Advertisement

How farming protects against allergies

People who grow up on dairy farms only rarely develop asthma or allergies. This is probably because as children, they breathe air containing bacterial components, which reduce the overall reactivity of the immune system. Schuijs et al. chronically exposed mice to bacterial endotoxin before they received an allergic stimulus. The protocol indeed protected them from developing an allergic response. Protection relied on a particular enzyme: A20. In humans, a variant of A20 correlates with increased susceptibility to asthma and allergy in children growing up on farms.
Science, this issue p. 1106

Abstract

Growing up on a dairy farm protects children from allergy, hay fever, and asthma. A mechanism linking exposure to this endotoxin (bacterial lipopolysaccharide)–rich environment with protection has remained elusive. Here we show that chronic exposure to low-dose endotoxin or farm dust protects mice from developing house dust mite (HDM)–induced asthma. Endotoxin reduced epithelial cell cytokines that activate dendritic cells (DCs), thus suppressing type 2 immunity to HDMs. Loss of the ubiquitin-modifying enzyme A20 in lung epithelium abolished the protective effect. A single-nucleotide polymorphism in the gene encoding A20 was associated with allergy and asthma risk in children growing up on farms. Thus, the farming environment protects from allergy by modifying the communication between barrier epithelial cells and DCs through A20 induction.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S5
Tables S1 and S2

Resources

File (schuijs.sm.pdf)

References and Notes

1
Lambrecht B. N., Hammad H., The immunology of asthma. Nat. Immunol. 16, 45–56 (2015).
2
Hammad H., Chieppa M., Perros F., Willart M. A., Germain R. N., Lambrecht B. N., House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).
3
Riedler J., Braun-Fahrländer C., Eder W., Schreuer M., Waser M., Maisch S., Carr D., Schierl R., Nowak D., von Mutius E.ALEX Study Team, Exposure to farming in early life and development of asthma and allergy: A cross-sectional survey. Lancet 358, 1129–1133 (2001).
4
Ege M. J., Mayer M., Normand A. C., Genuneit J., Cookson W. O., Braun-Fahrländer C., Heederik D., Piarroux R., von Mutius E.GABRIELA Transregio 22 Study Group, Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–709 (2011).
5
von Mutius E., Vercelli D., Farm living: Effects on childhood asthma and allergy. Nat. Rev. Immunol. 10, 861–868 (2010).
6
Illi S., Depner M., Genuneit J., Horak E., Loss G., Strunz-Lehner C., Büchele G., Boznanski A., Danielewicz H., Cullinan P., Heederik D., Braun-Fahrländer C., von Mutius E.GABRIELA Study Group, Protection from childhood asthma and allergy in alpine farm environments—The GABRIEL Advanced Studies. J. Allergy Clin. Immunol. 129, 1470–1477 (2012).
7
Braun-Fahrländer C., Riedler J., Herz U., Eder W., Waser M., Grize L., Maisch S., Carr D., Gerlach F., Bufe A., Lauener R. P., Schierl R., Renz H., Nowak D., von Mutius E.Allergy and Endotoxin Study Team, Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med. 347, 869–877 (2002).
8
Lauener R. P., Birchler T., Adamski J., Braun-Fahrländer C., Bufe A., Herz U., von Mutius E., Nowak D., Riedler J., Waser M., Sennhauser F. H.ALEX study group, Expression of CD14 and Toll-like receptor 2 in farmers’ and non-farmers’ children. Lancet 360, 465–466 (2002).
9
Simpson A., John S. L., Jury F., Niven R., Woodcock A., Ollier W. E., Custovic A., Endotoxin exposure, CD14, and allergic disease: An interaction between genes and the environment. Am. J. Respir. Crit. Care Med. 174, 386–392 (2006).
10
Ege M. J., Frei R., Bieli C., Schram-Bijkerk D., Waser M., Benz M. R., Weiss G., Nyberg F., van Hage M., Pershagen G., Brunekreef B., Riedler J., Lauener R., Braun-Fahrländer C., von Mutius E.PARSIFAL Study team, Not all farming environments protect against the development of asthma and wheeze in children. J. Allergy Clin. Immunol. 119, 1140–1147 (2007).
11
Hammad H., Plantinga M., Deswarte K., Pouliot P., Willart M. A., Kool M., Muskens F., Lambrecht B. N., Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207, 2097–2111 (2010).
12
Plantinga M., Guilliams M., Vanheerswynghels M., Deswarte K., Branco-Madeira F., Toussaint W., Vanhoutte L., Neyt K., Killeen N., Malissen B., Hammad H., Lambrecht B. N., Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322–335 (2013).
13
Nathan A. T., Peterson E. A., Chakir J., Wills-Karp M., Innate immune responses of airway epithelium to house dust mite are mediated through β-glucan–dependent pathways. J. Allergy Clin. Immunol. 123, 612–618 (2009).
14
Llop-Guevara A., Chu D. K., Walker T. D., Goncharova S., Fattouh R., Silver J. S., Moore C. L., Xie J. L., O’Byrne P. M., Coyle A. J., Kolbeck R., Humbles A. A., Stämpfli M. R., Jordana M., A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure. PLOS ONE 9, e88714 (2014).
15
Willart M. A., Deswarte K., Pouliot P., Braun H., Beyaert R., Lambrecht B. N., Hammad H., Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J. Exp. Med. 209, 1505–1517 (2012).
16
McAlees J. W., Whitehead G. S., Harley I. T., Cappelletti M., Rewerts C. L., Holdcroft A. M., Divanovic S., Wills-Karp M., Finkelman F. D., Karp C. L., Cook D. N., Distinct Tlr4-expressing cell compartments control neutrophilic and eosinophilic airway inflammation. Mucosal Immunol. 8, 863–873 (2015).
17
Vereecke L., Beyaert R., van Loo G., The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30, 383–391 (2009).
18
Boone D. L., Turer E. E., Lee E. G., Ahmad R. C., Wheeler M. T., Tsui C., Hurley P., Chien M., Chai S., Hitotsumatsu O., McNally E., Pickart C., Ma A., The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).
19
Lee E. G., Boone D. L., Chai S., Libby S. L., Chien M., Lodolce J. P., Ma A., Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).
20
Vereecke L., Sze M., Mc Guire C., Rogiers B., Chu Y., Schmidt-Supprian M., Pasparakis M., Beyaert R., van Loo G., Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor–induced toxicity and experimental colitis. J. Exp. Med. 207, 1513–1523 (2010).
21
Perl A. K., Wert S. E., Loudy D. E., Shan Z., Blair P. A., Whitsett J. A., Conditional recombination reveals distinct subsets of epithelial cells in trachea, bronchi, and alveoli. Am. J. Respir. Cell Mol. Biol. 33, 455–462 (2005).
22
Peters M., Kauth M., Schwarze J., Körner-Rettberg C., Riedler J., Nowak D., Braun-Fahrländer C., von Mutius E., Bufe A., Holst O., Inhalation of stable dust extract prevents allergen induced airway inflammation and hyperresponsiveness. Thorax 61, 134–139 (2006).
23
Ege M. J., Strachan D. P., Cookson W. O., Moffatt M. F., Gut I., Lathrop M., Kabesch M., Genuneit J., Büchele G., Sozanska B., Boznanski A., Cullinan P., Horak E., Bieli C., Braun-Fahrländer C., Heederik D., von Mutius E.GABRIELA Study Group, Gene-environment interaction for childhood asthma and exposure to farming in Central Europe. J. Allergy Clin. Immunol. 127, 138–144 (2011).
24
Musone S. L., Taylor K. E., Lu T. T., Nititham J., Ferreira R. C., Ortmann W., Shifrin N., Petri M. A., Kamboh M. I., Manzi S., Seldin M. F., Gregersen P. K., Behrens T. W., Ma A., Kwok P.-Y., Criswell L. A., Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat. Genet. 40, 1062–1064 (2008).
25
Kadota K., Mori M., Yanagimachi M., Miyamae T., Hara T., Kanetaka T., Nozawa T., Kikuchi M., Hara R., Imagawa T., Kaneko T., Yokota S., Analysis of gender differences in genetic risk: Association of TNFAIP3 polymorphism with male childhood-onset systemic lupus erythematosus in the Japanese population. PLOS ONE 8, e72551 (2013).
26
Yazdanbakhsh M., Kremsner P. G., van Ree R., Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002).
27
Eder W., Ege M. J., von Mutius E., The asthma epidemic. N. Engl. J. Med. 355, 2226–2235 (2006).
28
Pearce N., Asher I., Billo N., Bissell K., Ellwood P., El Sony A., García-Marcos L., Chiang C. Y., Mallol J., Marks G., Strachan D., Asthma in the global NCD agenda: A neglected epidemic. Lancet Respir Med 1, 96–98 (2013).
29
Chang Y.-J., Kim H. Y., Albacker L. A., Lee H. H., Baumgarth N., Akira S., Savage P. B., Endo S., Yamamura T., Maaskant J., Kitano N., Singh A., Bhatt A., Besra G. S., van den Elzen P., Appelmelk B., Franck R. W., Chen G., DeKruyff R. H., Shimamura M., Illarionov P., Umetsu D. T., Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J. Clin. Invest. 121, 57–69 (2011).
30
Wang J., Ouyang Y., Guner Y., Ford H. R., Grishin A. V., Ubiquitin-editing enzyme A20 promotes tolerance to lipopolysaccharide in enterocytes. J. Immunol. 183, 1384–1392 (2009).
31
Li X., Ampleford E. J., Howard T. D., Moore W. C., Torgerson D. G., Li H., Busse W. W., Castro M., Erzurum S. C., Israel E., Nicolae D. L., Ober C., Wenzel S. E., Hawkins G. A., Bleecker E. R., Meyers D. A., Genome-wide association studies of asthma indicate opposite immunopathogenesis direction from autoimmune diseases. J. Allergy Clin. Immunol. 130, 861–868 (2012).
32
El Bakkouri K., Wullaert A., Haegman M., Heyninck K., Beyaert R., Adenoviral gene transfer of the NF-κB inhibitory protein ABIN-1 decreases allergic airway inflammation in a murine asthma model. J. Biol. Chem. 280, 17938–17944 (2005).
33
Hammad H., Lambrecht B. N., Barrier epithelial cells and the control of type 2 immunity. Immunity 43, 29–40 (2015).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 349 | Issue 6252
4 September 2015

Submission history

Received: 27 May 2015
Accepted: 27 July 2015
Published in print: 4 September 2015

Permissions

Request permissions for this article.

Acknowledgments

The data reported in this manuscript are tabulated in the main paper and in the supplementary materials. M.J.E. and E.v.M have filed patent applications (EP000002361632B1, EP000001964570B1, and US020080305089A1) that relate to identifying microorganisms and derived substances in farm dust that induce protection from several inflammatory diseases. This research was supported by European Union FP7 grant “MedALL” (Mechanisms in Development of Allergy) and by a European Union Innovative Medicines Initiative grant “EUBIOPRED.” H.H. and B.N.L. are recipients of several Flanders Organization for Scientific Research (FWO) program grants. B.N.L. is a recipient of a European Research Council Consolidator grant and a Ghent University Multidisciplinary Research Platform grant (Group-ID). D.G. and P.C. are supported by grants from ARARD, Fonds de Recherche en Santé Respiratoire, and ANR “Mucocil.” Population analyses were supported by two European Union research grants (GABRIEL: LSHB-CT-2006-018996, HERA: ERC2009-AdG_20090506_250268). E.v.M is supported by a Gottfried-Wilhelm-Leibniz award from the German Research Council. M.J.E. and E.v.M. are members of the German Center for Lung Research (DZL).

Authors

Affiliations

Martijn J. Schuijs*
Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.
Department of Internal Medicine, Ghent University, Ghent, Belgium.
Monique A. Willart*
Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.
Department of Internal Medicine, Ghent University, Ghent, Belgium.
Karl Vergote
Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.
Department of Internal Medicine, Ghent University, Ghent, Belgium.
Delphine Gras
Department of Respiratory Medicine, Assistance Publique Hopitaux de Marseille, UMR INSERM U1067 CNRS 7333, Aix Marseille University, Marseille, France.
Kim Deswarte
Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.
Department of Internal Medicine, Ghent University, Ghent, Belgium.
Markus J. Ege
Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
Filipe Branco Madeira
Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.
Department of Internal Medicine, Ghent University, Ghent, Belgium.
Rudi Beyaert
Unit of Molecular Signal Transduction, VIB Inflammation Research Center, Ghent, Belgium.
Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
Geert van Loo
Unit of Molecular Signal Transduction, VIB Inflammation Research Center, Ghent, Belgium.
Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
Franz Bracher
Center for Drug Research, Department of Pharmacy, Ludwig Maximilians University, Butenandtstrasse 5-13, D-81377 Munich, Germany.
Erika von Mutius
Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
Pascal Chanez
Department of Respiratory Medicine, Assistance Publique Hopitaux de Marseille, UMR INSERM U1067 CNRS 7333, Aix Marseille University, Marseille, France.
Bart N. Lambrecht, [email protected]
Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.
Department of Internal Medicine, Ghent University, Ghent, Belgium.
Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands.
Hamida Hammad, [email protected]
Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.
Department of Internal Medicine, Ghent University, Ghent, Belgium.

Notes

*
These authors contributed equally to this work.
These authors contributed equally to this work.
Corresponding author. E-mail: [email protected] (H.H.); [email protected] (B.N.L.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Current research into A20 mediation of allergic respiratory diseases and its potential usefulness as a therapeutic target, Frontiers in Immunology, 14, (2023).https://doi.org/10.3389/fimmu.2023.1166928
    Crossref
  2. Shaping of the alveolar landscape by respiratory infections and long-term consequences for lung immunity, Frontiers in Immunology, 14, (2023).https://doi.org/10.3389/fimmu.2023.1149015
    Crossref
  3. Chronic exposure to low-level lipopolysaccharide dampens influenza-mediated inflammatory response via A20 and PPAR network, Frontiers in Immunology, 14, (2023).https://doi.org/10.3389/fimmu.2023.1119473
    Crossref
  4. The innate immune brakes of the lung, Frontiers in Immunology, 14, (2023).https://doi.org/10.3389/fimmu.2023.1111298
    Crossref
  5. Exposure to dogs and cats and risk of asthma: A retrospective study, PLOS ONE, 18, 3, (e0282184), (2023).https://doi.org/10.1371/journal.pone.0282184
    Crossref
  6. Early exposure to farm dust in an allergic airway inflammation rabbit model: Does it affect bronchial and cough hyperresponsiveness?, PLOS ONE, 18, 1, (e0279498), (2023).https://doi.org/10.1371/journal.pone.0279498
    Crossref
  7. Decreased ubiquitin modifying enzyme A20 associated with hyper-responsiveness to ovalbumin challenge following intrauterine growth restriction, Respiratory Research, 24, 1, (2023).https://doi.org/10.1186/s12931-023-02360-2
    Crossref
  8. Abundance and absence: Human-microbial co-evolution in the Anthropocene, The Anthropocene Review, (205301962311539), (2023).https://doi.org/10.1177/20530196231153925
    Crossref
  9. Laboratory mice with a wild microbiota generate strong allergic immune responses, Science Immunology, 8, 87, (2023)./doi/10.1126/sciimmunol.adf7702
    Abstract
  10. Dampening type 2 properties of group 2 innate lymphoid cells by a gammaherpesvirus infection reprograms alveolar macrophages, Science Immunology, 8, 80, (2023)./doi/10.1126/sciimmunol.abl9041
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media