Advertisement

Abstract

The human intestinal microbiota is composed of 1013 to 1014 microorganisms whose collective genome (“microbiome”) contains at least 100 times as many genes as our own genome. We analyzed ∼78 million base pairs of unique DNA sequence and 2062 polymerase chain reaction–amplified 16S ribosomal DNA sequences obtained from the fecal DNAs of two healthy adults. Using metabolic function analyses of identified genes, we compared our human genome with the average content of previously sequenced microbial genomes. Our microbiome has significantly enriched metabolism of glycans, amino acids, and xenobiotics; methanogenesis; and 2-methyl-d-erythritol 4-phosphate pathway–mediated biosynthesis of vitamins and isoprenoids. Thus, humans are superorganisms whose metabolism represents an amalgamation of microbial and human attributes.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (gill.som.pdf)

References and Notes

1
F. Backhed, R. E. Ley, J. L. Sonnenburg, D. A. Peterson, J. I. Gordon, Science307, 1915 (2005).
2
P. B. Eckburg et al., Science308, 1635 (2005).
3
R. E. Ley et al., Proc. Natl. Acad. Sci. U.S.A.102, 11070 (2005).
4
S. K. Mazmanian, C. H. Liu, A. O. Tzianabos, D. L. Kasper, Cell122, 107 (2005).
5
S. Rakoff-Nahoum, J. Paglino, F. Eslami-Varzaneh, S. Edberg, R. Medzhitov, Cell118, 229 (2004).
6
F. Backhed et al., Proc. Natl. Acad. Sci. U.S.A.101, 15718 (2004).
7
J. K. Nicholson, E. Holmes, I. D. Wilson, Nat. Rev. Microbiol.3, 431 (2005).
8
M. R. Rondon et al., Appl. Environ. Microbiol.66, 2541 (2000).
9
J. C. Venter et al., Science304, 66 (2004).
10
G. W. Tyson et al., Nature428, 25 (2004).
11
Materials and methods are available as supporting material on Science Online.
12
M. A. Schell et al., Proc. Natl. Acad. Sci. U.S.A.99, 14422 (2002).
14
A. L. McOrist, M. Jackson, A. R. Bird, J. Microbiol. Methods50, 131 (2002).
15
M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, M. Hattori, Nucleic Acids Res.32, D277 (2004).
16
R. L. Tatusov et al., BMC Bioinformatics4, 41 (2003).
17
S. G. Tringe et al., Science308, 554 (2005).
19
Database available as supporting material on Science Online.
21
N. I. McNeil, Am. J. Clin. Nutr.39, 338 (1984).
22
D. L. Topping, P. M. Clifton, Physiol. Rev.81, 1031 (2001).
23
A. J. Stams, Antonie Van Leeuwenhoek66, 271 (1994).
24
J. L. Rychlik, T. May, Curr. Microbiol.40, 176 (2000).
25
M. Rodriguez-Concepcion, A. Boronat, Plant Physiol.130, 1079 (2002).
26
J. Pereto, P. Lopez-Garcia, D. Moreira, Trends Biochem. Sci.29, 469 (2004).
27
D. Umeno, A. V. Tobias, F. H. Arnold, Microbiol. Mol. Biol. Rev.69, 51 (2005).
28
K. C. Wang, S. Ohnuma, Biochim. Biophys. Acta1529, 33 (2000).
29
M. Begley et al., FEBS Lett.561, 99 (2004).
30
J. J. Reiners Jr., R. Clift, P. Mathieu, Carcinogenesis20, 1561 (1999).
31
C. A. Rice-Evans, N. J. Miller, G. Paganga, Free Radic. Biol. Med.20, 933 (1996).
32
G. Williamson, G. W. Plumb, Y. Uda, K. R. Price, M. J. Rhodes, Carcinogenesis17, 2385 (1996).
33
H. Schneider, A. Schwiertz, M. D. Collins, M. Blaut, Arch. Microbiol.171, 81 (1999).
34
A. K. Mallett, C. A. Bearne, I. R. Rowland, Appl. Environ. Microbiol.46, 591 (1983).
35
We thank W. Nelson and I. Hance (The Institute for Genomic Research), L. Dethlefsen and E. Bik (Stanford), and D. Leip (Washington University) for their valuable assistance. This work was supported by Defense Advanced Research Projects Agency (DARPA) and the Office of Naval Research grant no. ONR-N00014-02-1-1002 (S.R.G., K.E.N.), the W. M. Keck Foundation (J.I.G.), the Ellison Medical Foundation (D.A.R., J.I.G.), and NIH grants AI51259 (D.A.R.) and DK70977 (J.I.G.). B.S.S. is a recipient of a graduate research fellowship from the NSF (DGE-0202737). This whole-genome shotgun project has been deposited at the DNA Data Bank of Japan (DDBJ), European Molecular Biology Laboratory (EMBL), and GenBank under the project accession AAQK00000000 (subject 7) and AAQL00000000 (subject 8). The version described in this paper is the first version, AAQK01000000 and AAQL01000000. All near–full-length 16S rDNA sequences were deposited at DDBJ/EMBL/GenBank under the accessions DQ325545 to DQ327606.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 312 | Issue 5778
2 June 2006

Submission history

Received: 22 December 2005
Accepted: 5 May 2006
Published in print: 2 June 2006

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/312/5778/1355/DC1
Materials and Methods
Figs. S1 and S2
Tables S1 to S8
References

Authors

Affiliations

Steven R. Gill,* [email protected]
The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
Mihai Pop
The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
Robert T. DeBoy
The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
Paul B. Eckburg
Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
Department of Microbiology and Immunology, 299 Campus Drive, Stanford University, Stanford, CA 94305, USA.
Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
Peter J. Turnbaugh
Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108, USA.
Buck S. Samuel
Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108, USA.
Jeffrey I. Gordon
Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108, USA.
David A. Relman
Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
Department of Microbiology and Immunology, 299 Campus Drive, Stanford University, Stanford, CA 94305, USA.
Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
Claire M. Fraser-Liggett
The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
Departments of Pharmacology and Physiology and Microbiology and Tropical Diseases, George Washington University School of Medicine, Washington, DC 20037, USA.
Karen E. Nelson
The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.

Notes

To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Integrating the gut microbiome and pharmacology, Science Translational Medicine, 16, 732, (2024)./doi/10.1126/scitranslmed.adg8357
    Abstract
  2. Lectin-Seq: A method to profile lectin-microbe interactions in native communities, Science Advances, 9, 30, (2023)./doi/10.1126/sciadv.add8766
    Abstract
  3. The microbiome and gut homeostasis, Science, 377, 6601, (2022)./doi/10.1126/science.abp9960
    Abstract
  4. Gut Check: Testing a Role for the Intestinal Microbiome in Human Obesity, Science Translational Medicine, 1, 6, (6ps7-6ps7), (2021)./doi/10.1126/scitranslmed.3000483
    Abstract
  5. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health, Science, 357, 6349, (2021)./doi/10.1126/science.aaf9794
    Abstract
  6. The ecology of the microbiome: Networks, competition, and stability, Science, 350, 6261, (663-666), (2021)./doi/10.1126/science.aad2602
    Abstract
  7. Virulence or Competition?, Science, 336, 6086, (1238-1239), (2021)./doi/10.1126/science.1223303
    Abstract
  8. Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride, Science, 335, 6065, (233-235), (2021)./doi/10.1126/science.1215063
    Abstract
  9. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes, Science, 334, 6052, (105-108), (2021)./doi/10.1126/science.1208344
    Abstract
  10. The Microbes Made Me Eat It, Science, 328, 5975, (179-180), (2021)./doi/10.1126/science.1188876
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media