Skip to main content

SARS-COV-2 and Other mRNA Vaccines

  • Chapter
  • First Online:
Messenger RNA Therapeutics

Part of the book series: RNA Technologies ((RNATECHN,volume 13))

  • 1042 Accesses

Abstract

Advances in our biological understanding of mRNA and ionizable-lipid-based nanoparticles (LNP) for delivery have allowed their application as vaccines for the prevention of SARS-COV-2 disease following unprecedented speed of development through to emergency use licensure in around three hundred days from virus sequence availability. Case studies of three SARS-COV-2 mRNA vaccines for which field clinical efficacy data are available are examined and related to mRNA/LNP attributes where possible. The status of other SARS-COV-2 and non-SARS-COV-2 mRNA vaccines in clinical development and select future prospective innovations are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Kaabi N, Zhang Y, Xia S et al (2021) Effect of 2 inactivated SARS-COV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA 326:35–45

    Article  CAS  PubMed  Google Scholar 

  • Anderson EJ, Rouphael NG, Widge AT et al (2020) Safety and immunogenicity of SARS-COV-2 mRNA-1273 vaccine in older adults. N Engl J Med 383:2427–2438

    Article  CAS  PubMed  Google Scholar 

  • Baden LR, El Sahly HM, Essink B et al (2021) Efficacy and safety of the mRNA-1273 SARS-COV-2 vaccine. N Engl J Med 384:403–416

    Article  CAS  PubMed  Google Scholar 

  • Baiersdörfer M, Boros G, Muramatsu H et al (2019) A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Ther Nucleic Acids 15:26–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barda N, Dagan N, Ben-Shlomo Y et al (2021) Safety of the BNT162b2 mRNA covid-19 vaccine in a nationwide setting. N Engl J Med 385:1078–1090

    Article  CAS  PubMed  Google Scholar 

  • Baronti L, Karlsson H, Marušič M et al (2018) A guide to large-scale RNA sample preparation. Anal Bioanal Chem 410:3239–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakney AK, Ip S, Geall AJ (2021) An update on self-amplifying mRNA vaccine development. Vaccines (Basel) 9(2)

    Google Scholar 

  • Blumenthal KG, Phadke NA, Bates DW (2021) Safety surveillance of COVID-19 mRNA vaccines through the vaccine safety datalink. JAMA 326:1375–1377

    Article  CAS  PubMed  Google Scholar 

  • Bozkurt B, Kamat I, Hotez PJ (2021) Myocarditis with COVID-19 mRNA vaccines. Circulation 144:471–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschmann MD, Carrasco MJ, Alishetty S et al (2021) Nanomaterial delivery systems for mRNA vaccines. Vaccines (Basel) 9(1)

    Google Scholar 

  • Caforio AL, Pankuweit S, Arbustini E et al (2013) Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J 34(2636–2648):2648a–2648d

    Google Scholar 

  • Chandler RE (2020) Optimizing safety surveillance for COVID-19 vaccines. Nat Rev Immunol 20:451–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi A, Koch M, Wu K et al (2021) Safety and immunogenicity of SARS-COV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis. Nat Med 27:2025–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu L, McPhee R, Huang W et al (2021) A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-COV-2 vaccine. Vaccine 39:2791–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromer D, Reynaldi A, Steain M et al (2021) Relating in vitro neutralisation level and protection in the CVnCoV (CUREVAC) trial. medRxiv, 2021.2006.2029.21259504

    Google Scholar 

  • Curevac/Press-release (2021a) CureVac press release, CureVac to shift focus of COVID-19 vaccine development to second generation mRNA technology

    Google Scholar 

  • Curevac/Protocol (2021b) CureVac phase 2b/3 clinical trial protocol (CV-NCOV-004), version 3

    Google Scholar 

  • Earle KA, Ambrosino DM, Fiore-Gartland A et al (2021) Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 39:4423–4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EMA/News (2021) EMA raises awareness of clinical care recommendations to manage suspected thrombosis with thrombocytopenia syndrome. European medicines agency

    Google Scholar 

  • Falsey AR, Frenck RW Jr, Walsh EE et al (2021) SARS-COV-2 neutralization with BNT162b2 vaccine dose 3. N Engl J Med 385:1627–1629

    Article  PubMed  Google Scholar 

  • Furqan MM, Verma BR, Cremer PC et al (2021) Pericardial diseases in COVID19: a contemporary review. Curr Cardiol Rep 23:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Gargano JW, Wallace M, Hadler SC et al (2021) Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: update from the advisory committee on immunization practices—United States, June 2021. MMWR Morb Mortal Wkly Rep 70:977–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gennova (2021) Home page. https://gennova.bio/mrna-vaccines/

  • Gilbert SC (2012) T-cell-inducing vaccines—what’s the future. Immunology 135:19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GISAID (2021) Global initiative on sharing avian influenza data (GISAID), tracking of variants

    Google Scholar 

  • Greenlight/Report (2021) Greenlight biosciences, a blueprint to vaccinate the world

    Google Scholar 

  • Hassett KJ, Benenato KE, Jacquinet E et al (2019) Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol Ther Nucleic Acids 15:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath PT, Galiza EP, Baxter DN et al (2021) Safety and efficacy of NVX-CoV2373 covid-19 vaccine. N Engl J Med 385:1172–1183

    Article  CAS  PubMed  Google Scholar 

  • Hippisley-Cox J, Patone M, Mei XW et al (2021) Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-COV-2 positive testing: self-controlled case series study. BMJ 374:n1931

    Article  PubMed  Google Scholar 

  • Huber SA (2016) Viral myocarditis and dilated cardiomyopathy: etiology and pathogenesis. Curr Pharm Des 22:408–426

    Article  CAS  PubMed  Google Scholar 

  • Igyártó BZ, Jacobsen S, Ndeupen S (2021) Future considerations for the mRNA-lipid nanoparticle vaccine platform. Curr Opin Virol 48:65–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IVAC (2021) International vaccine access center, John Hopkins Bloomberg School of Public Health, VIEW-Hub. www.view-hub.org. Accessed Oct 10 2021

  • Jackson LA, Anderson EJ, Rouphael NG et al (2020) An mRNA vaccine against SARS-COV-2—preliminary report. N Engl J Med 383:1920–1931

    Article  CAS  PubMed  Google Scholar 

  • Kamphuis E, Junt T, Waible Z et al (2006) Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood 108:3253–3261

    Article  CAS  PubMed  Google Scholar 

  • Kapoor Y, Meyer RF, Meyer BK et al (2021) Flexible manufacturing: the future state of drug product development and commercialization in the pharmaceutical industry. J Pharm Innov 16:2–10

    Article  Google Scholar 

  • Kis Z, Kontoravdi C, Dey AK et al (2020) Rapid development and deployment of high-volume vaccines for pandemic response. J Adv Manuf Process 2:e10060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein NP, Lewis N, Goddard K et al (2021) Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA 326:1390–1399

    Article  CAS  PubMed  Google Scholar 

  • Kremsner PG, Mann P, Kroidl A et al (2021) Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-COV-2: a phase 1 randomized clinical trial. Wien Klin Wochenschr 133:931–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremsner PG, Guerrero RAA, Arana-Arri E et al (2021) Efficacy and safety of the CVnCoV SARS-COV-2 mRNA vaccine candidate: results from Herald, a Phase 2b/3, randomised, observer-blinded, placebo-controlled clinical trial in ten countries in Europe and Latin America. Lancet Infect Dis https://doi.org/10.1016/S1473-3099(21)00677-0

  • Larson KF, Ammirati E, Adler ED et al (2021) Myocarditis after BNT162b2 and mRNA-1273 vaccination. Circulation 144:506–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu J, Xia H et al (2021a) Neutralizing activity of BNT162b2-elicited serum. N Engl J Med 384:1466–1468

    Article  PubMed  Google Scholar 

  • Liu Y, Liu J, Xia H et al (2021b) BNT162b2-Elicited neutralization against new SARS-COV-2 spike variants. N Engl J Med 385:472–474

    Article  PubMed  Google Scholar 

  • Logunov DY, Dolzhikova IV, Shcheblyakov DV et al (2021) Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 397:671–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low JG, de Alwis R, Chen S et al (2021) A phase 1/2 randomized, double-blinded, placebo controlled ascending dose trial to assess the safety, tolerability and immunogenicity of ARCT-021 in healthy adults. medRxiv 2021.2007.2001.21259831

    Google Scholar 

  • Lukavsky PJ, Puglisi JD (2004) Large-scale preparation and purification of polyacrylamide-free RNA oligonucleotides. RNA 10:889–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay PF, Hu K, Blakney AK et al (2020) Self-amplifying RNA SARS-COV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat Commun 11:3523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mevorach D, Anis E, Cedar N et al (2021) Myocarditis after BNT162b2 mRNA vaccine against covid-19 in Israel. N Engl J Med. https://doi.org/10.1056/NEJMoa2109730

    Article  PubMed  PubMed Central  Google Scholar 

  • Modern/Investor-relations (2021a) Moderna’s other vaccines: CMV vaccine (mRNA-1647). https://investors.modernatx.com/static-files/693ffcac-b2fc-4f7e-91c5-0a9164e7c6dc

  • Moderna/Press-release (2021) Moderna press release, moderna announces FDA advisory committee unanimously votes in support of Emergency use for a booster dose of moderna’s COVID-19 vaccine in the US. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-fda-advisory-committee-unanimously-votes

  • Moderna/Press-release (2021a) Moderna press release, moderna announces clinical progress from its industry-leading mRNA vaccine franchise and continues investments to accelerate pipeline development. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-clinical-progress-its-industry-leading-mrna

  • Mulligan MJ, Lyke KE, Kitchin N et al (2020) Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586:589–593

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Mendes LP, Yao M et al (2019) Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm 136:18–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perche F, Gosset D, Méve M et al (2011) Selective gene delivery in dendritic cells with mannosylated and histidylated lipopolyplexes. J Drug Target 19:315–325

    Article  CAS  PubMed  Google Scholar 

  • Planas D, Veyer D, Baidaliuk A et al (2021) Reduced sensitivity of SARS-COV-2 variant delta to antibody neutralization. Nature 596:276–280

    Article  CAS  PubMed  Google Scholar 

  • Polack FP, Thomas SJ, Kitchin N et al (2020) Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 383:2603–2615

    Article  CAS  PubMed  Google Scholar 

  • Pollock KM, Cheeseman HM, Szubert AJ et al (2021) Safety and immunogenicity of a self-amplifying RNA Vaccine against COVID-19: COVAC1, a Phase I, dose-ranging trial. Lancet. Available at SSRN https://ssrn.com/abstract=3859294 or https://doi.org/10.2139/ssrn.3859294

  • Pottegård A, Lund LC, Karlstad Ø et al (2021) Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population based cohort study. BMJ 373:n1114

    Article  PubMed  Google Scholar 

  • Rosa SS, Prazeres DMF, Azevedo AM et al (2021) mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39:2190–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadoff J, Gray G, Vandebosch A et al (2021) Safety and efficacy of single-dose Ad26.COV2.S vaccine against covid-19. N Engl J Med 384:2187–2201

    Article  CAS  PubMed  Google Scholar 

  • Sahin U, Muik A, Derhovanessian E et al (2020a) COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586:594–599

    Article  CAS  PubMed  Google Scholar 

  • Sahin U, Muik A, Vogle, I et al (2020b) BNT162b2 induces SARS-COV-2-neutralising antibodies and T cells in humans. medRxiv, 2020b.2012.2009.20245175

    Google Scholar 

  • Salleh MZ, Derrick JP, Deris ZZ (2021) Structural evaluation of the spike glycoprotein variants on SARS-COV-2 transmission and immune evasion. Int J Mol Sci 22:7425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze J, Rentzsch M, Kim D et al (2019) A liposomal platform for delivery of a protein antigen to langerin-expressing cells. Biochemistry 58:2576–2580

    Article  CAS  PubMed  Google Scholar 

  • Tam YY, Chen S, Zaifman J et al (2013) Small molecule ligands for enhanced intracellular delivery of lipid nanoparticle formulations of siRNA. Nanomedicine 9:665–674

    Article  CAS  PubMed  Google Scholar 

  • Tanriover MD, Doğanay HL, Akov M et al (2021) Efficacy and safety of an inactivated whole-virion SARS-COV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 398:213–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin MN, Roni MA (2021). Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines (Basel) 9(9)

    Google Scholar 

  • US/CDC (2021) Cases of cerebral venous sinus thrombosis with thrombocytopenia after receipt of the Johnson & Johnson COVID-19 vaccine. Centers for disease control and prevention. https://emergency.cdc.gov/han/2021/han00442.asp

  • US/CDC/Clinical-considerations (2021) U.S. CDC, national center for immunization and respiratory diseases, clinical considerations: myocarditis and pericarditis after receipt of mRNA COVID-19 vaccines among adolescents and young adults. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/myocarditis.html

  • US/CDC/VAERS (2021) US CDC Awardee COVID-19 vaccination planning meeting, Su JR Myopericarditis following COVID-19 vaccination: updates from the vaccine adverse event reporting system (VAERS)

    Google Scholar 

  • van Gils MJ, Lavell AHA, van der Straten K et al (2021) Four SARS-COV-2 vaccines induce quantitatively different antibody responses against SARS-COV-2 variants. medRxiv 2021.2009.2027.21264163

    Google Scholar 

  • VRBPAC/Moderna (2020) Vaccines and related biological products advisory committee, briefing document, moderna (mRNA-1273). https://www.fda.gov/media/152953/download

  • VRBPAC/Pfizer-BioNTech (2020) Vaccine and related biological product advisory committee, briefing document, Pfizer-BioNTech COVID-19 (BNT162, PF-07302048). https://www.fda.gov/media/144246/download

  • Walsh EE, Frenck RW Jr, Falsey AR et al (2020) Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N Engl J Med 383:2439–2450

    Article  CAS  PubMed  Google Scholar 

  • Wesselhoeft RA, Kowalsk PS, Anderson DG (2018) Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9:2629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wesselhoeft RA, Kowalski P, Parker-Hale FC et al (2019) RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol Cell 74:508-520.e504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO/Joint-Press-Release (2021) Global leaders commit further support for global equitable access to COVID-19 vaccines and COVAX. https://www.who.int/news/item/23-09-2021-global-leaders-commit-further-support-for-global-equitable-access-to-covid-19-vaccines-and-covax

  • Witberg G, Barda N, Hos S et al (2021) Myocarditis after Covid-19 vaccination in a large health care organization. N Engl J Med 385:2132–2139

    Article  CAS  PubMed  Google Scholar 

  • Witzigmann D, Kulkarni JA, Leung J et al (2020) Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev 159:344–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu K, Werner AP, Moliva JI et al (2021) mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-COV-2 variants. bioRxiv. https://doi.org/10.1101/2021.01.25.427948

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jackson, N. (2022). SARS-COV-2 and Other mRNA Vaccines. In: Jurga, S., Barciszewski, J. (eds) Messenger RNA Therapeutics. RNA Technologies, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-031-08415-7_6

Download citation

Publish with us

Policies and ethics