
MucosalImmunology | VOLUME 1 NUMBER 3 | MAY 2008  183

nature publishing group REVIEW

 MUCINS — AN INTEGRAL PART OF THE MUCOSAL BARRIER 
 Mucosal epithelial tissues have evolved multiple mechanisms 

of defense in response to their vulnerability to microbial attack 

due to their exposure to the external environment. The mucosal 

epithelial cells form a contiguous lining that acts as a barrier 

between the moist exterior environment and the remainder 

of the host. In addition, these cells, both constitutively and in 

response to microbes, together with underlying leukocytes, 

secrete many defensive compounds into the mucosal fluid, 

including mucins, antibodies, defensins, protegrins, collectins, 

cathlecidins, lysozyme, histatins, and nitric oxide. 1 – 3  Together, 

these different defensive compounds form a physical barrier and 

have direct antimicrobial activity, and the ability to opsonize 

microbes to aid clearance. Mucin glycoproteins, however, can 

fulfill all of these roles individually. 

 Mucosal pathogens, almost by definition, have evolved mecha-

nisms to subvert these mucosal defensive measures. The first 

barrier the pathogen encounters is the highly hydrated mucus 

gel that covers the mucosal surface and protects the epithelial 

cells against chemical, enzymatic, microbial, and mechanical 

insult. Mucosal surfaces are coated with a layer of viscous mucus 

ranging in thickness from 10    � m in the eye 4  and trachea 5  to 

300    � m in the stomach and 700    � m in the intestine. 6 – 8  This 

mucus layer is not static but moves to clear trapped material. In 

the gastrointestinal tract, the outer mucus layer is continually 

removed by movement of the luminal contents, whereas in the 

respiratory tract cilia drive its movement. Mucin glycoproteins 

produced by mucus-producing cells in the epithelium or submu-

cosal glands are the major macromolecular constituent of mucus 

and are responsible for the viscous properties of the mucus gel. 

In addition to forming a relatively impervious gel, which acts as 

a lubricant, a physical barrier, and a trap for microbes, mucus 

provides a matrix for a rich array of antimicrobial molecules. 

 Underneath the mucus layer, the cells present a dense forest 

of highly diverse glycoproteins and glycolipids, which form the 

glycocalyx. Membrane-anchored cell-surface mucin glyco-

proteins are a major constituent of the glycocalyx in all mucosal 

tissues. The glycocalyx is highly variable from tissue to tissue; 

for example, the glycocalyx of human intestinal microvilli tips 

is thick (100 – 500   nm) in comparison with the glycocalyx of the 

lateral microvilli surface (30 – 60   nm). 9,10  The oligosaccharide 

moieties of the molecules forming the glycocalyx and the mucus 

layer are highly diverse, and the average turnover time of the 

human jejunal glycocalyx is 6 – 12   h. 11  Consequently, both the 

secreted and adherent mucosal barriers are constantly renewed 

and could potentially be rapidly adjusted to changes in the 

environment, for example, in response to microbial infection.   

 MUCIN BIOSYNTHESIS AND STRUCTURE 
 The tremendous energy investment by mucosal tissues in the 

production of mucins in the basal state, but particularly in 

response to infection, is testimony to the importance of these 
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glycoproteins. Epithelial mucins are a heterogenous family 

of large complex glycoproteins containing a dense array of 

 O -linked carbohydrates typically comprising over 70 %  of their 

mass. These glycans are concentrated in large peptide domains 

of repeating amino-acid sequences rich in serine and threonine. 

The size and number of repeats vary between the mucins, and 

in many of the genes there are genetic polymorphisms in the 

number of repeats (variable number of tandem repeats or VNTR 

polymorphisms), which means the size of individual mucins 

can differ substantially between individuals. Each mucin is 

thought to form a filamentous protein carrying typically 100s 

of complex oligosaccharide structures, 12  giving the mucin a 

 “ bottle-brush ”  appearance. To date, at least 16 human mucins have 

been included in the family, and the expression profile of mucins 

varies between tissues with the gastrointestinal tract showing the 

highest and most diverse expression (see  Table 1 ). 

 Mucins can be divided into three distinct subfamilies: (a) 

secreted gel-forming mucins, (b) cell-surface mucins, and 

(c) secreted non-gel-forming mucins ( Table 1 ). Gel-forming 

mucins, which are the major constituent of mucus and con-

fer its viscoelastic properties, are encoded by a cluster of four 

highly related genes on chromosome 11 13 – 15  and a similar gene 

on chromosome 12. 16  Gel-forming mucins contain N- and 

C-terminal cysteine-rich domains that are both involved in 

homo-oligomerization mediated by inter-molecular disulfide 

bonds. 17,18  The current model for mucin oligomerization is that 

dimerization occurs rapidly during biosynthesis in the endoplas-

mic reticulum preceding or concomitant with  N -glycosylation 

but before  O -glycosylation in the Golgi apparatus, which in turn 

is followed by multimerization of dimers. 19  Oligomerization is 

likely to produce either extended filamentous structures or, more 

probably, web-like molecular structures likely to be critical to the 

rheological properties of the mucus gel. 20 – 24  The extended con-

formation caused by dense glycosylation enables the molecules 

to occupy large volumes, with the secreted oligomeric mucins 

occupying volumes equivalent to those of small bacteria. 25  The 

secreted non-oligomerizing mucins include the MUC7 salivary 

mucin, which can self-aggregate but is not thought to contribute 

significantly to mucus properties, and the MUC8 respiratory 

mucin, which has not been fully characterized to date. 

 There are 11 known genes encoding cell-surface mucins 

expressed by a wide diversity of mucosal tissues, with substantial 

redundancy in many tissues (see  Table 1 ). Cell-surface mucins 

are present on the apical membrane of all mucosal epithelial 

cells and contain large extracellular VNTR domains predicted 

to form rigid elongated structures. Together with their high 

expression, this indicates that these molecules are likely to be a 

prominent, probably dominating, constituent of the glycocalyx 

and may provide a barrier that limits access of other cells and 

large molecules to the cell surface. During synthesis, most 

cell-surface mucins appear to be cleaved into two subunits in 

a region known as an SEA module, which is often flanked by 

epidermal growth factor-like domains. 26  Structural studies of 

the MUC1 SEA module suggest that the cleavage occurs via 

autoproteolysis and that the two subunits remain non-covalently 

associated throughout biosynthesis. 27  However, importantly, the 

extracellular  � -subunit can be shed from the cell surface either 

mediated via a second distinct cleavage event 28,29  or perhaps 

via physical shear forces separating the two domains at the 

original cleavage site as suggested by Macao  et al . 27  Mutation 

    Table 1     Tissue distribution of mucins 

  Mucin    Distribution    References  

  Secreted gel forming  

    MUC2  Small intestine, colon, respiratory 
tract, eye, middle ear epithelium 

   231 – 235 

    MUC5AC  Respiratory tract, stomach, cervix, 
eye, middle ear epithelium 

   235 – 239 

    MUC5B  Respiratory tract, salivary glands, 
cervix, gallbladder, seminal fluid, 
middle ear epithelium 

   235,236,
240 – 244 

    MUC6  Stomach, duodenum, gallbladder, 
pancreas, seminal fluid, cervix, 
middle ear epithelium 

   235,243,
245 – 247 

    MUC19  Sublingual gland, submandibular 
gland, respiratory tract, eye, 
middle ear epithelium 

   16,235,248 

      

  Secreted non-gel forming (monomeric)  

    MUC7  Salivary glands, respiratory tract, 
middle ear epithelium 

   235,249,250 

      

  Cell surface  

    MUC1  Stomach, breast, gallbladder, 
cervix, pancreas, respiratory tract, 
duodenum, colon, kidney, eye, 
B cells, T cells, dendritic cells, 
middle ear epithelium 

   235,251 –
 256 

    MUC3A/B  Small intestine, colon, gall 
bladder, duodenum, middle ear 
epithelium 

   235,243,
257,258 

    MUC4  Respiratory tract, colon, stomach, 
cervix, eye, middle ear epithelium 

   235,255,
259 – 261 

    MUC12  Colon, small intestine, stomach, 
pancreas, lung, kidney, prostate, 
uterus 

   32,262 

    MUC13  Colon, small intestine, trachea, 
kidney, appendix, stomach, 
middle ear epithelium 

   35,235,262 

    MUC15  spleen, thymus, prostate, testis, 
ovary, small intestine, colon, 
peripheral blood leukocyte, bone 
marrow, lymph node, tonsil, 
breast, fetal liver, lungs, middle 
ear epithelium 

   235,263 

    MUC16  Peritoneal mesothelium, 
reproductive tract, respiratory 
tract, eye, middle ear epithelium 

   235,264 –
 267 

    MUC17  Small intestine, colon, duodenum, 
stomach, middle ear epithelium 

   235,268 

    MUC20  Kidney, placenta, colon, lung, 
prostate, liver, middle ear 
epithelium 

   235,269 
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of the cleavage site inhibits MUC1 shedding in transfected 

mammary and respiratory epithelial cells without affecting cell 

surface expression, indicating the importance of the initial cleav-

age in shedding. 30  Furthermore, most cell-surface mucin genes 

appear to undergo alternative splicing and also encode directly 

secreted isoforms lacking transmembrane and cytoplasmic 

domains. 31 – 34  These isoforms are stored in subapical granules 

and in goblet cell thecae and are secreted both constitutively 

and following stimuli. Consequently, due to shedding and direct 

secretion, cell-surface mucins can also be seen as components 

of secreted mucus. 35  

 MUC1 is the most extensively studied membrane-associ-

ated mucin and is the most ubiquitously expressed across all 

mucosal tissues. MUC1 has been estimated to be 200 – 500   nm in 

length (depending on the number of tandem repeats), suggest-

ing it will tower above other molecules attached to the plasma 

membrane. 36  MUC1 associated with the cell surface is 

constantly internalized (0.9 %  of the surface fraction   min     −    1 ) and 

recycled. 37  Internalization occurs by clathrin-mediated endo-

cytosis, and alterations in  O- glycan structure stimulate endo-

cytosis and intracellular accumulation. 38  During recycling, 

sialic acid is added to the premature form of MUC1. 37  Complete 

sialylation requires several rounds of recycling, one cycle taking 

approximately 2.5   h. 37  Pulse-chase experiments indicate that the 

half-life of MUC1 in the plasma membrane is 16 – 24   h, 37,39  sug-

gesting that the average MUC1 molecule recycles up to 10 times 

before release. 37  Recycling rates vary between cell lines and pos-

sibly environmental conditions and have not been measured in 

non-transformed cells, making it very difficult to extrapolate to 

the real rate of recycling and cell-surface half-life  in vivo . The 

cytoplasmic tail appears to interact with the cytoskeleton and 

secondary signaling molecules, 40 – 42  whereas the extracellular 

domains of MUC1 and other cell-surface mucins interact with 

extracellular matrix components and other cells. 43 – 47  

 The cytoplasmic domains of the cell surface mucins are com-

plex, often contain known phosphorylation motifs, and are 

highly conserved across species, suggesting important intra-

cellular functions. The best-studied mucin in this regard is 

MUC1, which has been explored mainly in terms of its role 

in cancer cell biology rather than in mucosal defense. We 

and others have shown phosphorylation of the MUC1 cyto-

plasmic domain 41,48 – 52  as well as molecular association with 

 � -catenin, 41,51  linking MUC1 with the Wnt pathway, which 

is involved in epithelial growth, migration, and wound repair. 

More recently, it has been shown that the cytoplasmic domain 

can be cleaved and that the cleaved domain translocates to mito-

chondria and, together with the p53 transcription factor, to the 

nucleus, where it modulates the cell cycle and protects against 

the apoptotic response to genotoxic stress. 53,54  Some pathogenic 

bacteria produce genotoxins, and thus this protective effect, first 

identified in cancer cells, may have evolved as part of the natural 

epithelial defense against microbial genotoxins. We have recently 

shown that  in vitro  MUC1 protects p53-expressing epithelial 

cells from the effects of cytolethal distending toxin, a genotoxin 

produced by  Campylobacter jejuni . 55,56   In vivo ,  C. jejuni  more 

densely colonized the stomachs of  Muc1       −     /     −       mice, but this effect 

was not seen in isogenic mutants lacking cytolethal distending 

toxin, indicating that Muc1 lowers gastric colonization at least 

in part via inhibiting the activity of cytolethal distending toxin. 55  

Many of the other cell-surface mucins also contain potential 

phosphorylation sites and cleavage motifs in the immediate 

intracellular region of their cytoplasmic domains and may be 

similarly cleaved. Importantly, there is also evidence that inter-

action with bacteria can induce phosphorylation of MUC1 

 in vitro . 57  Signaling by the cytoplasmic domains of cell-surface 

mucins is complex and much remains to be elucidated about 

their mode of action. However, the evidence to date suggests 

that these domains are involved in cellular programs regulating 

growth and apoptosis in mucosal cells perhaps in response to 

microbes and / or their toxins.   

 MUCIN GLYCOSYLATION 
 The carbohydrate structures present on mucosal surfaces vary 

according to cell lineage, tissue location, and developmen-

tal stage. Evidence is emerging that mucin glycosylation can 

alter in response to mucosal infection and inflammation, and 

this may be an important mechanism for unfavorably chang-

ing the niche occupied by mucosal pathogens. The extensive 

 O- glycosylation of the mucins protects them from proteolytic 

enzymes and induces a relatively extended conformation. 25  The 

oligosaccharides on secreted mucins are clustered into heavily 

glycosylated domains (typically 600 – 1,200 amino acids long) 

separated by shorter nonglycosylated regions. 25  The  O- linked 

glycans contain 1 – 20 residues, which occur both as linear and 

branched structures (see  Table 2 ). The carbohydrate chain is 

initiated with an  N- acetylgalactosamine (GalNAc) linked 

to serine or threonine and is elongated by the formation of 

the so-called core structures followed by the backbone region 

(type-1 and type-2 chains). The chains are typically terminated 

by fucose (Fuc), galactose (Gal), GalNAc, or sialic acid residues in 

the peripheral region, forming histo-blood-group antigens such 

as A, B, H, Lewis-a (Le a ), Lewis-b (Le b ), Lewis-x (Le x ), Lewis-y 

(Le y ), as well as sialyl-Le a  and sialyl-Le x  structures. Sulfation 

of Gal and  N- acetylglucosamine (GlcNAc) residues causes 

further diversification. In addition to the  O -linked glycans, mucins 

contain a smaller number of  N -linked oligosaccharides, which 

have been implicated in folding, oligomerization (MUC2), or 

surface localization (MUC17). 58 – 60  

 The carbohydrate structures present on mucins are deter-

mined by the expression of specific glycosyl transferases. Thus, 

mucin glycosylation is governed by genetics (due to polymor-

phisms in these enzymes), tissue-specific enzyme expression, 

and host and environmental factors influencing transferase 

expression. As an example of the impact of host genotype, the 

H type-1 structure is made by the  secretor  (Se) gene product, and 

the majority (80 %  of Caucasians, all South American Indians 

and Orientals) carry this structure and are thus referred to as 

 “ secretors ” . 61  Individuals may also express the  Lewis  (Le) gene 

(90 %  of the Caucasian population) and, provided that they are 

also secretors, will modify H type-1 into the Le b  structure. 61,62  

If they are nonsecretors, type-1 chains without its blood group 

antigen H will be turned into Le a  structures. 61,62  The third 
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Se phenotype with simultaneous expression of Le a  and Le b  

antigens has been described as the  “ weak-Secretor ”  (Se w ) 

phenotype. 63,64  The dual expression of Le a  / Le b  is a consequence 

of an enzymatically weak Se-transferase in combination with 

an intact Le-transferase. 63,64  The terminal structures of mucin 

oligosaccharides are highly heterogeneous and vary between /

 within species and between and even within tissues. The array 

of oligosaccharide structures on individual mucin molecules is 

also somewhat determined by stochastic events as the mucin 

protein moves through the Golgi apparatus. 65  This structural 

diversity may allow the mammalian host to cope with diverse 

and rapidly changing pathogens, as reflected by the observation 

that susceptibility to specific pathogens differs between peo-

ple with different histo-blood groups, 66  as exemplified by the 

observations that individual Se phenotype may determine the 

ratio of infection as well as the course and severity of urinary 

tract infections, Norwalk virus induced acute gastroenteritis 

and  Helicobacter pylori -induced gastric diseases. 67 – 69  There is 

also a strong correlation between distinct adhesive properties of 

 H. pylori  endemic in specific human populations and the mucin 

blood group carbohydrate structures expressed by these popula-

tions. 70  These differences in the external barrier to infection can 

be equated with the diversity in underlying innate and adaptive 

immunity (e.g., polymorphisms in MHC, cytokines), which is 

thought to have evolved for the same reasons.   

 REGULATION AND MODULATION OF THE MUCIN BARRIER 
 The gel-forming mucins are produced by cells in the epithelial 

surface and / or by glands located in the submucosal connective 

tissues, and secretion occurs via both constitutive and regulated 

pathways. 71  Both gel-forming and cell-surface mucins show 

constitutive and inducible gene expression in mucosal epithe-

lial cells. The promoters of the MUC genes have generally not 

been fully characterized, although partial promoter characteri-

zation is available for human  MUC1 , 72 – 74   MUC2 , 75 – 81   MUC3 , 82  

 MUC4 , 83 – 85   MUC5AC , 79,86  and  MUC5B.  87  Differential regu-

lation of individual mucin genes is evident between different 

mucosal tissues and throughout differing regions of the larger 

epithelial tracts. For example, differing promoter regions are 

involved in the differential regulation of constitutive  MUC2  

expression in the small and large intestines. 78  Expression of 

cell-surface and gel-forming mucins can be upregulated by 

inflammatory cytokines such as interleukin (IL)-1 � , IL-4, 

IL-6, IL-9, IL-13, interferons, tumor necrosis factor- � , nitric 

oxide, and other uncharacterized inflammatory factors. 82,88 – 110  

Responsiveness to these cytokines provides a link between 

mucins, innate mucosal immunity, and mucosal inflamma-

tory responses. Neutrophils can also stimulate increases in 

production of both gel-forming and cell-surface mucins by 

mucosal epithelial cells via neutrophil elastase. 111 – 116  Microbial 

products can stimulate increased production of mucins by mucosal 

epithelial cells. 103,117 – 120  In fact, there is evidence that adherence 

of probiotic bacteria upregulates cell-surface mucin expression 

 in vitro , 121,122  perhaps representing an important part of 

the mechanism by which probiotic bacteria limit infection by 

pathogens. In contrast, the lipopolysaccharide of the pathogen 

 H. pylori  decreases mucin synthesis in gastric epithelial cells 

 in vitro  via activation of cPLA-2, 123  representing a mechanism by 

which a pathogen can favorably modulate the mucus barrier. 

  Table 2     Common  O -linked oligosaccharide structures on 
mucins 

  Nomenclature    Structure  

  Core type  

    Core 1  -Gal � 1-3GalNAc � 1-Ser/Thr 

    Core 2  -Gal � 1-3(-GlcNAc � 1-6)GalNAc � 1-
Ser/Thr 

    Core 3  -GlcNAc � 1-3GalNAc � 1-Ser/Thr 

    Core 4  -GlcNAc � 1-3(GlcNAc � 1-6)GalNAc � 1-
Ser/Thr 

    

  N-Acetyllactosamine elongation type  

    Type 1  -Gal � 1-3GlcNAc � 1- 

    Type 2  -Gal � 1-4GlcNAc � 1- 

    

  Branching  

    i-antigen  -Gal � 1-4GlcNAc � 1-3Gal � 1- 
(unbranched) 

    I-antigen  -Gal � 1-4GlcNAc � 1-3(-Gal � 1-
4GlcNAc � 1-6)Gal � 1- (branched) 

    

  Terminal structures  

    Blood group H  Fuc � 1-2Gal � 1- 

    Blood group A  Fuc � 1-2(GalNAc � 1-3)Gal � 1- 

    Blood group B  Fuc � 1-2(Gal � 1-3)Gal � 1- 

    Terminal structures 
 (Type 1 based) 

  

    Lewis a (Le a )  Gal � 1-3(Fuc � 1-4)GlcNAc � 1- 

    Lewis b (Le b )  Fuc � 1-2Gal � 1-3(Fuc � 1-4)GlcNAc � 1-
(includes H) 

    Sialyl-Le a   NeuAc( � 2-3)Gal � 1-3(Fuc � 1-4)
GlcNAc � 1- 

    Terminal structures 
 (Type 2 based) 

  

    Lewis x (Le x )  Gal � 1-4(Fuc � 1-3)GlcNAc � 1- 

    Lewis y (Le y )  Fuc � 1-2Gal � 1-4(Fuc � 1-3)GlcNAc � 1-
(includes H) 

    Sialyl-Le x   NeuAc � 2-3 Gal � 1-4(Fuc � 1-3)
GlcNAc � 1- 

    

  Sulfation  

    3 Sulfation  HSO 3 -3Gal � 1- 

    6 Sulfation  HSO 3 -6GlcNAc � 1- 

    

  Examples of combined epitopes  

    H-type 1  Fuc � 1-2Gal � 1-3GlcNAc � 1- 

    Sialylated type 2  NeuAc � 2-3Gal � 1-4GlcNAc � 1- 
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 The constitutive pathway continuously secretes sufficient 

mucin to maintain the mucus layer, whereas the regulated path-

way affords a massive discharge as a response to environmen-

tal and / or (patho)physiological stimuli, including cholinergic 

stimuli, inflammatory cytokines, prostaglandins, lipopoly-

saccharide, bile salts, nucleotides, nitric oxide, vasoactive intestinal 

peptide, and neutrophil elastase. 93,95,103,113,124 – 131  Stimulated 

mucin release can occur immediately and is accompanied by 

hydration, resulting in approximately a hundredfold expansion 

in volume of the secretory granule contents. 132,133  Shedding of 

the large extracellular  � -subunits of cell-surface mucins from 

the cell surface and release of secreted splice variants of cell-

surface mucins are less well understood. The protease ADAM17 

(also known as TACE) has been shown to trigger shedding of 

MUC1 in endometrial cells in response to tumor necrosis factor-

 � , 28,134  and the matrix metalloproteinase-1 also appears to be an 

effective MUC1 sheddase. 29  

 In addition to regulation of their synthesis and release, mucins 

are regulated in terms of their glycosylation. Altering mucin carbo-

hydrates may block mechanisms that pathogens use to subvert 

the mucin barrier. Tumor necrosis factor- �  alters sialylation of 

mucins produced by a tracheal cell line 135  and expression of 

both fucosyltransferases and  � -2,3-sialyltransferases by normal 

bronchial mucosal explants. 136  In respiratory epithelial cells, 

the Th2 cytokines IL-4 and IL-13 increase expression of core 

2  � -1,6- N -acetylglucosaminyltransferase, which forms  � -1,6-

branched structures, including core 2, core 4, and blood group 

I antigen. 137  In addition, glycosylation changes occur during 

infection / inflammation, for example, in individuals with cystic 

fibrosis or chronic bronchitis, 138  as well as  H. pylori -infected 

individuals. 69,139  The inflammation-associated mucin sialylation 

shown in patients with  H. pylori  infection returns to the nor-

mal pattern following successful bacterial clearance with anti-

biotics. 140  In rhesus monkeys that share strong similarities in 

mucin glycosylation and the natural history of  H. pylori  infec-

tion with humans, 141   H. pylori  infection induces time-dependent 

changes of mucosal glycosylation that alter the  H. pylori  adhe-

sion targets. 69  Such fine-tuned kinetics of host glycosylation 

dynamically modulate host – bacterial interactions, appearing 

to balance the impact of infection and thereby may determine 

the severity of disease. 69  Another example of dynamic changes 

in mucins occurs following infection of rats with the intestinal 

parasite  Nippostrongylus brasiliensis ; infection induces increased 

production and several alterations in the glycosylation of intes-

tinal Muc2 gel-forming mucin, one of which coincides with 

expulsion of the parasite. 142 – 147  These alterations in glycosyla-

tion appear to be driven partly by CD4     +      T cells, as CD4 but 

not CD8 depletion blocks the increase in mucin production, 

change in glycosylation and worm expulsion, 148  and also by 

T-cell-independent mechanisms. 149  Such changes in mucin 

glycosylation need to be considered as a component of innate 

and adaptive immune responses to mucosal infection.   

 MICROBIAL ADHERENCE TO THE EPITHELIUM 
 To colonize mucosal surfaces and invade the host, microbes typi-

cally must first penetrate the secreted mucus barrier and then 

either attach to the apical surface of epithelial cells decorated 

with the cell-surface mucins or release toxins that disrupt epithe-

lial integrity. Bacterial adhesion to host cells can be mediated by 

hydrophobic interactions, cation bridging (i.e., divalent cations 

counteracting the repulsion of the negatively charged surfaces 

of bacteria and host) and receptor ligand binding. One of the 

most extensively studied mechanisms of bacterial adhesion 

is via lectins and their corresponding glycosylated receptors. 

Binding is usually of low affinity, but clustering of adhesins and 

receptors results in multivalent binding. Fimbriae (or pili), outer 

membrane proteins, and cell wall components (e.g., lipopoly-

saccharide) may all function as adhesins. Adhesion can affect the 

bacteria by stimulation / inhibition of growth as well as induction 

of other adhesive structures and proteins required for invasion 

such as secretion systems. On the other hand, effects of adhesion 

on host cells can include altered morphology, fluid loss, induc-

tion of cytokine release, upregulation of adhesion molecules, 

and apoptosis. 150  

 Many bacterial adhesins bind oligosaccharides present on 

mucins. Whether bacterial – mucin binding events favor the 

bacteria or the host is a key question. In reality, for some organ-

isms, this may be a truly commensal relationship with benefits 

for both the bacteria (by facilitating retention in a favorable 

niche and even by providing mucin oligosaccharides for meta-

bolism) and the host (by retaining bacteria in the outer areas 

of the mucus barrier where they cannot harm the underlying 

epithelium and also limiting the niche available for pathogenic 

bacteria). Numerous interactions between microorganisms and 

mucins and / or mucin-type carbohydrates have been demon-

strated (see  Table 3 ). Bacteria may have multiple adhesins with 

different carbohydrate specificities, and modulation of surface 

receptor density, kinetic parameters, or topographical distribu-

tions of these receptors on cell membranes regulate adhesion. 

As an example,  H. pylori  binds to mucin oligosaccharides via at 

least four adhesins, which differ substantially with anatomical 

site along the oro-gastric infection route, mucin type, pH, and 

gastric disease status. 139,151 – 153  Thus, for  H. pylori , binding to 

mucins can have differing consequences during colonization of 

the oral-to-gastric niches and during long-term infection.   

 MUCINS AS DECOYS FOR MICROBIAL ADHESINS 
 Mucus hypersecretion ensuing from infection is testament to the 

role of mucus as a component of host defense. Although mucins 

are the major macromolecular constituent of mucus and are 

largely responsible for formation of the mucus gel, the precise 

nature of their role in host defense has not been well demons-

trated empirically. Formation of the mucus gel is important 

in itself, as it provides a biophysical barrier as well as a matrix 

supporting the retention of a host of antimicrobial molecules. 

However, the secreted mucins themselves are likely to function 

as decoys for adhesins that have been evolved by pathogens 

to engage the cell surface, as the mucins express many of 

the oligosaccharide structures found on the cell surface and are 

constitutively produced in large amounts, constantly washing 

the mucosal surfaces ( Figure 1 ). Some mucins are effective 

viral agglutinating agents and exogenously applied mucins 
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are effective inhibitors of viral infection in  in vitro -cultured 

cells. 154,155   Streptococcus pyogenes ,  Tritrichomonas foetus , 

 Tritrichomonas mobilensis , influenza viruses, reoviruses, 

adenoviruses, enteroviruses, and coronaviruses bind to sialic 

acids, which are present both at the epithelial surface and on 

mucins. 156 – 165  

 Despite the accepted dogma that secreted mucins limit infec-

tion, there are few empirical  in vivo  data demonstrating their 

importance. The only secreted mucin for which genetically 

deficient animals are available is the intestinal mucin, Muc2. 

 Muc2       −     /     −       mice develop spontaneous inflammation, presum-

ably due to the absence of the major component of intestinal 

mucus, leading to increased exposure to the normal intestinal 

microbial flora. 166,167  As yet, there are no reports of controlled 

infection experiments in these mice. Further models of secreted 

mucin deficiency are required to comprehensively determine 

the importance of secreted mucins in preventing and clearing 

mucosal infection. 

 Many pathogens require direct binding to, or penetration of, 

mucosal epithelial cells to cause pathology. The widest diversity 

of cell-surface mucin expression is in the mucosal tissues most 

at risk of infection, such as the gastrointestinal tract, respiratory 

tract, and eye; notably, nine of the ten cell-surface mucins are 

expressed in the large intestine, which is the most microbe-rich 

mucosal environment. Importantly, their ability to be shed from 

the cell surface has led us to hypothesize that one of the main 

functions of cell-surface mucins is to act as releasable decoy 

ligands for microbes attempting to anchor themselves to the 

glycocalyx. Cell-surface mucins initiate intracellular signaling 

in response to bacteria, suggesting that they have both a bar-

rier and reporting function on the apical surface of all mucosal 

epithelial cells. 57  However, until recently, much of the evidence 

had been circumstantial or restricted to  in vitro  analysis. For 

example, upregulation of MUC3 expression in colonic cells 

has been correlated with decreased binding of enteropatho-

genic  E. coli   .   121,122   In vitro  studies have shown that expression 

of MUC1 by transfection inhibits reovirus and adenovirus 

infection of MDCK cells by up to tenfold. 168,169  Milk can limit 

bacterial and viral infections of the gastrointestinal tract and 

this has been attributed in part to the presence of large amounts 

of cell-surface mucins, chiefly MUC1 and MUC15, in the milk-

fat globule membrane. 170 – 172   Muc1       −     /     −       mice were reported to 

display chronic infection and inflammation of the reproduc-

tive tract, reducing fertility rates. In this latter study, only 

normal endogenous bacteria were isolated, suggesting that 

these species become opportunistic pathogens in the absence of 

Muc1. 173  In addition,  Muc1       −     /     −       mice were reported to have 

a high frequency of eye inflammation / infection involving 

 Corynebacteria ,  Staphylococci  and  Streptococci , 174  although this 

could not be duplicated in a different mouse background held 

in alternative housing conditions. 175  

 We recently demonstrated that the intestinal pathogen 

 C. jejuni  binds to fucosylated mucin oligosaccharides. Controlled 

infection experiments demonstrated rapid transit of  C. jejuni  

across the gastrointestinal barrier and greater intestinal patho-

logy in  Muc1       −     /     −       mice. 55  Bone marrow transplantation studies 

demonstrated that the increased susceptibility was due to loss 

of Muc1 on epithelium rather than on leukocytes (which can 

also express Muc1). Loss of Muc1 had no discernable effects 

on the abundance or constituency of the intestinal microbial 

flora. Muc1 appears to prevent  C. jejuni  infection both by 

protecting cells from the effects of the cytolethal distending 

toxin (see above) and by acting as a releasable decoy. 55  We have 

also demonstrated that even though  H. pylori  can bind Muc1, 

that primary murine gastric epithelial cells expressing Muc1 

bind fewer  H. pylori  than  Muc1       −     /     −       cells. 176  This paradoxical 

result is explained by Muc1 acting as a releasable decoy, i.e., the 

bacteria bind Muc1 expressed on epithelial cells, which is then 

shed by the host. Due to the absence of this decoy molecule, 

 Muc1       −     /     −       mice develop an approximately fivefold greater coloni-

zation density of  H. pylori  from the first days following infection 

that is maintained for at least 2 months. Consequently,  Muc1       −     /     −       

mice develop severe gastritis not found in wild-type mice. 176  

Heterozygous mice that have a lower level of gastric Muc1 

  Table 3     Characterized interactions between mucins and microbes 

  Tissue derived mucins    Mucin    Carbohydrate    Microbe    References  

 Respiratory mucins  MUC1  Sialic acids   P. aeruginosa, Haemophilus influenzae, 
S. aureus,  influenza viruses 

   163,181,270 – 272 

 Salivary mucins  MUC5B MUC7 
(DMBT1-Muclin) 

 Sulfated Le a  Sialic acids, 
Sialyl Le x , Le b  

  P. aeruginosa, H. pylori,   Streptococcus 
sanguis, Streptococcus gordonii,  
 Actinobacillus actinomycetemcomitans, 
Streptococcus spp., Candida albicans  

   273 – 280 

 Gastric mucins  MUC5AC MUC1  A, B, H, Le b    H. pylori     139,151,176,281,282 

 Intestinal mucins  MUC2    Enterotoxigenic  Escherichia coli,  
Enteropathogenic  E. coli, Salmonella 
typhimurium, Shigella boydii, Shigella 
sonnei, Campylobacter upsaliensis, 
Yersinia enterolitica, C. albicans,  reo-
viruses 

   162,283 – 290 

     In most studies, only the tissue origin of the mucin has been determined. Which mucins and carbohydrates are responsible for the binding was only determined for 
a small proportion of the interactions. The mucin and carbohydrate columns thus do not indicate that all microbes listed interact via these specifi c structures, but 
merely that these have been shown to bind to some of the bacteria.   
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protein expression show intermediate colonization densities, 

which suggests that polymorphisms in  MUC1  or genes that 

regulate its expression could underlie susceptibility to  H. pylori -

induced pathology in human populations. In fact, in humans, 

individuals with short  MUC1  alleles (encoding smaller extra-

cellular mucin domains) have a higher propensity to develop 

gastritis following  H. pylori  infection. 177 – 179  This may be indica-

tive of lower efficacy of smaller MUC1 extracellular mucin 

domains allowing increased access of bacteria to the epithelial sur-

face, or these alleles may be surrogate markers of polymorphisms 

influencing the level of gastric MUC1 expression. Recently, a 

similar protective role has been demonstrated for the extremely 

large MUC16 cell-surface mucin in human corneal epithelial 

cells. Greater binding of  Staphlylococcus aureus  occurs to  in vitro -

cultured corneal cells when MUC16 is depleted by RNAi. 180  

 Paradoxically, our demonstrations of Muc1-limiting infec-

tion in the gastrointestinal tract are opposite to that found in a 

model of respiratory  Pseudomonas aeruginosa  infection in the 

lung in which  Muc1       −     /     −       mice have an increased clearance of 

bacteria and a reduced inflammatory response to infection. 181  

MUC1 binds the  P. aeruginosa  flagellin, 182,183  but intriguingly 

appears to inhibit flagellin-stimulated TLR5-mediated activation 

of NF- � B by an as yet unclear mechanism requiring the MUC1 

cytoplasmic domain. 181,184  Whereas an infection-promoting 

role of a molecule highly expressed on the apical surface of a 

broad array of mucosal epithelia appears counterintuitive, an 

anti-inflammatory role for MUC1 in some tissues is consistent 

with evolutionary adaptations to clear infection by local defense 

without potentially damaging inflammation, where possible. 

Further investigations are required with a broad array of patho-

gens in multiple tissues to clearly delineate the participation of 

the family of cell-surface mucins in mucosal defense.   

 OTHER PROTECTIVE ROLES OF MUCINS 
 Mucins have direct and indirect roles in defense from infec-

tion distinct from their ability to form a physical barrier and act 

as adhesion decoys. Not only do mucin oligosaccharides bind 

microbes, but also, in some cases, they either have direct antimi-

crobial activity or carry other antimicrobial molecules. A mucin 

oligosaccharide,  � -1-4-linked  N -acetyl-glucosamine, which is 

expressed by some gastric mucins, has been shown to directly 

interfere with synthesis of  H. pylori  cell wall components. 185 

  H. pylori  must live within gastric mucus to remain protected 

from luminal gastric pH and prevent expulsion into the intes-

tine. The antimicrobial mucin oligosaccharide probably acts to 

limit  H. pylori  expansion within gastric mucus. The non-

oligomerizing secreted salivary mucin MUC7 has inher-

ent direct candidacidal activity via a histatin domain at its 

N-terminus. 186,187  In addition, there is evidence for direct bind-

ing of antimicrobial molecules such as histatins and statherin 

by mucins that would help retain the antimicrobial molecules 

in the correct mucosal microenvironment where they can 

best protect the host. For example, MUC7 binds statherin and 

histatin-1, 188  and the other major mucin in saliva, MUC5B, 

binds histatin-1, -3, and -5 and statherin. 189  Secretory IgA 

(sIgA) is secreted via mucosal epithelial cells and needs to be 

  Figure 1        Diagrammatic representation of mucins in the mucosal barrier to infection. ( a ) The normal mucosa is covered with a continuously replenished 
thick mucus layer retaining host-defensive molecules. Commensal and environmental microbes may live in the outer mucus layer but the layer ensures 
that contact of microbes with epithelial cells is rare. ( b ) Early in infection, many pathogens actively disrupt the mucus layer and thereby gain access 
to the epithelial cell surface. In addition, this alters the environment for commensal and environmental microbes and opportunistic pathogenesis may 
occur. ( c ) Pathogens that break the secreted mucus barrier reach the apical membrane surface, which is decorated with a dense network of large 
cell-surface mucins. Pathogens bind the cell-surface mucins via lectin interactions and the mucin extracellular domains are shed as releasable decoy 
molecules. Consequent to contact with microbes and shedding of the extracellular domain, signal transduction by the cytoplasmic domains of the 
cell-surface mucins modulates cellular response to the presence of microbes. ( d ) In response to infection, there are alterations in mucins that are 
driven directly by epithelial cells and in response to signals from underlying innate and adaptive immunity. These alterations include goblet cell 
hyperplasia and increased mucin secretion and altered mucin glycosylation (depicted by the color change) affecting microbial adhesion and the 
ability of microbes to degrade mucus. These changes in mucins work in concert with other arms of immunity to clear the infection.  
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retained in the immediate mucosal environment to maximize 

exclusion of pathogens. sIgA is retained at high concentrations 

in mucus where it can efficiently trap the progress of pathogens, 

although the mechanism(s) for retaining sIgA in mucus are not 

well understood. Interestingly, secretory component, which is 

tightly bound to the Fc region of dimeric-IgA to form sIgA, 

carries oligosaccharide structures similar to those on mucins. 190  

In the absence of secretory component carbohydrates, sIgA fails 

to associate with mucus and fails to prevent infection in a murine 

respiratory bacterial infection model, substantiating both 

the physiological importance of sIgA – mucin interactions and 

the importance of secretory component carbohydrates in main-

taining this interaction. 191  It is also tempting to speculate that 

the poly-anionic mucins bind the poly-cationic antimicrobial 

defensin peptides that are co-secreted into mucus. Interactions 

of mucins with other secreted antimicrobial molecules has not 

been fully explored largely due to difficulties in extracting and 

purifying mucins in the absence of denaturing agents likely to 

disrupt such interactions. The cell-surface mucins are an inte-

gral component of the glycocalyx where they are likely to inter-

act with proteoglycans and other molecules that could retain 

host defense molecules in a molecular complex covering the 

apical cell surface. 192,193  Therefore, other mucins and mucin 

oligosaccharides may yet prove to have direct and indirect 

antimicrobial activity. Regardless of whether antimicrobial 

molecules are retained in mucus by direct binding with mucins 

or by the biophysical properties of mucus, if mucin synthesis 

is aberrant or secreted mucins are degraded, the antimicrobial 

molecules will have impaired efficacy.   

 SUBVERSION OF THE MUCIN BARRIER BY MUCOSAL 
PATHOGENS 
 Perhaps the best evidence for the importance of the mucin bar-

rier to infection is the wide variety of strategies used by microbes 

to subvert or avoid this barrier. Mucin barrier subversion strate-

gies used by microbes include the production of enzymes capa-

ble of degrading mucin core proteins and mucin carbohydrates, 

and effective motility through mucus gels. Motility is important 

for bacterial mucosal pathogens to facilitate breaking through 

the physical mucus barrier. In fact, a vast proportion of mucosal 

bacterial pathogens are flagellated. 194,195   H. pylori  that have 

dysfunctional flagella have a greatly reduced ability to infect. 196   

H. pylori  uses motility for initial colonization and to attain robust 

infection. In conjunction with motility, degradative enzymes 

such as glycosulfatases, sialidases, sialate  O -acetylesterases, 

 N -acetyl neuraminate lyases and mucinases are produced by 

a broad range of bacterial pathogens to destabilize the mucus 

gel and remove mucin decoy carbohydrates for adhesins. 197 – 201  

The protozoan parasite  Entamoeba histolytica  cleaves the MUC2 

mucin, which is the major structural component of the intes-

tinal mucus, and this cleavage is predicted to depolymerize 

the MUC2 polymers. 202  The size of the polymer is important 

for the formation of entangled gels and the viscous properties 

of mucus; consequently, cleavage of the mucin polymer will 

effectively result in a local disintegration of mucus. 203  There is 

evidence that these degradative enzymes are critical for micro-

bial pathogenesis. For example,  the Vibrio cholerae  Hap A, 

which has both mucinolytic and cytotoxic activity, is induced by 

mucin and required for translocation through mucin-contain-

ing gels. 204  The widespread and critically required expression of 

neuraminidases by a wide variety of sialic acid-binding mucosal 

viruses underlines the importance of elimination of mucin 

carbohydrates for their pathogenicity. 160  Lipopolysaccharide 

from  H. pylori  decreases mucin synthesis, 123  and the mucin 

carbohydrate-binding adhesins BabA and SabA undergo phase 

variation and change expression during infection, 153,205  which 

may allow them to evade this host defense mechanism.   

 AVOIDANCE OF THE MUCIN BARRIER BY MUCOSAL 
PATHOGENS 
 Another strategy commonly used by mucosal pathogens is to 

avoid the mucin barrier. Intestinal M cells, specifically designed 

to capture and present microbes to the underlying lymphoid 

tissue, can be regarded as a hole in the mucin barrier. The dome 

epithelium in which they lie lacks goblet cells, and therefore 

does not produce gel-forming mucins, and their apical cell sur-

face has only sparse microvilli and an apparently thin glycoca-

lyx. 206,207  Although no studies have measured the expression 

of individual cell-surface mucins in M cells, there appear to be 

differences in the glycocalyx mucins between M cells and adja-

cent intestinal mucosal epithelial cells. In some species, M cells 

can be identified by their pattern of lectin binding to specific 

cell-surface carbohydrates that differ with other mucosal 

epithelial cells. 208,209  Consequently, even though M cells 

constitute only a very small percentage of mucosal epithelial 

cells, they are the major point of attachment and / or entry used 

by a large number of mucosal pathogens including bacteria 

(e.g.,  S. typhimurium ,  Shigella flexneri ,  Yersinia enterocolitica , 

and  V. cholerae ), viruses (e.g., reovirus, HIV-1, and polio virus) 

and parasites (e.g., Cryptosporidia). 206,210,211  Another strategy 

used by pathogens to avoid the cell-surface mucin barrier, once 

mucus is penetrated or M cells are invaded, is to disrupt the 

tight junctions between adjacent mucosal epithelial cells thereby 

exposing the vulnerable lateral membranes not protected by the 

glycocalyx. Such examples include  S. flexneri , 212  enteropatho-

genic  E. coli , 213   Porphyromonas gingivalis  214  and  H. pylori.  215    

 MODELS TO INVESTIGATE INTERACTIONS BETWEEN 
MICROBES AND MUCINS 
 Numerous models, including cancer cell-lines, organ cultures of 

gastric biopsies and whole animals have been used to investigate 

mucin – microbe interactions. Although they express orthologs 

to most human mucins, the most commonly used laboratory 

animals such as rats and mice have differing glycosylation of 

some of their mucins. In fact, it is tempting to speculate that 

differences in mucin glycosylation between mammalian species 

may underlie some of the differences in infectivity / pathogenicity 

for individual microbial pathogens. Murine knockout models 

are only available for  Muc1 , 216   Muc2 , 166  and  Muc13  (M.A. 

McGuckin, unpublished data), and there are also mutants with 

aberrant Muc2 assembly. 217  Thus, there is a need for more 

models, as mouse knockouts, although limited by the slightly 
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different glycosylation, still represent an important way to 

collect information of the  in vivo  function of mucins in 

infection. Because human pathogens commonly have adhes-

ins for human carbohydrate structures, it is important to select 

appropriate models for individual pathogens. For example, the 

effects of  H. pylori  infection on the mouse are mild, and gastric 

cancer is not induced even after long-term exposure without 

other stimuli or genetic defects, although the mouse may develop 

chronic atrophic gastritis. 218,219   H. pylori  can colonize the guinea 

pig and the Mongolian gerbil and cause a severe inflammatory 

response but does not induce cancer in the absence of exogenous 

chemical carcinogens. 220  These small animal models are useful 

to study some aspects of  H. pylori  infection and have the advan-

tage of being relatively cheap. In contrast, rhesus monkeys natu-

rally have persistent  H. pylori  infection leading to loss of mucus, 

gastritis, gastric ulcers and even cancer. 221 – 224  In addition, the 

anatomy and physiology of the GI tract of the rhesus monkey, 

as well as the expression of mucins and mucin glycosylation are 

very similar to that in human. 141  However, this model is expen-

sive, the monkeys can have preexisting natural infection, and 

primate research has a higher level of ethical considerations. 

  In vitro  microbial – mammalian cocultures are used extensively 

to elucidate the mechanisms by which microbes adhere, invade, 

and signal to the host, and to examine ensuing mammalian cell 

responses. These complex interactions are reliant on appropriate 

gene expression and cellular functioning of both the microbial 

and mammalian cells. It is therefore critical that appropriate 

microbial and mammalian cells are used and that the environ-

ment created experimentally is as similar to the human mucosal 

environment as possible. Human cell lines commonly used for 

 in vitro  infection studies have a highly variable expression of 

mucins and mucin glycosylation, and generally have very low 

production and secretion of gel-forming mucins. 225  Investigators 

using these models need to be aware of these limitations and 

consider them in interpreting their data. Additional impor-

tant issues to consider are choice of cell line and, depending 

on the type of bacteria, oxygen tension. 225,226  With respect to 

appropriate mucin production, primary human tracheobron-

chial epithelial cells cultured in an air – liquid interface represent 

the most physiological cell cultures in which infection studies 

can currently be undertaken. 227   Ex vivo -cultured tissue explants 

provide another potential avenue for exploring microbial mucin 

interactions  in vitro . 228 – 230    

 CONCLUSIONS 
 The personal repertoire of expression of mucin core proteins 

and their glycans, mucin allele length, and transient changes in 

mucin expression and glycosylation in response to infection or 

stress, as well as variations in environmental conditions may all 

affect microbial interaction with host mucins and the patho-

genic consequences of microbial colonization. Rather than a 

static barrier, mucins should be considered as a dynamic respon-

sive component of the mucosal barrier that interacts with and 

responds to other elements of innate and adaptive immunity. 

Difficulties in working with these complex glycoproteins and 

the paucity of physiological experimental systems need to be 

overcome if we are to fully understand the roles of mucins in 

host defense from infection.    
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