
CLARK: Fast and Accurate Classification of Metagenomic and
Genomic Sequences using Discriminative k-mers

Supplementary Material

Supplementary Note 1: Algorithmic details

Notations and Problem Definition

Object and targets are described by their sequence which is a non-empty string over the alphabet Σ =
{A, T, G,C} of nucleotides (U can replace T in the case of mRNA). Observe that two bits are sufficient to
identify a nucleotide. Given a sequence s, we use |s| to denote its length. A target is a sequence representing
either a chromosome arm, or a chromosome, or a genome, or a species (i.e., a set of genomes from different
individuals), or a genus (i.e., a set of genomes). We use the variable n to indicate the number of targets. An
object is a sequence that is assumed to originate from at most one of the n targets. We use the variable p to
indicate the number of objects.

We say that a non-empty object s originates from target g if sequence s is a substring of sequence g.
Given n targets {g1, g2, . . . , gn} we say that a sequence s is specific to target gc (or gc-specific) 1 ≤ c ≤ n,
if s is a substring of gc and s is not a substring of any other target. We say that a sequence s is a repeat of
{g1, g2, . . . , gn} if it is a substring of more than one target.

Given a positive integer k, a k-mer is any sequence of k consecutive nucleotides. Given that |Σ| = 4,
there is a total of 4k possible k-mers, i.e., any k-mer can be then associated to a unique dimension ranging
from 1 to 4k. It is easy to observe that exactly N − k + 1 k-mers (distinct or not) can be extracted from a
sequence of length N , when k ≤ N .

The assignment problem can be defined as follows. Given a set of targets{g1, g2, . . . , gn}, a set of
objects {s1, s2, . . . , sp}, and a positive integer k, assign each object si to the target gc∗ , such that the number
of gc-specific k-mers contained for si is the highest (where ties are broken arbitrarily) for c = c∗, where
1 ≤ c ≤ n.

The k-spectrum T (s) of an object s is the vector of size 4k defined as follows: for any 1 ≤ i ≤ 4k,
T (s)i is the number of occurrences in s of the k-mer with dimension i. Now consider (Ek, ||.||1), where
Ek = R4k

is a normed vector space of dimension 4k and ||.||1 is the 1-norm. Although spectrums are
vectors of integers, it is more convenient to consider the set R rather than Z because the former is a field.
Thus, (Ek, < ·|· >), where < ·|· > is the standard dot product, is an Euclidean space, on which useful
notions such as projection and orthogonality can be defined. If ~ei is the unit vector (entry i equal to 1 and 0
everywhere else), then (~e1, ~e2, . . . , ~e4k) is the canonical basis of Ek.

The 1-norm of a vector ~v ∈ Ek is defined as ||~v||1 =
∑4k

i=1 |vi|. Since Ek is a vector space of finite
dimensions, all p-norms are equivalent in Ek. However, we prefer the 1-norm due some of its properties.
For instance, for any k-spectrum T (s) for a sequence s of length N , we have ||T (s)||1 = N − k + 1. In
other words, sequences of same length have the same 1-norm.

Probability of Two Sequences to Share the Same k-spectrum

We first observe that the mapping between a sequence and its spectrum is not one-to-one (i.e., it is not
invertible), because the spectrum ignores the order of k-mers in the sequence. The consequence is that two
or more distinct sequences can have the same spectrum. For example, the spectrums of all N − 1 circular
rotations of a string of length N are identical to each other.

We now proceed to compute the probability that a pair of sequences (targets or objects) of length N share

the same k-spectrum. The problem of recovering a sequence from a set of k-mers is one of the “flavors”
of genome assembly. From the k-spectrum one can build the corresponding de Bruijn graph (nodes are
k-mers and edges connect two nodes if the two corresponding k-mers have a k − 1 overlap). Any Eulerian
path of this graph recovers one of sequences having such spectrum [1]. Here we want to count the number
of sequences with the same k-spectrum, which is equal to the number of distinct Eulerian paths in the
corresponding de Bruijn graph. Given a sequence s, we call Bk,N the set of distinct sequences of length N

whose k-spectrum is T (s). Then, |Bk,N | is the number of Eulerian paths in the de Bruijin graph Gs built
from the k-spectrum of s.

Let us consider a set D of sequences of length N and an integer k. Let s, s′ be two sequences in D. The
probability that s and s′ have the same k-spectrum is

P
(
T (s) = T (s′)|s 6= s′

)
=
|Bk,N ∩D|
|D| − 1

Since we will be using spectrums for classification, we want this probability of a conflict to be as small as
possible. However, |Bk,N ∩D| is not easy to evaluate for a generic set D of sequences. We can compute this
quantity when D is the set of all sequences of length N . In this case, |D| = 4N and |Bk,N ∩D| = |Bk,N |.

The quantity |Bk,N | is an upper bound to the number of Eulerian paths in Gs for a sequence s of length
N . Thus, we have |Bk,N | ≤ (N−k+1)4N−k−3 ·3 ·2 ·1, because there are at most (N−k+1) possibilities
for choosing the first k-mer, then at most four distinct k-mers for the second position, then at most four
distinct k-mers for the third position, and so on and so forth. For the last three positions there are three, then
two, and one k-mer. Thus,

P
(
T (s) = T (s′)|s 6= s′

)
≤ (N − k + 1)4N−k−3 · 3 · 2 · 1

4N − 1
=

2(N − k + 1)
4k+2

(1)

For instance, when N is small (say, N = 1000), and k=12, we can estimate that P (T (s) = T (s′)|s 6=
s′) ≤ 10−5. If N is bigger (say, N = 108, which the size of a small genome) and k = 12, then P (T (s) =
T (s′)|s 6= s′) ≤ 0.7451. For N = 108 and k = 19 we get P (T (s) = T (s′)|s 6= s′) ≤ 4.547 10−5, and for
N = 109 and k = 19, we get P (T (s) = T (s′)|s 6= s′) ≤ 4.547 10−4.

Inequality 1 can be used to determine the value of k that will make the probability of a spectrum conflict
small enough (given N). Recall that we assumed that D contains all possible sequences of length N . When
|D| << 4N , it is reasonable to assume that Inequality 1 still holds when k is large enough, since in this case
|Bk,N ∩D| = 0 (e.g., consider the extreme case N = k).

Spectral decomposition

Now we describe how k-spectrums can be used to assign objects to targets. Given a target gc, 1 ≤ c ≤ n, let
T (gc) be its k-spectrum. Henceforth, we assume that vectors T (g1), T (g2), T (g3), . . . , T (gn) are non-null
and linearly independent, i.e., the determinant of the matrix obtained from these vector is not zero:

det [T (g1), T (g2), T (g3), . . . , T (gn)] 6= 0 (2)

This assumption is met in practice and it is sufficiently general due to the fact that sequences from distinct
targets contain unique substrings. From Inequality 1, we can also choose k large enough so the probability
of two distinct sequences to share the same spectrum to be as small as needed.

Let Bc be the basis of unit vectors such that these unit vectors are associated to non-zero-count dimen-
sions in the k-spectrum of T (gc), i.e., Bc = (~ei)i ∈ Ic , where Ic = {i, i ∈ {1, 2, 3, . . . , 4k} | T (gc).~ei 6= 0}.
Since Bc contains all non-null dimensions from T (gc), we can define Ec

k = span(Bc), which is the space
described by linear combinations of the unit vectors in Bc. Ec

k represents the vector space associated to the
k-spectrum of target gc.

Now we are going to build another basis, but only for target-specific k-mers. Let B̃c be the basis of
unit vectors corresponding to the set of dimension of non-zero counts in the k-spectrum of T (gc), which
has at the same time, zero counts in the spectrum of other targets, i.e., B̃c = (~ei)i∈eIc

, where Ĩc = {i, i ∈
{1, 2, 3, . . . , 4k} | T (gc).~ei 6= 0 and for all c′ 6= c we have T (gc′).~ei = 0}. By the Equation 2, we
have for all c, B̃c 6= ∅ (if for some c, B̃c = ∅, then we need to increase k). Therefore, we can define
Ẽc

k = span(B̃c), which is the vector space built from all subspaces specific to Ec
k.

Ẽc
k is called target-specific k-mer space of gc or simply gc-specific k-mer space. If the set of targets

{g1, g2, . . . , gn} represents chromosome arms, and the sequences for the two arms overlap each other, then
it is possible to define centromere-specific k-mer spaces. Given (c, c′) representing the two arms of the same
chromosome (for example in barley, 2HS and 2HL), let B̃c,c′ , c < c′ be the basis such that B̃c,c′ = (~ei)i∈eIc,c′

,

where Ĩc,c′ = {i, i ∈ {1, 2, 3, . . . , 4k} | T (gc).~ei 6= 0 and T (gc′).~ei 6= 0 and ∀d 6= c, d 6= c′, T (gd).~ei = 0}.
B̃c,c′ contains all dimensions present only in both T (gc) and T (gc′). In other words, B̃c,c′ contains k-mers
specific to the overlap between gc and gc′ . Since we assume that the overlap between gc and gc′ defines the
centromere, Ẽc,c′

k = span(B̃c,c′) is the centromere-specific k-mer space. For convenience in notations, we
denote B̃c,c′ by B̃d, where d is an integer such that n < d ≤ n + m, d is unique to the pair (c, c′), and m

is the total number of non-null centromere-specific k-mer spaces (m ≤ n/2). At most n/2 centromeres can
be defined given a set of n chromosomal sequences, because some centromeres are not defined in the case
of no overlap. In the case there is no overlap, then m = 0.

Orthogonal decomposition

The vector spaces Ẽc
k allow a decomposition of the k-mer vector space Ek. This section explains the

construction of this decomposition. First, we prove the fact that a k-mer from an object s cannot belong to
more than one target specific k-mer space.

Claim 1. For all (c, c′) ∈ {1, . . . , n + m}2, c 6= c′, we have Ẽc
k ⊥ Ẽc′

k .

Proof. By construction, for all ~u ∈ Ẽc
k,∀~u′ ∈ Ẽc′

k , we have ~u =
∑

i∈eIc
ui~ei and ~u′ =

∑
i∈eIc′

u′i~ei. Then,

~u.~u′ =
∑

i∈{1,2,3,...,4k} uiu
′
i =

∑
i∈eIc∩eIc′

uiu
′
i. By definition of the basis, Ĩc ∩ Ĩc′ = ∅ because c 6= c′, so

~u.~u′ = 0.

Since we have established that spaces Ẽc
k are pairwise orthogonal, we can define Ẽk as the vector space

resulting from the direct sum of all Ẽc
k, i.e.,

Ẽk =
n+m⊕
c=1

Ẽc
k (3)

Since Ẽk contains non-null spaces, Ẽk is not a null space. Also, since Ek is an Euclidean space and
Ẽk ⊂ Ek, we can define the orthogonal decomposition of Ek as

Ek = Ẽk ⊕ Ẽ⊥
k (4)

where the vector space Ẽ⊥
k represents the space of common k-mers within all targets.

The last two relations are useful when we consider the assignment of an object s to a target sequence
gc. Since T (s) ∈ Ek, Equation 4 suggests that there must exist two unique vectors ~u and ~u⊥ such that
T (s) = ~u + ~u⊥, where ~u is the orthogonal projection of T (s) to Ẽk, and ~u⊥ is the orthogonal projection of
T (s) to Ẽ⊥

k . In order words, ~u = T (s)
/ eEk

, and ~u⊥ = T (s)
/ eE⊥

k
. Let us now focus on ~u. Equation 3 allows

us to decompose this vector by projecting it into each Ẽc
k:

~u = T (s)
/ eEk

=
n+m∑
c=1

T (s)
/ eEc

k

It follows that

‖~u‖1 =
∥∥∥T (s)

/ eEk

∥∥∥
1

=
n+m∑
c=1

∥∥∥T (s)
/ eEc

k

∥∥∥
1

(5)

where
∥∥∥T (s)

/ eEc
k

∥∥∥
1

is the count of gc-specific k-mers in s. As a consequence, projecting the spectrum of any

object s to each target-specific space Ẽc
k reveals the uniquely shared substring between object s and target

c.

Orthogonal projections

Let us now introduce more properties based on the decomposition described above.

Claim 2. If an object s is not a substring of a target gc, then
∥∥∥T (s)

/ eEc
k

∥∥∥
1

= 0.

Proof. If s is not a substring of gc ∈ {g1, g2, . . . , gn} then any k-mer from s cannot be gc-specific. There-
fore, the count gc-specific k-mers contained in s is 0. The conclusion follows.

Claim 3. If s is a repeat of {g1, g2, . . . , gn} and m = 0 then, for all c ∈ {1, 2, . . . , n}, we have
∥∥∥T (s)

/ eEc
k

∥∥∥
1

=
0.

Proof. Recall that T (s) = ~u + ~u⊥ and ‖~u‖1 =
∑

c∈{1,2,...,n}

∥∥∥T (s)
/ eEc

k

∥∥∥
1
. For any c,

∥∥∥T (s)
/ eEc

k

∥∥∥
1

is the
count of k-mers specific to gc contained in s. Since m = 0, there is no centromere-specific space. Now, let
us assume for some c,

∥∥∥T (s)
/ eEc

k

∥∥∥
1
6= 0, this implies (since there is no centromere-specific spaces) that s

contains at least one k-mer that is specific to gc and no other target. So s contains a substring that appears
only in one target sequence. In other words, s is not repeated in its entirety, so this contradicts the hypothesis
that s is a repeat. This implies that for all c ∈ {1, 2, . . . , n}, we have

∥∥∥T (s)
/ eEk

∥∥∥
1

= 0.

Theorem 1. Given a set of targets {g1, g2, . . . , gn}, and a set of objects {s1, s2, . . . , sp}, if sl originates
from at least one target in {g1, g2, . . . , gn} and m = 0, then there exists at most one index c∗(1 ≤ c∗ ≤ n)
such that for all c ∈ {1, 2, . . . , n}, c 6= c∗,

∥∥∥T (sl)/ eEc
k

∥∥∥
1

= 0, where for each target c, 1 ≤ c ≤ n, Ẽc
k is the

gc-specific k-mer space.

Proof. Let sl be a sequence in {s1, s2, . . . , sp}. If sl is a repeat of {g1, g2, . . . , gn} then Claim 3 holds.
Then, the conclusion follows. Otherwise, if sl is not a repeat then sl is a substring of exactly one sequence
gc∗ . In addition, m = 0 so sl is not a substring of any sequence other than gc∗ . So by Claim 2, for all
c ∈ {1, 2, . . . , n}, c 6= c∗,

∥∥∥T (sl)/ eEc
k

∥∥∥
1

= 0.

When sl is a substring of exactly one target sequence gc∗ , if sl does not contain any gc∗-specific k-mers
then

∥∥∥T (sl)/ eEc∗
k

∥∥∥
1

= 0. This may happen when the sequence s is too short to capture any gc∗-specific
k-mers or if k is too small.

However, if
∥∥∥T (sl)/ eEc∗

k

∥∥∥
1
6= 0 then the origin of the sequence s is gc∗ .

Theorem 2. Given a set of targets {g1, g2, . . . , gn}, and a set of objects {s1, s2, . . . , sp}, if sequence sl

originates from at least one target in {g1, g2, . . . , gn} and targets are chromosome arms such that m 6= 0,
then there exists at most two distinct indexes (d, e) ∈ {1, 2, . . . , n+m}2 such that for all c ∈ {1, 2, . . . , n+
m}, c 6= d, c 6= e,

∥∥∥T (sl)/ eEc
k

∥∥∥
1

= 0.

Proof. We consider four cases. In the first case sl is a repeat and is a substring of at least three targets
then sl can not contain any specific k-mer to any target. Then, for all c ∈ {1, 2, . . . , n + m}, we have∥∥∥T (s)

/ eEc
k

∥∥∥
1

= 0. The conclusion follows.
In the second case, sl is a repeat and is a substring of two targets gc1 and gc2 . Assume that gc1 and gc2 are

the arms of the same chromosome. If sl is a substring in the overlap between gc1 and gc2 then sl can contain
k-mers specific to the corresponding centromere. It follows that there exists d ∈ {n+1, . . . , n+m} such that∥∥∥T (sl)/ eEd

k

∥∥∥
1

may be not null, however for all c ∈ {1, 2, . . . , n + m}, c 6= d, we have
∥∥∥T (s)

/ eEc
k

∥∥∥
1

= 0 and
the conclusion follows. Otherwise, sl is a repeat and any k-mer in sl can not be specific to any target (because
it appears twice) or any centromere (because it is not in the overlap). So for all c ∈ {1, 2, . . . , n + m}, we
have

∥∥∥T (s)
/ eEc

k

∥∥∥
1

= 0. The conclusion follows. If gc1 and gc2 are not the arms of the same chromosome
then sl is merely a repeat, therefore the conclusion follows.

In the third case sl is a not repeat (sl originates from gd) and is a partial substring of the overlap between
two targets gd and gd′ . Say gd and gd′ are the arms of the same chromosome. Then, sl can contain gd-specific
k-mers, and also k-mers specific to the centromere (formed by gd and gd′), and no other k-mers specific to
other space. It follows that

∥∥∥T (sl)/ eEd
k

∥∥∥
1

may be not null and there exists e ∈ {n + 1, . . . , n + m} such

that
∥∥∥T (sl)/ eEe

k

∥∥∥
1

may be not null either. Thus, the conclusion follows. If gd and gd′ are not the arms of the
same chromosome, then sl can only contain gd-specific k-mers, and the conclusion follows.

In the fourth case, sl is not a repeat and is not a substring (nor a partial substring) of any overlap between
two targets then sl is a substring of exactly one sequence gc∗ . Similarly as the previous proof, the conclusion
follows.

Theorems 1 and 2 show that, given an object s the projections of T (s) on all targets-specific spaces are
guaranteed to be null, except for the one that is related to the origin of s. As a consequence, if a sequence
s is known to be a substring of at most one target in {g1, g2, . . . , gn}, then the problem of assigning s is
reduced to the problem of studying non-null projections of T (s) on the n + m specific vector spaces.

Assignment method

The two previous theorems lay the theoretical foundation on which CLARK’s assignment method was de-
signed. Given an object s, CLARK first computes the projections of the spectrum T (s) on all targets-specific
spaces.

If the number of non-null projection is zero, then object s is not assigned (a higher value of k might
be necessary). If there is exactly one non-null projection, say

∥∥∥T (s)
/ eEc

k

∥∥∥
1
6= 0, for some c, then object

s contains gc-specific k-mers. In this case, CLARK assigns object s to target c. If there is more that one
non-null projections, say

∥∥∥T (s)
/ eEc

k

∥∥∥
1
6= 0, for c = c1 and c = c2, we expect c1 and c2 to be arms of the

same chromosome. In this case, the chromosome is identified, and s is assigned to c1 if
∥∥∥T (s)

/ eEc1
k

∥∥∥
1

>∥∥∥T (s)
/ eEc2

k

∥∥∥
1
, otherwise s is assigned to c2.

The previous cases can be summarized by the following rule. First compute

c∗ = arg max
1≤c≤n+m

∥∥∥T (s)
/ eEc

k

∥∥∥
1

(6)

then object s is assigned to target c∗.
Theoretically, one should expect a large number of projections to be zero. In practice, with real (noisy)

data null-expected projections will have instead low counts. In other words, instead of expecting up to two
non-null projections, we should expect up to two projections having high 1-norm compared to all others.

Given a object s, CLARK computes the highest norm, namely
∥∥∥T (s)

/ eEc∗
k

∥∥∥
1
, and the second highest

norm, namely
∥∥∥T (s)

/ eEc∗∗
k

∥∥∥
1
. Then, CLARK evaluates the confidence of the assignment by using the fol-

lowing confidence score, which ranges from 0.5 to 1.

confidence =

∥∥∥T (s)
/ eEc∗

k

∥∥∥
1∥∥∥T (s)

/ eEc∗
k

∥∥∥
1
+

∥∥∥T (s)
/ eEc∗∗

k

∥∥∥
1

Another useful statistic is γ =
∑

1≤c≤n+m

∥∥∥T (s)
/ eEc

k

∥∥∥
1
/ ‖T (s)‖1, which indicates the proportion of

k-mers hitting all targets.

CLARK’s algorithm

Given a set of targets {g1, g2, . . . , gn}, a set of objects {s1, s2, . . . , sp} and an integer k, CLARK’s computes
for each object s (1) the top two target assignments, (2) the confidence score, (3) the number of hits against
each target and (4) γ.

To achieve efficient computations, we use a hash table to store all k-mers from the targets. This data
structure allows one to remove all common k-mers, and also performs fast queries (constant time, on aver-
age). We have designed our own hash table of size L based on a chaining structure. The hash function h is
defined as follows. Given a k-mer km represented by a number l, where l =

∑k
i=1 a[i]4i−1 (with a[i] = 0

if km[i] = A, a[i] = 1 for C, a[i] = 2 for G and a[i] = 3 for T or U), we define h(l) = l mod L, where
L is defined below. To reduce the amount of bits to be stored per k-mer, we only save in the hash table the

value l/L for bucket h(l). Indeed, since L is known, h(l) and l/L contain enough information to compute
back l because l = (l/L) × L + h(l). If k = 31 and L > 415 then (l/L) can be stored in four bytes. As a
consequence, any 31-mer can be represented with only four bytes instead of eight. If k ≤ 23 and L > 415

then two bytes are enough to store any k-mer; if k ≤ 19 and L > 415 then only one byte is enough.
The implementation of our algorithm using a hash table is illustrated in Table S5.

Supplementary Note 2: Confidence score analysis

Our software tool CLARK, unlike other most of other sequence classifiers, provides confidence scores. Here
we want to study the relation between confidence scores and correctness of results.

Figure S1 shows the distribution of the number of assignments as a function of the confidence score for
all the datasets presented in this study, namely barley BACs and unigenes (A2A), barley BACs (R2R and
A2A), and the four metagenomic datasets (“HiSeq”, “MiSeq”, “simBA-5”, and “simHC.20.500”). Observe
the high density of high confidence assignments in all cases, especially for “HiSeq” and “MiSeq” datasets.
For all these datasets, when running CLARK in full mode, we observe that at least 95% of all assignments
have confidence score higher or equal than 0.98. This is clear evidence that, in the full mode, conflicts in
the classification rarely occur.

Figure S2 shows the proportion of correct assignments (y-axis) as a function of confidence score ranges
(x-axis). Observe that at least 95% of assignments having confidence of 0.90 or higher are correct.

References

[1] COMPEAU, P. E., PEVZNER, P. A., AND TESLER, G. How to apply de Bruijn graphs to genome assembly.
Nature biotechnology 29, 11 (2011), 987–991.

Installation/Database construction Classification
Time (HH:MM) RAM Peak usage (GB) Memory Disk (GB) RAM Peak usage (GB)

NBC 19:10 < 1 52.0 < 1
KRAKEN 06:07 167.9 141.0 77.7
CLARK 02:45 164.1 42.4 70.1
CLARK-l 00:05 3.8 < 1 2.8

Table S1: Details of the time and memory usage (RAM and disk) for the installation (or database con-
struction of the 2,752 bacterial genomes of NCBI/RefSeq), and the classification of NBC, KRAKEN and
CLARK, at the genus-level and in default mode. Measurements of the installation time and RAM peak
usage are done for NBC, KRAKEN and CLARK using default settings and single-thread. RAM peak us-
age was obtained by the attribute maximum resident set size of the command /usr/bin/time
-v available on Linux platforms.

“HiSeq” dataset
Number of threads 1 2 4 8
KRAKEN 2,332 3,647 3,534 3,876
CLARK 3,116 5,484 9,626 15,807
KRAKEN-Q 6,224 7,712 7,693 7,506
CLARK-E 32,450 39,841 46,386 52,896

“MiSeq” dataset
Number of threads 1 2 4 8
KRAKEN 1,361 2,038 3,605 3,616
CLARK 1,670 3,040 4,905 8,120
KRAKEN-Q 5,308 5,553 8,362 8,642
CLARK-E 28,988 32,199 41,970 49,383

Table S2: Genus-level classification speed (expressed as 103 reads/min) as a function of the number of
threads (k = 31).

Targets 19-mers discriminative 19-mers assignments low confidence high confidence
1H 180,176,713 108,894,740 2,111 7.1% 92.9%

2HC - 814,357 0 - -
2HL 103,679,920 64,700,161 1,424 3.4% 96.6%
2HS 90,912,314 54,449,430 1,071 3.5% 96.5%
3HC - 1,532,968 0 - -
3HL 123,140,951 78,158,244 1,411 3.3% 96.7%
3HS 111,951,787 70,473,478 897 5.5% 94.5%
4HC - 3,105,047 56 67.9% 32.1%
4HL 106,999,773 64,749,958 1,132 3.5% 96.5%
4HS 89,027,872 51,612,790 890 4.4% 95.6%
5HC - 604,030 0 - -
5HL 117,915,094 77,128,375 1,658 2.8% 97.2%
5HS 58,067,400 34,037,607 654 5.4% 94.6%
6HC - 469,530 0 - -
6HL 74,485,223 44,221,184 1,132 3.4% 96.6%
6HS 111,834,123 83,957,421 846 6.5% 93.5%
7HC - 795,923 0 - -
7HL 92,603,503 58,159,248 1,179 3.6% 96.4%
7HS 90,217,777 55,276,671 1,234 4.8% 95.2%
Total 1,351,012,450 853,141,162 15,695 4.6% 95.4%

Table S3: Summary of CLARK’s assignment of 15,695 BACs (represented as assemblies) to barley chromo-
some arms (assemblies) and centromeres (k = 19). Columns: (1) barley chromosome 1H, twelve chromo-
some arms, and six centromeres; (2) number of distinct k-mers in each target; (3) number of discriminative
k-mers present in target sequences (must occur at least once); (4) number of assigned objects per target;
(5) number of low confidence assignment per target; (6) number of high confidence assignment per target;
(7) percentage of low confidence assignment (as a fraction of the total number of assigned objects per tar-
get); (8) percentage of high confidence assignment (as a fraction of the total number of assigned objects per
target).

IMG Taxon ID Genome
640753002 Alkaliphilus metalliredigens QYMF
640427103 Bradyrhizobium sp. BTAi1
637000047 Burkholderia cepacia AMMD
637000160 Chelativorans sp. BNC1
640069309 Clostridium thermocellum ATCC 27405
637000088 Dechloromonas aromatica RCB
643348537 Desulfitobacterium hafniense DCB-2
637000116 Frankia sp. CcI3
637000119 Geobacter metallireducens GS-15
639633037 Marinobacter aquaeolei VT8
637000162 Methanosarcina barkeri Fusaro, DSM 804
637000192 Nitrobacter hamburgensis X14
639633046 Nocardioides sp. JS614
637000208 Polaromonas sp. JS666
637000216 Pseudoalteromonas atlantica T6c
637000221 Pseudomonas fluorescens Pf0-1
640069327 Rhodobacter sphaeroides 2.4.1, ATCC BAA-808
637000260 Shewanella sp. MR 7
639633063 Syntrophobacter fumaroxidans MPOB

Table S4: Genomes used in the “simHC.20.500” dataset (JGI database).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A2A

R2R

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

barley BACs (A2A)

barley unigenes

0.00

0.20

0.40

0.60

0.80

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

HiSeq

MiSeq

simBA-5

simHC.20.500

a

b

c

Figure S1: Distribution of the number of assignments as a function of the confidence score for (a) barley
BACs (R2R) and (A2A) (b) barley unigenes and BACs (A2A) and (c) the four simulated metagenome sets
(“HiSeq”, “MiSeq”, “simBA-5”, and “simHC.20.500”).

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

[0.50,0.60[[0.60,0.70[[0.70,0.80[[0.80,0.90[[0.90,1.0]

HiSeq MiSeq simBA-5 simHC.20.500 barley BACs barley unigenes

Figure S2: Probability (y-axis) of a correct assignment for a particular range of CLARK’s confidence scores
(x-axis).

Input: integer k, n target sequences (gc)1≤c≤n, p object sequences (sl)1≤l≤p

1 if hash table H related to (T (gc))1≤c≤n already exists then
2 load H

3 goto 15
4 create an empty hash table H

5 for all c, 1 ≤ c ≤ n :
6 for each (km, w) ∈ T (gc) :
7 if (km ∈ H) then
8 update the list of targets associated to km by adding c

and increase the occurrence of km by w

else
9 insert (km, w, c) in H

10 for each km ∈ H:
11 if the list of targets for km has more than three elements then
12 remove km from H

else
13 if the list of origins for km has exactly two elements

(c1, c2, c1 < c2) and from different chromosomes then
14 remove km from H

15 for all l, 1 ≤ l ≤ p:
16 if T (sl) = 0 then
17 output l, “not assigned”

continue
18 create n + m empty bins: b1, b2, . . . , bn, . . . , bn+m

19 for each (km, w) ∈ T (sl) :
20 if km ∈ H (in target c) then
21 bc = bc + w

22 c∗ = arg max{b1, b2, . . . , bn, . . . , bn+m}
23 c∗∗ = arg max{{b1, b2, . . . , bn, . . . , bn+m} − {bc∗}}
24 γ =

∑
1≤t≤n+m bt/T (sl)

25 If γ = 0 then
26 Output l, “not assigned”

continue
27 confidence = bc∗

bc∗+bc∗∗

28 output l, b1, b2, . . . , bn+m, γ, c∗, c∗∗, confidence

Table S5: Description of CLARK’s algorithm (“full” mode)

