Advertisement

“Normal” for the gut microbiota

For the benefit of future clinical studies, it is critical to establish what constitutes a “normal” gut microbiome, if it exists at all. Through fecal samples and questionnaires, Falony et al. and Zhernakova et al. targeted general populations in Belgium and the Netherlands, respectively. Gut microbiota composition correlated with a range of factors including diet, use of medication, red blood cell counts, fecal chromogranin A, and stool consistency. The data give some hints for possible biomarkers of normal gut communities.
Science, this issue pp. 560 and 565

Abstract

Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary factors. These factors collectively explain 18.7% of the variation seen in the interindividual distance of microbial composition. We could associate 110 factors to 125 species and observed that fecal chromogranin A (CgA), a protein secreted by enteroendocrine cells, was exclusively associated with 61 microbial species whose abundance collectively accounted for 53% of microbial composition. Low CgA concentrations were seen in individuals with a more diverse microbiome. These results are an important step toward a better understanding of environment-diet-microbe-host interactions.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S13
Tables S1 to S19
References (3154)

Resources

File (zhernakova.sm.pdf)
File (zhernakova_tables_s1_to_s19.xlsx)

References and Notes

1
Clemente J. C., Ursell L. K., Parfrey L. W., Knight R., The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).
2
Tigchelaar E. F., Zhernakova A., Dekens J. A., Hermes G., Baranska A., Mujagic Z., Swertz M. A., Muñoz A. M., Deelen P., Cénit M. C., Franke L., Scholtens S., Stolk R. P., Wijmenga C., Feskens E. J., Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772 (2015).
3
Scholtens S., Smidt N., Swertz M. A., Bakker S. J., Dotinga A., Vonk J. M., van Dijk F., van Zon S. K., Wijmenga C., Wolffenbuttel B. H., Stolk R. P., Cohort Profile: LifeLines, a three-generation cohort study and biobank. Int. J. Epidemiol. 44, 1172–1180 (2015).
4
Information on materials and methods is available at Science Online.
5
Segata N., Waldron L., Ballarini A., Narasimhan V., Jousson O., Huttenhower C., Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).
6
Sinha R., Abnet C. C., White O., Knight R., Huttenhower C., The microbiome quality control project: Baseline study design and future directions. Genome Biol. 16, 276 (2015).
7
Goodrich J. K., Waters J. L., Poole A. C., Sutter J. L., Koren O., Blekhman R., Beaumont M., Van Treuren W., Knight R., Bell J. T., Spector T. D., Clark A. G., Ley R. E., Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).
8
Falony G., Joossens M., Vieira-Silva S., Wang J., Darzi Y., Faust K., Kurilshikov A., Bonder M. J., Valles-Colomer M., Vandeputte D., Tito R. Y., Chaffron S., Rymenans L., Verspecht C., De Sutter L., Lima-Mendez G., D’hoe K., Jonckheere K., Homola D., Garcia R., Tigchelaar E. F., Eeckhaudt L., Fu J., Henckaerts L., Zhernakova A., Wijmenga C., Raes J., Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).
9
Huttenhower C., Gevers D., Knight R., Abubucker S., Badger J. H., Chinwalla A. T., Creasy H. H., Earl A. M., FitzGerald M. G., Fulton R. S., Giglio M. G., Hallsworth-Pepin K., Lobos E. A., Madupu R., Magrini V., Martin J. C., Mitreva M., Muzny D. M., Sodergren E. J., Versalovic J., Wollam A. M., Worley K. C., Wortman J. R., Young S. K., Zeng Q., Aagaard K. M., Abolude O. O., Allen-Vercoe E., Alm E. J., Alvarado L., Andersen G. L., Anderson S., Appelbaum E., Arachchi H. M., Armitage G., Arze C. A., Ayvaz T., Baker C. C., Begg L., Belachew T., Bhonagiri V., Bihan M., Blaser M. J., Bloom T., Bonazzi V., Paul Brooks J., Buck G. A., Buhay C. J., Busam D. A., Campbell J. L., Canon S. R., Cantarel B. L., Chain P. S. G., Chen I.-M. A., Chen L., Chhibba S., Chu K., Ciulla D. M., Clemente J. C., Clifton S. W., Conlan S., Crabtree J., Cutting M. A., Davidovics N. J., Davis C. C., DeSantis T. Z., Deal C., Delehaunty K. D., Dewhirst F. E., Deych E., Ding Y., Dooling D. J., Dugan S. P., Michael Dunne W., Scott Durkin A., Edgar R. C., Erlich R. L., Farmer C. N., Farrell R. M., Faust K., Feldgarden M., Felix V. M., Fisher S., Fodor A. A., Forney L. J., Foster L., Di Francesco V., Friedman J., Friedrich D. C., Fronick C. C., Fulton L. L., Gao H., Garcia N., Giannoukos G., Giblin C., Giovanni M. Y., Goldberg J. M., Goll J., Gonzalez A., Griggs A., Gujja S., Kinder Haake S., Haas B. J., Hamilton H. A., Harris E. L., Hepburn T. A., Herter B., Hoffmann D. E., Holder M. E., Howarth C., Huang K. H., Huse S. M., Izard J., Jansson J. K., Jiang H., Jordan C., Joshi V., Katancik J. A., Keitel W. A., Kelley S. T., Kells C., King N. B., Knights D., Kong H. H., Koren O., Koren S., Kota K. C., Kovar C. L., Kyrpides N. C., La Rosa P. S., Lee S. L., Lemon K. P., Lennon N., Lewis C. M., Lewis L., Ley R. E., Li K., Liolios K., Liu B., Liu Y., Lo C.-C., Lozupone C. A., Dwayne Lunsford R., Madden T., Mahurkar A. A., Mannon P. J., Mardis E. R., Markowitz V. M., Mavromatis K., McCorrison J. M., McDonald D., McEwen J., McGuire A. L., McInnes P., Mehta T., Mihindukulasuriya K. A., Miller J. R., Minx P. J., Newsham I., Nusbaum C., O’Laughlin M., Orvis J., Pagani I., Palaniappan K., Patel S. M., Pearson M., Peterson J., Podar M., Pohl C., Pollard K. S., Pop M., Priest M. E., Proctor L. M., Qin X., Raes J., Ravel J., Reid J. G., Rho M., Rhodes R., Riehle K. P., Rivera M. C., Rodriguez-Mueller B., Rogers Y.-H., Ross M. C., Russ C., Sanka R. K., Sankar P., Fah Sathirapongsasuti J., Schloss J. A., Schloss P. D., Schmidt T. M., Scholz M., Schriml L., Schubert A. M., Segata N., Segre J. A., Shannon W. D., Sharp R. R., Sharpton T. J., Shenoy N., Sheth N. U., Simone G. A., Singh I., Smillie C. S., Sobel J. D., Sommer D. D., Spicer P., Sutton G. G., Sykes S. M., Tabbaa D. G., Thiagarajan M., Tomlinson C. M., Torralba M., Treangen T. J., Truty R. M., Vishnivetskaya T. A., Walker J., Wang L., Wang Z., Ward D. V., Warren W., Watson M. A., Wellington C., Wetterstrand K. A., White J. R., Wilczek-Boney K., Wu Y. Q., Wylie K. M., Wylie T., Yandava C., Ye L., Ye Y., Yooseph S., Youmans B. P., Zhang L., Zhou Y., Zhu Y., Zoloth L., Zucker J. D., Birren B. W., Gibbs R. A., Highlander S. K., Methé B. A., Nelson K. E., Petrosino J. F., Weinstock G. M., Wilson R. K., White O.Human Microbiome Project Consortium, Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
10
Hildebrand F., Nguyen T. L., Brinkman B., Yunta R. G., Cauwe B., Vandenabeele P., Liston A., Raes J., Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 14, R4 (2013).
11
Hedin C., van der Gast C. J., Rogers G. B., Cuthbertson L., McCartney S., Stagg A. J., Lindsay J. O., Whelan K., Siblings of patients with Crohn’s disease exhibit a biologically relevant dysbiosis in mucosal microbial metacommunities. Gut (2015).
12
Miller T. L., Wolin M. J., Conway de Macario E., Macario A. J., Isolation of Methanobrevibacter smithii from human feces. Appl. Environ. Microbiol. 43, 227–232 (1982).
13
Lee T., Shimizu T., Iijima M., Obinata K., Yamashiro Y., Nagasawa S., Evaluation of psychosomatic stress in children by measuring salivary chromogranin A. Acta Paediatr. 95, 935–939 (2006).
14
Öhman L., Stridsberg M., Isaksson S., Jerlstad P., Simrén M., Altered levels of fecal chromogranins and secretogranins in IBS: Relevance for pathophysiology and symptoms? Am. J. Gastroenterol. 107, 440–447 (2012).
15
Sciola V., Massironi S., Conte D., Caprioli F., Ferrero S., Ciafardini C., Peracchi M., Bardella M. T., Piodi L., Plasma chromogranin a in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 15, 867–871 (2009).
16
Wagner M., Stridsberg M., Peterson C. G., Sangfelt P., Lampinen M., Carlson M., Increased fecal levels of chromogranin A, chromogranin B, and secretoneurin in collagenous colitis. Inflammation 36, 855–861 (2013).
17
Aslam R., Atindehou M., Lavaux T., Haïkel Y., Schneider F., Metz-Boutigue M.-H., Chromogranin A-derived peptides are involved in innate immunity. Curr. Med. Chem. 19, 4115–4123 (2012).
18
Bartolomucci A., Possenti R., Mahata S. K., Fischer-Colbrie R., Loh Y. P., Salton S. R., The extended granin family: Structure, function, and biomedical implications. Endocr. Rev. 32, 755–797 (2011).
19
Queipo-Ortuño M. I., Boto-Ordóñez M., Murri M., Gomez-Zumaquero J. M., Clemente-Postigo M., Estruch R., Cardona Diaz F., Andrés-Lacueva C., Tinahones F. J., Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 95, 1323–1334 (2012).
20
Duda-Chodak A., Tarko T., Satora P., Sroka P., Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 54, 325–341 (2015).
21
Mills C. E., Tzounis X., Oruna-Concha M. J., Mottram D. S., Gibson G. R., Spencer J. P., In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br. J. Nutr. 113, 1220–1227 (2015).
22
Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L. G., Gratadoux J. J., Blugeon S., Bridonneau C., Furet J. P., Corthier G., Grangette C., Vasquez N., Pochart P., Trugnan G., Thomas G., Blottière H. M., Doré J., Marteau P., Seksik P., Langella P., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U.S.A. 105, 16731–16736 (2008).
23
Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., Almeida M., Arumugam M., Batto J. M., Kennedy S., Leonard P., Li J., Burgdorf K., Grarup N., Jørgensen T., Brandslund I., Nielsen H. B., Juncker A. S., Bertalan M., Levenez F., Pons N., Rasmussen S., Sunagawa S., Tap J., Tims S., Zoetendal E. G., Brunak S., Clément K., Doré J., Kleerebezem M., Kristiansen K., Renault P., Sicheritz-Ponten T., de Vos W. M., Zucker J. D., Raes J., Hansen T., Bork P., Wang J., Ehrlich S. D., Pedersen O., Guedon E., Delorme C., Layec S., Khaci G., van de Guchte M., Vandemeulebrouck G., Jamet A., Dervyn R., Sanchez N., Maguin E., Haimet F., Winogradski Y., Cultrone A., Leclerc M., Juste C., Blottière H., Pelletier E., LePaslier D., Artiguenave F., Bruls T., Weissenbach J., Turner K., Parkhill J., Antolin M., Manichanh C., Casellas F., Boruel N., Varela E., Torrejon A., Guarner F., Denariaz G., Derrien M., van Hylckama Vlieg J. E. T., Veiga P., Oozeer R., Knol J., Rescigno M., Brechot C., M’Rini C., Mérieux A., Yamada T.MetaHIT consortium, Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
24
Wu G. D., Chen J., Hoffmann C., Bittinger K., Chen Y. Y., Keilbaugh S. A., Bewtra M., Knights D., Walters W. A., Knight R., Sinha R., Gilroy E., Gupta K., Baldassano R., Nessel L., Li H., Bushman F. D., Lewis J. D., Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
25
Korpela K., Salonen A., Virta L. J., Kekkonen R. A., Forslund K., Bork P., de Vos W. M., Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 7, 10410 (2016).
26
Poullis A., Foster R., Mendall M. A., Shreeve D., Wiener K., Proton pump inhibitors are associated with elevation of faecal calprotectin and may affect specificity. Eur. J. Gastroenterol. Hepatol. 15, 573–574 (2003).
27
Burton J. H., Johnson M., Johnson J., Hsia D. S., Greenway F. L., Heiman M. L., Addition of a gastrointestinal microbiome modulator to metformin improves metformin tolerance and fasting glucose levels. J. Diabetes Sci. Technol. 9, 808–814 (2015).
28
Cabreiro F., Au C., Leung K. Y., Vergara-Irigaray N., Cochemé H. M., Noori T., Weinkove D., Schuster E., Greene N. D., Gems D., Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239 (2013).
29
Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S., Prifti E., Vieira-Silva S., Gudmundsdottir V., Krogh Pedersen H., Arumugam M., Kristiansen K., Voigt A. Y., Vestergaard H., Hercog R., Igor Costea P., Kultima J. R., Li J., Jørgensen T., Levenez F., Dore J., Nielsen H. B., Brunak S., Raes J., Hansen T., Wang J., Ehrlich S. D., Bork P., Pedersen O.MetaHIT consortium, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).
30
Fu J., Bonder M. J., Cenit M. C., Tigchelaar E. F., Maatman A., Dekens J. A., Brandsma E., Marczynska J., Imhann F., Weersma R. K., Franke L., Poon T. W., Xavier R. J., Gevers D., Hofker M. H., Wijmenga C., Zhernakova A., The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ. Res. 117, 817–824 (2015).
31
Tibble J. A., Sigthorsson G., Foster R., Scott D., Fagerhol M. K., Roseth A., Bjarnason I., High prevalence of NSAID enteropathy as shown by a simple faecal test. Gut 45, 362–366 (1999).
32
Joshi S., Lewis S. J., Creanor S., Ayling R. M., Age-related faecal calprotectin, lactoferrin and tumour M2-PK concentrations in healthy volunteers. Ann. Clin. Biochem. 47, 259–263 (2010).
33
Harder J., Bartels J., Christophers E., Schröder J. M., A peptide antibiotic from human skin. Nature 387, 861 (1997).
34
Langhorst J., Junge A., Rueffer A., Wehkamp J., Foell D., Michalsen A., Musial F., Dobos G. J., Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am. J. Gastroenterol. 104, 404–410 (2009).
35
El-Salhy M., Lomholt-Beck B., Hausken T., Chromogranin A as a possible tool in the diagnosis of irritable bowel syndrome. Scand. J. Gastroenterol. 45, 1435–1439 (2010).
36
Sidhu R., Drew K., McAlindon M. E., Lobo A. J., Sanders D. S., Elevated serum chromogranin A in irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD): A shared model for pathogenesis? Inflamm. Bowel Dis. 16, 361 (2010).
37
Windmueller H. G., Spaeth A. E., Source and fate of circulating citrulline. Am. J. Physiol. 241, E473–E480 (1981).
38
Crenn P., Messing B., Cynober L., Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin. Nutr. 27, 328–339 (2008).
39
Farzi A., Reichmann F., Meinitzer A., Mayerhofer R., Jain P., Hassan A. M., Fröhlich E. E., Wagner K., Painsipp E., Rinner B., Holzer P., Synergistic effects of NOD1 or NOD2 and TLR4 activation on mouse sickness behavior in relation to immune and brain activity markers. Brain Behav. Immun. 44, 106–120 (2015).
40
Whelan R. A., Rausch S., Ebner F., Günzel D., Richter J. F., Hering N. A., Schulzke J. D., Kühl A. A., Keles A., Janczyk P., Nöckler K., Wieler L. H., Hartmann S., A transgenic probiotic secreting a parasite immunomodulator for site-directed treatment of gut inflammation. Mol. Ther. 22, 1730–1740 (2014).
41
Bolger A. M., Lohse M., Usadel B., Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
42
Langmead B., Salzberg S. L., Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
43
Truong D. T., Franzosa E. A., Tickle T. L., Scholz M., Weingart G., Pasolli E., Tett A., Huttenhower C., Segata N., MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).
44
UniProt Consortium, UniProt: A hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).
45
Dimmer E. C., Huntley R. P., Alam-Faruque Y., Sawford T., O’Donovan C., Martin M. J., Bely B., Browne P., Mun Chan W., Eberhardt R., Gardner M., Laiho K., Legge D., Magrane M., Pichler K., Poggioli D., Sehra H., Auchincloss A., Axelsen K., Blatter M. C., Boutet E., Braconi-Quintaje S., Breuza L., Bridge A., Coudert E., Estreicher A., Famiglietti L., Ferro-Rojas S., Feuermann M., Gos A., Gruaz-Gumowski N., Hinz U., Hulo C., James J., Jimenez S., Jungo F., Keller G., Lemercier P., Lieberherr D., Masson P., Moinat M., Pedruzzi I., Poux S., Rivoire C., Roechert B., Schneider M., Stutz A., Sundaram S., Tognolli M., Bougueleret L., Argoud-Puy G., Cusin I., Duek-Roggli P., Xenarios I., Apweiler R., The UniProt-GO Annotation database in 2011. Nucleic Acids Res. 40, D565–D570 (2012).
46
Gene Ontology Consortium, Gene Ontology Consortium: Going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).
47
J. Oksanen et al., vegan: Community Ecology Package. R package version 2.3-0 (2015).
48
McMurdie P. J., Holmes S., Waste not, want not: Why rarefying microbiome data is inadmissible. PLOS Comput. Biol. 10, e1003531 (2014).
49
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., Fierer N., Peña A. G., Goodrich J. K., Gordon J. I., Huttley G. A., Kelley S. T., Knights D., Koenig J. E., Ley R. E., Lozupone C. A., McDonald D., Muegge B. D., Pirrung M., Reeder J., Sevinsky J. R., Turnbaugh P. J., Walters W. A., Widmann J., Yatsunenko T., Zaneveld J., Knight R., QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
50
Edgar R. C., Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
51
DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L., Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).
52
Brandt B. W., Bonder M. J., Huse S. M., Zaura E., TaxMan: A server to trim rRNA reference databases and inspect taxonomic coverage. Nucleic Acids Res. 40, W82–W87 (2012).
53
Gupta R. K., Pant C. S., Singh A. K., Behl P., Real time ultrasonography in the evaluation of hydrocephalus and associated abnormalities. Indian Pediatr. 23, 249–254 (1986).
54
Neoptolemos J. P., Davidson B. R., Shaw D. E., Lloyd D., Carr-Locke D. L., Fossard D. P., Study of common bile duct exploration and endoscopic sphincterotomy in a consecutive series of 438 patients. Br. J. Surg. 74, 916–921 (1987).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 352 | Issue 6285
29 April 2016

Submission history

Received: 1 September 2015
Accepted: 11 March 2016
Published in print: 29 April 2016

Permissions

Request permissions for this article.

Acknowledgments

We thank the LifeLines-DEEP participants and the Groningen LifeLines staff for their collaboration. We thank J. Dekens, M. Platteel, and A. Maatman for management and technical support. We thank J. Senior and K. McIntyre for editing the manuscript. This project was funded by grants from the Top Institute Food and Nutrition, Wageningen, to C.W. (TiFN GH001); the Netherlands Organization for Scientific Research to J.F. (NWO-VIDI 864.13.013), L.F. (ZonMW-VIDI 917.14.374), and R.K.W. (ZonMW-VIDI 016.136.308); and CardioVasculair Onderzoek Nederland to M.H.H. and A.Z. (CVON 2012-03). A.Z. holds a Rosalind Franklin Fellowship (University of Groningen), and M.C.C. holds a postdoctoral fellowship from the Fundación Alfonso Martín Escudero. This research received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Program: C.W. is supported by FP7/2007-2013)/ERC advanced Grant Agreement no. 2012-322698. M.G.N. is supported by an ERC Consolidator Grant (no. 310372). L.F. is supported by FP7/2007–2013, grant agreement 259867, and by an ERC Starting Grant, grant agreement 637640 (ImmRisk). J.R. and G.F. are supported by FP7 METACARDIS HEALTH-F4-2012-305312, VIB, FWO, IWT (Agency for Innovation by Science and Technology), the Rega institute for Medical Research, and KU Leuven. S.V.-S. and M.J. are supported by postdoctoral fellowships from FWO. T.V., M.S., and R.J.X. are supported by NIH, JDRF, and CCFA. A.Z., C.W., and J.F. designed the study. A.Z., E.F.T., L.F., and C.W. initiated the cohort and collected cohort data. A.Z., E.F.T., Z.M., S.A.J., M.C.C., and D.G. generated data. A.Z., A.K., M.J.B., E.F.T., M.S., T.V., A.V.V., G.F., S.V.-S, J.W., F.I., P.D., M.A.S., C.H., R.J.X., and J.F. analyzed data. G.F, S.V.-S., J.W., E.B., M.J., R.K.W., E.J.M.F., M.G.N., D.G., D.J., L.F., Y.S.A., C.H., J.R., R.J.X., and M.H.H. participated in integral discussions. A.Z., A.K., M.J.B., R.J.X., C.W., and J.F. wrote the manuscript. The authors have no conflicts of interest to report. The raw sequence data for both MGS and 16S rRNA gene sequencing data sets, and age and gender information per sample are available from the European genome-phenome archive (https://www.ebi.ac.uk/ega/) at accession number EGAS00001001704. Other phenotypic data can be requested from the LifeLines cohort study (https://lifelines.nl/lifelines-research/access-to-lifelines) following the standard protocol for data access. All data access to the Lifelines population cohort must follow the informed consent regulations of the Medical Ethics Review Board of the University Medical Center Groningen, which are clearly described at https://lifelines.nl/upload/file/lifelines+data+access+policy_%5B1%5D.pdf. The study was approved by the institutional review board of UMCG, ref.M12.113965. D.J. has additional funding from EU FP7/ no. 305564 and EU FP7/ no. 305479. C.H. is on the Scientific Advisory Board for Seres Therapeutics. Y.S.A. is a director and co-owner of PolyOmica, which provides services in statistical (gen)omics.

Authors

Affiliations

Alexandra Zhernakova* [email protected]
University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.
Top Institute Food and Nutrition, Wageningen, Netherlands.
Alexander Kurilshikov
Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
Novosibirsk State University, Novosibirsk, Russia.
Marc Jan Bonder
University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.
Ettje F. Tigchelaar
University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.
Top Institute Food and Nutrition, Wageningen, Netherlands.
Melanie Schirmer
The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
Tommi Vatanen
The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Computer Science, Aalto University School of Science, Espoo, Finland.
Zlatan Mujagic
Top Institute Food and Nutrition, Wageningen, Netherlands.
Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands.
Arnau Vich Vila
University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.
Gwen Falony
KU Leuven–University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium.
VIB, Center for the Biology of Disease, Leuven, Belgium.
Sara Vieira-Silva
KU Leuven–University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium.
VIB, Center for the Biology of Disease, Leuven, Belgium.
Jun Wang
KU Leuven–University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium.
VIB, Center for the Biology of Disease, Leuven, Belgium.
Floris Imhann
University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.
Eelke Brandsma
University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, Netherlands.
Soesma A. Jankipersadsing
University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.
Marie Joossens
KU Leuven–University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium.
VIB, Center for the Biology of Disease, Leuven, Belgium.
Vrije Universiteit Brussel, Faculty of Sciences and Bioengineering Sciences, Microbiology Unit, Brussels, Belgium.
Maria Carmen Cenit
University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.
Microbial Ecology, Nutrition and Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.
Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain.
Patrick Deelen
University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.
University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, Netherlands.
Morris A. Swertz
University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.
University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, Netherlands.
LifeLines cohort study
Rinse K. Weersma
University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.
Edith J. M. Feskens
Top Institute Food and Nutrition, Wageningen, Netherlands.
Division of Human Nutrition, Wageningen University, Wageningen, Netherlands.
Mihai G. Netea
Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.
Dirk Gevers
The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Present address: Janssen Human Microbiome Institute, Janssen Research and Development, Cambridge, MA, USA.
Daisy Jonkers
Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands.
Lude Franke
University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.
Yurii S. Aulchenko
Novosibirsk State University, Novosibirsk, Russia.
Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK.
PolyOmica, Groningen, Netherlands.
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
Curtis Huttenhower
The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
Jeroen Raes
KU Leuven–University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium.
VIB, Center for the Biology of Disease, Leuven, Belgium.
Vrije Universiteit Brussel, Faculty of Sciences and Bioengineering Sciences, Microbiology Unit, Brussels, Belgium.
Marten H. Hofker
University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, Netherlands.
Ramnik J. Xavier
The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA.
Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Cisca Wijmenga* [email protected]
University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.
Present address: Janssen Human Microbiome Institute, Janssen Research and Development, Cambridge, MA, USA.
Jingyuan Fu* [email protected]
University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.
University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, Netherlands.
Present address: Janssen Human Microbiome Institute, Janssen Research and Development, Cambridge, MA, USA.

Notes

*
Corresponding author. Email: [email protected] (A.Z.); [email protected] (C.W.); [email protected] (J.F.)
These authors contributed equally to this work.
§
These authors contributed equally to this work.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Integrating the gut microbiome and pharmacology, Science Translational Medicine, 16, 732, (2024)./doi/10.1126/scitranslmed.adg8357
    Abstract
  2. Inflammatory Bowel Disease: A focus on the Role of Probiotics in Ulcerative Colitis, Open Access Macedonian Journal of Medical Sciences, 11, F, (44-52), (2023).https://doi.org/10.3889/oamjms.2023.11020
    Crossref
  3. Influence of Gut Microbiota on Metabolism of Bisphenol A, a Major Component of Polycarbonate Plastics, Toxics, 11, 4, (340), (2023).https://doi.org/10.3390/toxics11040340
    Crossref
  4. The Association between Caffeine Intake and the Colonic Mucosa-Associated Gut Microbiota in Humans—A Preliminary Investigation, Nutrients, 15, 7, (1747), (2023).https://doi.org/10.3390/nu15071747
    Crossref
  5. Effect of Probiotic Supplementation on Gut Microbiota in Patients with Major Depressive Disorders: A Systematic Review, Nutrients, 15, 6, (1351), (2023).https://doi.org/10.3390/nu15061351
    Crossref
  6. Gut Failure: A Review of the Pathophysiology and Therapeutic Potentials in the Gut–Heart Axis, Journal of Clinical Medicine, 12, 7, (2567), (2023).https://doi.org/10.3390/jcm12072567
    Crossref
  7. Irritable Bowel Syndrome and the Gut Microbiome: A Comprehensive Review, Journal of Clinical Medicine, 12, 7, (2558), (2023).https://doi.org/10.3390/jcm12072558
    Crossref
  8. Dietary Inflammatory Index and All-Cause Mortality in Older Adults with Hypertension: Results from NHANES, Journal of Clinical Medicine, 12, 2, (506), (2023).https://doi.org/10.3390/jcm12020506
    Crossref
  9. The Rise of Gastrointestinal Cancers as a Global Phenomenon: Unhealthy Behavior or Progress?, International Journal of Environmental Research and Public Health, 20, 4, (3640), (2023).https://doi.org/10.3390/ijerph20043640
    Crossref
  10. Red and White Meat Intake in Relation to Gut Flora in Obese and Non-Obese Arab Females, Foods, 12, 2, (245), (2023).https://doi.org/10.3390/foods12020245
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media