Growth and Morbidity of Gambian Infants are Influenced by Maternal Milk Oligosaccharides and Infant Gut Microbiota

Authors: Jasmine C. C. Davis^{1,2}, Zachery T. Lewis^{2,3}, Sridevi Krishnan⁴, Robin M. Bernstein^{6,7}, Sophie E. Moore^{8,9}, Andrew M. Prentice⁹, David A. Mills^{2,3,5}, Carlito B. Lebrilla^{1,2}, and Angela M. Zivkovic^{2,4}*

Affiliations:

¹Department of Chemistry, ²Foods for Health Institute, ³Department of Food Science and Technology, ⁴Department of Nutrition, and ⁵Department of Viticulture and Enology, University of California, Davis, CA 95616, United States

⁶Department of Anthropology, ⁷Health and Society Program, Institute of Behavioral Science, University of Colorado, Boulder, CO 80309, United States

⁸Medical Research Council (MRC) Human Nutrition Research, Cambridge, UK

⁹MRC Unit, The Gambia and MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, UK

*To whom correspondence should be addressed: Angela M. Zivkovic, amzivkovic@ucdavis.edu

Supplementary Figure Legends

Supplementary Figure S1. Differences in individual human milk oligosaccharides (HMOs) between infants who were sick and those who were not sick. Plots are divided by sick (\blacksquare) vs. not sick (\blacksquare) infants, displaying average and standard error bars for relative abundances of (**A**) F-LNO (fucosyllacto-*N*-octaose) at week 4, (**B**) MFpLNH IV (fucosyl-para-lacto-*N*-hexaose) at week 16, and (**C**) IFLNH III (isomer III fucosyl-paralacto-*N*-hexaose) at week 16. *P*-value based on Mann-Whitney U tests. HMO structures pictured with monosaccharides Glc (\bullet), Gal (\bullet), GlcNAc (\blacksquare), and Fuc (\blacktriangle).

Supplementary Figure S2. Relative abundance plots showing the differences in the gut microbiota between infants who were sick and those who were not. The plots show the class-wise distribution of the enriched taxa at the lowest taxonomic level at which they are enriched.

Supplementary Figure S3. Box plots displaying change in infant fecal calprotectin levels (mg/kg) at 4, 16, and 20 weeks postpartum. Median is given as a line, 25th and 75th percentiles are the top and bottom of the box, whiskers are data within 1.5*(75th - 25th percentile) of the median, outliers displayed as dots above the box. *N* at each week given above plot with *P*-value based on linear mixed effects model.

Supplementary Figure S4. Relative abundance plots showing the differences in the gut microbiota between infants categorized into having normal, borderline, or abnormal calprotectin levels. The plots show the class-wise distribution of the enriched taxa at the lowest taxonomic level at which they are enriched.

Supplementary Figure S5. Cladogram plots of microbiota enriched in infants categorized by(A) WAZ and (B) HAZ scores. Infants with WAZ scores <-2 were assigned as "underweight,"

infants with scores >-2 were "desired weight," infants with HAZ scores <-2 were assigned as "stunted," and infants with scores >-2 were "not stunted." Plots indicate microbes that were enriched in infants who were at desired weight (\blacksquare) or underweight (\blacksquare), and not stunted (\blacksquare) or stunted (\blacksquare) based on LefSe analysis.

Supplementary Figure S6. Cladogram plot of microbiota enriched in infants born in either the dry (**■**) or wet (**■**) season.

Supplementary Figure S7. Changes in the predicted functional profile of the infant fecal microbiome over time from week 4 (\blacksquare) to week 16 (\blacksquare) to week 20 (\blacksquare). The median of the data is shown as a line, the mean of the data as a star, the 25th and 75th percentiles of the data as the top and bottom of the box, and the most extreme data point within 1.5*(75th - 25th percentile) of the median as whiskers. Data points outside of the whiskers are shown as crosses.

Supplementary Figure S8. Associations between growth, morbidity, and a decrease in bifidobacteria abundance for infant 25. From week 16 to week 20, the relative abundance of bifidobacteria (**•**) severely dropped and infant calprotectin (**•**) severely increased. Infant 25 also had 12 morbidity instances (**•**), unlike weeks 4 and 16 in which she experienced zero. Her WAZ score (**•**) also dropped during these time points.

Supplementary Table 1. Major microbial contributors of metabolic functions found to change over the first 20 weeks of life.

Gene	Order	Family	Genus	Proportional contribution in all samples	
Hexokinase	Bacteroidales	Bacteroidaceae	Bacteroides	0.286	
Hexokinase	Clostridiales	Veillonellaceae	Megasphaera	0.418	
Hexokinase	Bacteroidales	Porphyromonadaceae	Parabacteroides	0.293	
Butyrate- acetoacetate CoA-transferase	Clostridiales	Veillonellaceae	Megasphaera	0.953	
Butyrate- acetoacetate CoA-transferase	Fusobacteriales	Fusobacteriaceae	Fusobacterium	0.0339	
Butyrate- acetoacetate CoA-transferase	Clostridiales	Lachnospiraceae	All	0.0136	
Glutaconyl- CoA decarboxylase	Clostridiales	Veillonellaceae	All	0.932	
Glutaconyl- CoA decarboxylase	Clostridiales	Lachnospiraceae	All	0.0336	
Glutaconyl- CoA decarboxylase	Clostridiales	Clostridiaceae	All	0.0161	

Sample	Number of Morbidity Instances			Sick or Not Sick			
	Week 4	Week 16	Week 20	Week 4	Week 16	Week 20	
1	0	13	0	Not Sick	Sick	Not Sick	
2	7	1	0	Sick	Sick	Not Sick	
3	15	2	0	Sick	Sick	Not Sick	
4	5	0	0	Sick	Not Sick	Not Sick	
5	0	0	11	Not Sick	Not Sick	Sick	
6	28	0	0	Sick	Not Sick	Not Sick	
7	9	7	24	Sick	Sick	k Sick	
8	0	1	0	Not Sick	Sick	Not Sick	
9	0	13	9	Not Sick	Sick	Sick	
10	5	0	0	Sick	Not Sick	Not Sick	
11	0	0	0	Not Sick	Not Sick	Not Sick	
12	0	3	5	Not Sick	Sick	Sick	
13	0	9	0	Not Sick	Sick	Not Sick	
14	0	0	0	Not Sick	Not Sick	Not Sick	
15	8	0	5	Sick	Not Sick	Sick	
16	4	0	5	Sick	Not Sick	Sick	
17	8	5	8	Sick	Sick	Sick	
18	4	4	15	Sick	Sick	Sick	
19	0	0	0	Not Sick	Not Sick	Not Sick	
20	10	0	7	Sick	Not Sick	Sick	
21	0	0	0	Not Sick	Not Sick	Not Sick	
22	0	9	19	Not Sick	Sick	Sick	
23	0	18	11	Not Sick	Sick Sick		
24	0	9	0	Not Sick	Sick	Not Sick	
25	0	0	12	Not Sick	Not Sick	Sick	
26	0	0	3	Not Sick	Not Sick	Sick	
27	4	0	0	Sick	Not Sick	Not Sick	
28	0	0	9	Not Sick	Not Sick	Sick	
29	0	7	0	Not Sick	Sick	Not Sick	
30	0	5	6	Not Sick	Sick	Sick	
31	0	4	0	Not Sick	Sick	Not Sick	
32	0	0	0	Not Sick	Not Sick	Not Sick	
33	0	0	0	Not Sick	Not Sick	Not Sick	

Supplementary Table 2. Morbidity instances used to assign infants to "sick" or "not sick" categories.

for each infant against a Gambian reference. WAZ score HAZ score Sample -Week 4 Week 16 Week 20 Week 4 Week 16 Week 20 0.167 -1.18 -1.18 0.909 -0.322 -1.77 1 -3.76 2 -1.85 0.338 0.913 0.728 0.736 3 -0.341 -0.0796 -0.146 0.292 0.157 -0.575 4 -1.67 0.926 0.863 -0.613 0.367 0.639 5 0.587 2.78 2.75 1.12 -1.54 1.58 6 -1.61 1.28 0.875 0.536 2.04 0.736 7 0.0952 0.625 0.202 -0.133 0.591 0.487 8 0.389 0.318 0.281 1.12 0.243 1.45 9 -1.72 -0.0539 -0.1 -0.153 -0.898 -1.19 10 -1.9 0.0294 0.1 0.69 0.735 0.351 11 0.25 0.129 0.816 0.527 -1.75 0.728 12 0.143 0.284 0.101 0.21 0.157 0.398 13 1.32 1.55 1.31 1.73 1.24 1.46 14 -2.38 -0.662 -0.65 0.345 0.531 1.65 15 0.388 0.452 1.09 1.29 0.58 0.929 0.706 0.704 16 1.51 2.09 1.46 1.37 17 0.296 -1.57 -0.35 1.53 0.816 0.0625 18 -2.58 0.706 -1 -0.996 -1.51 -0.995 19 -0.579 -1.02 -0.708 -0.449 -0.974 -0.974 20 -2.39 0.19118 0.0625 0.345 0.816 1.41 21 -2.15 -0.926 -0.617 0.345 -1.1 -0.354 22 -1.54 1.43 1.5 1.8 1.14 0.351 23 0.23 0 0.397 0.809 0.498 0.221 24 0.238 -0.739 -0.124 0.704 0.722 0.487 25 -1.48 -0.0882 -0.35 0.939 0.536 1.31 26 -0.286 -0.303 0.2 -0.398 -0.432 0.498 27 -2.77 -1.41 -1.05 -2.15 -1.92 -2.82 28 -2.66 -0.99 -0.85 -0.286 -0.995 -1.79 29 -1.63 -1.41 -0.408 -0.611 -0.317 30 0.837 0.652 -0.901 -0.409 -0.664 31 0.341 0.409 0.27 -0.531 0.678 -0.693 32 0.516 0.443 0.506 1.16 1.2 0.531 33 -0.381 -1.25 -0.727 -1.77 -2.67 -2.45

Supplementary Table 3. Weight-for-age (WAZ) and height-for-age (HAZ) Z scores calculated for each infant against a Gambian reference

Sample	Maternal Age	Maternal Weight (kg)	Infant	Infant Weight (kg)			Infant Height (cm)		
	(years)	Week 1	- Sex	Week	Week	Week	Week	Week	Week
		WEEK I		4	16	20	4	16	20
1	42	54.37	Μ	4.61	5.66	5.8	56.5	62.9	60.9
2	22	73.6	F	4.25	6.36	7.03	55.5	53	64.8
3	21	51.27	Μ	3.97	6.63	6.72	55	64	63.6
4	23	47.6	F	4.43	6.76	6.99	52	63.1	64.6
5	34	57.07	Μ	5.14	9.15	9.29	57	60.1	68.47
6	33	60.9	F	4.49	7	7	55	67.2	64.8
7	27	55.3	Μ	4.52	7.25	7.03	53.97	65	66
8	37	53.7	Μ	4.89	6.98	7.1	57	64.2	68.2
9	30	54.83	F	4.38	6.09	6.22	53.2	60	60.8
10	32	66.33	F	4.2	6.15	6.38	55.4	64	64
11	33	58.83	F	4.35	6.3	6.4	55.5	64.2	64.37
12	23	57	Μ	4.58	6.95	6.94	54.8	64	65.8
13	44	61.8	Μ	6.06	8.06	8.02	58.5	66.5	68.2
14	40	58.77	F	3.72	5.68	5.78	54.5	63.5	66.7
15	24	60.4	М	4.97	7.66	8	55.7	64.53	67
16	21	50.83	Μ	5.29	8.03	8.71	56	67	68
17	28	58.33	F	6.4	5.06	6.02	57.6	64.2	63.4
18	22	56.37	F	3.52	6.61	5.5	51	58.5	61.2
19	29	60.7	Μ	3.67	5.8	6.22	53.2	61.4	62.7
20	28	86.73	F	3.71	6.26	6.35	54.5	64.2	66.2
21	43	57.4	F	3.95	5.5	5.81	54.5	59.5	62.53
22	31	55.8	F	4.56	7.1	7.5	58.3	65	64
23	25	53.9	Μ	4.69	6.7	7.2	55.5	65.5	65.4
24	43	61.9	Μ	4.7	6.05	6.74	56	65.3	66
25	37	59.57	F	4.62	6.07	6.02	55	64.5	66
26	28	56.77	Μ	4.04	6.32	6.58	55.5	64.1	64
27	30	48.9	F	3.33	5.17	5.46	48	57.5	57.4
28	24	48.77	F	3.44		5.62	51	61.5	61.2
29	34	59.8	F	4.31		5.17	59	61.2	62
30	19	62.27	Μ	4	7.44	7.43	52.1	62.7	63.4
31	24	53.6	Μ	4.83	7.06	7.09	53	65.2	63.33
32	21	54.3	М	5.05	7.09	7.3	57.1	66.4	66.1
33	45	60.63	Μ	3.92	5.6	6.2	50	57.5	59.37

Supplementary Table 4. Maternal age and weight, and infant sex, weight, and height.

Supplementary Figure S1. Differences in individual human milk oligosaccharide (HMO) structures between "sick" and "not sick" infants.

Supplementary Figure S2. Relative abundance plots of enriched taxa of infants who were classified as "sick" or "not sick."

Supplementary Figure S3. Infant fecal calprotectin levels by week.

Supplementary Figure S4. Relative abundance plots of enriched taxa of infants with normal,

borderline, and abnormal calprotectin levels.

Supplementary Figure S5. Cladograms of microbiota enriched in infants separated by growth outcomes.

Supplementary Figure S7. Changes in predicted functional profiles of microbiota over time.

Supplementary Figure S8. Associations between growth faltering and increased morbidity with a decrease in abundance of bifidobacteria.

