults, NHANES 1999-2010. Am J Med 126:1059–67.e1. https://doi.org/10.1016/j.amjmed.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  72. Casso AG, Burnsed-Torres ML, Lubieniecki KL, Rossman MJ, Adam EC, Lally HM, Chonchol M, Davy KP, Seals DR, Brunt VE (2022) Consumption of a high-fiber diet improves systolic blood pressure and vascular endothelial function and may reduce oxidative stress in middle-aged to older adults. FASEB J 36. https://doi.org/10.1096/fasebj.2022.36.S1.R4104

  73. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Di Angelantonio E, Franco OH, Halvorsen S, Hobbs FDR, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B (2021) ESC Scientific Document Group. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 42(34):3227–3337. https://doi.org/10.1093/eurheartj/ehab484

  74. Seals DR, Justice JN, LaRocca TJ (2016) Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol 594:2001–2024. https://doi.org/10.1113/jphysiol.2014.282665

    Article  CAS  PubMed  Google Scholar 

  75. Mozaffarian D, Appel LJ, Van Horn L (2011) Components of a cardioprotective diet: new insights. Circulation 123:2870–2891. https://doi.org/10.1161/CIRCULATIONAHA.110.968735

    Article  PubMed  PubMed Central  Google Scholar 

  76. Seals DR, Kaplon RE, Gioscia-Ryan RA, LaRocca TJ (2014) You’re only as old as your arteries: translational strategies for preserving vascular endothelial function with aging. Physiology (Bethesda) 29:250–264. https://doi.org/10.1152/physiol.00059.2013

    Article  CAS  PubMed  Google Scholar 

  77. Zuchi C, Ambrosio G, Lüscher TF, Landmesser U (2010) Nutraceuticals in cardiovascular prevention: lessons from studies on endothelial function. Cardiovasc Ther 28:187–201. https://doi.org/10.1111/j.1755-5922.2010.00165.x

    Article  CAS  PubMed  Google Scholar 

  78. Rossman MJ, LaRocca TJ, Martens CR, Seals DR (1985) Healthy lifestyle-based approaches for successful vascular aging. J Appl Physiol 2018(125):1888–1900. https://doi.org/10.1152/japplphysiol.00521.2018

    Article  CAS  Google Scholar 

  79. Gates PE, Boucher ML, Silver AE, Monahan KD, Seals DR (1985) Impaired flow-mediated dilation with age is not explained by L-arginine bioavailability or endothelial asymmetric dimethylarginine protein expression. J Appl Physiol 2007(102):63–71. https://doi.org/10.1152/japplphysiol.00660.2006

    Article  CAS  Google Scholar 

  80. Sindler AL, Fleenor BS, Calvert JW, Marshall KD, Zigler ML, Lefer DJ, Seals DR (2011) Nitrite supplementation reverses vascular endothelial dysfunction and large elastic artery stiffness with aging. Aging Cell 10:429–437. https://doi.org/10.1111/j.1474-9726.2011.00679.x

  81. Rossman MJ, Gioscia-Ryan RA, Santos-Parker JR, Ziemba BP, Lubieniecki KL, Johnson LC, Poliektov NE, Bispham NZ, Woodward KA, Nagy EE, Bryan NS, Reisz JA, D’Alessandro A, Chonchol M, Sindler AL, Seals DR (2021) Inorganic nitrite supplementation improves endothelial function with aging: translational evidence for suppression of mitochondria-derived oxidative stress. Hypertension 77:1212–1222. https://doi.org/10.1161/HYPERTENSIONAHA.120.16175

  82. Jankowski J, Floege J, Fliser D, Böhm M, Marx N (2021) Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143:1157–1172. https://doi.org/10.1161/CIRCULATIONAHA.120.050686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rossman MJ, Gioscia-Ryan RA, Clayton ZS, Murphy MP, Seals DR (2020) Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clin Sci (Lond) 134:1491–1519. https://doi.org/10.1042/CS20190559

    Article  CAS  PubMed  Google Scholar 

  84. Gioscia-Ryan RA, LaRocca TJ, Sindler AL, Zigler MC, Murphy MP, Seals DR (2014) Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J Physiol 592:2549–2561. https://doi.org/10.1113/jphysiol.2013.268680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, Woodward KA, Chonchol M, Gioscia-Ryan RA, Murphy MP, Seals DR (2018) Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71:1056–1063. https://doi.org/10.1161/HYPERTENSIONAHA.117.10787

  86. LaRocca TJ, Hearon CM Jr, Henson GD, Seals DR (2014) Mitochondrial quality control and age-associated arterial stiffening. Exp Gerontol 58:78–82. https://doi.org/10.1016/j.exger.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  87. LaRocca TJ, Henson GD, Thorburn A, Sindler AL, Pierce GL, Seals DR (2012) Translational evidence that impaired autophagy contributes to arterial ageing. J Physiol 590:3305–3316. https://doi.org/10.1113/jphysiol.2012.229690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kaplon RE, Hill SD, Bispham NZ, Santos-Parker JR, Nowlan MJ, Snyder LL, Chonchol M, LaRocca TJ, McQueen MB, Seals DR (2016) Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults. Aging (Albany NY) 8:1167–1183. https://doi.org/10.18632/aging.100962

  89. LaRocca TJ, Gioscia-Ryan RA, Hearon CM Jr, Seals DR (2013) The autophagy enhancer spermidine reverses arterial aging. Mech Ageing Dev 134:314–320. https://doi.org/10.1016/j.mad.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona-Gutierrez D, Büttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, von Frieling-Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F (2016) Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 22:1428–1438. https://doi.org/10.1038/nm.4222

  91. Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci (Lond) 120:357–375. https://doi.org/10.1042/CS20100476

    Article  CAS  PubMed  Google Scholar 

  92. Lakatta EG (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation 107:490–497. https://doi.org/10.1161/01.cir.0000048894.99865.02

    Article  PubMed  Google Scholar 

  93. Fleenor BS, Sindler AL, Marvi NK, Howell KL, Zigler ML, Yoshizawa M, Seals DR (2013) Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp Gerontol 48:269–276. https://doi.org/10.1016/j.exger.2012.10.008

  94. Santos-Parker JR, Strahler TR, Bassett CJ, Bispham NZ, Chonchol MB, Seals DR (2017) Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging (Albany NY) 9:187–208. https://doi.org/10.18632/aging.101149

    Article  CAS  PubMed  Google Scholar 

  95. Zapata-Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH (2021) NAD+ homeostasis in human health and disease. EMBO Mol Med 13:e1394. https://doi.org/10.15252/emmm.202113943

    Article  CAS  Google Scholar 

  96. Donato AJ, Magerko KA, Lawson BR, Durrant JR, Lesniewski LA, Seals DR (2011) SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J Physiol 589:4545–4554. https://doi.org/10.1113/jphysiol.2011.211219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. de Picciotto NE, Gano LB, Johnson LC, Martens CR, Sindler AL, Mills KF, Imai S, Seals DR (2016) Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15:522–530. https://doi.org/10.1111/acel.12461

  98. Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, Chonchol M, Seals DR (2018) Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun 9:1286. https://doi.org/10.1038/s41467-018-03421-7

  99. Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424–1435. https://doi.org/10.1038/nm.4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mahoney S, Hutton D, Rossman M, Brunt, V (2021) Late-life treatment with the senolytic ABT-263 reverses aortic stiffening and improves endothelial function with aging. FASEB J 35. https://doi.org/10.1096/fasebj.2021.35.S1.02642

  101. Venkatasubramanian R, Mahoney SA, Rossman MJ, Hutton DA, Brunt VE, VanDongen NS, Casso, AG, Greenberg, NT, Quiros YB, Melov S, Campisi J, Seals DR, Clayton ZS (2022) Cellular senescence and the associated secretome contribute to age-related vascular dysfunction. FASEB J 36. https://doi.org/10.1096/fasebj.2022.36.S1.R2053

  102. Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM, Hagler M, Jurk D, Smith LA, Casaclang-Verzosa G, Zhu Y, Schafer MJ, Tchkonia T, Kirkland JL, Miller JD (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15:973–977. https://doi.org/10.1111/acel.12458

  103. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dollé ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733. https://doi.org/10.1016/j.devcel.2014.11.012

  104. Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, Koenig K, Le C, Mitin N, Deal AM, Alston S, Academia EC, Kilmarx S, Valdovinos A, Wang B, de Bruin A, Kennedy BK, Melov S, Zhou D, Sharpless NE, Muss H, Campisi J (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7:165–176. https://doi.org/10.1158/2159-8290.CD-16-0241

  105. Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL (2019) Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456. https://doi.org/10.1016/j.ebiom.2019.08.069

  106. Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, Prata L, Masternak MM, Kritchevsky SB, Musi N, Kirkland JL (2019) Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40:554–563. https://doi.org/10.1016/j.ebiom.2018.12.052

  107. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, Ling YY, Melos KI, Pirtskhalava T, Inman CL, McGuckian C, Wade EA, Kato JI, Grassi D, Wentworth M, Burd CE, Arriaga EA, Ladiges WL, Tchkonia T, Kirkland JL, Robbins PD, Niedernhofer LJ (2018) Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36:18–28. https://doi.org/10.1016/j.ebiom.2018.09.015

  108. Mahoney SA, Venkatasubramanian R, Rossman M, VanDongen, N (2022) Fisetin supplementation improves age-related vascular endothelial function by suppressing cellular senescence and mitochondrial oxidative stress. FASEB J 36. https://doi.org/10.1096/fasebj.2022.36.S1.R1931

  109. Evsevyeva ME, Eremin MV, Rostovtseva MV, Fursova EN, Rusydi AV, Gal’kova IY, Kudryavtseva VD (2021) Vascular aging phenotypes based on VaSerа-screening results in young people with hypertension. Place of hereditary disorders of connective tissue. The arterial. Hypertension 27(2):188–205. https://doi.org/10.18705/1607-419X-2021-27-2-188-205

    Article  Google Scholar 

  110. Evsevyeva ME, Koshel VI, Eremin MV, Galkova IY, Rusidi AV, Chudnovsky EV, Korobova E, Frantseva, V (2015) Students’ health resources screening and formation of intrauniversity preventive environment: clinical, educational, instructional and pedogogical aspects. Med News North Caucasus 10(1):64–69. https://doi.org/10.14300/mnnc.2015.10009

  111. Evsevyeva ME, Eremin MV, Sergeeva OV, Simkhes EV, Barabash IV, Kudryavtseva VD, Kryuchkov MS (2023) Prospective analysis of the main risk factors and vascular status of students during their studies at a medical university. Russ J Cardiol 28(2):5143. https://doi.org/10.15829/1560-4071-2023-5143

    Article  Google Scholar 

  112. Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O (2021) Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 12(3):1–41. https://doi.org/10.1007/s13167-021-00248-z

    Article  Google Scholar 

  113. Koklesova L, Mazurakova A, Samec M, Biringer K, Samson Mathews Samuel SM, Büsselberg D, Kubatka P, Golubnitschaja O (2021) Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J 12(4):1–29. https://doi.org/10.1007/s13167-021-00263-0

    Article  Google Scholar 

  114. Koklesova L, Mazurakova A, Samec M, Kudela E, Biringer K, Kubatka P, Golubnitschaja O (2022) Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J 13:177–193. https://doi.org/10.1007/s13167-022-00281-6

    Article  PubMed  PubMed Central  Google Scholar 

  115. Golubnitschaja O (2023) What is the routine mitochondrial health check-up good for? A holistic approach in the framework of 3P medicine. In: Podbielska H, Kapalla M (eds) Predictive, preventive and personalised medicine: from bench to bedside. Advances in predictive, preventive and personalised medicine, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-031-34884-6_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Golubnitschaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evsevieva, M.E. et al. (2024). Early Vascular Aging in Young Adults Is Instrumental as the Screening Tool to Combat CVD Epidemics in the Population. In: Wang, W. (eds) All Around Suboptimal Health . Advances in Predictive, Preventive and Personalised Medicine, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-031-46891-9_12

Download citation

Publish with us

Policies and ethics