
An Optimal Strategy for Monitoring Top-k Queries in
Streaming Windows

Di Yang, Avani Shastri, Elke A. Rundensteiner and Matthew O. Ward

Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, USA.
diyang, avanishastri, rundenst, matt@cs.wpi.edu

ABSTRACT

Continuous top-k queries, which report a certain number (k) of top
preferred objects from data streams, are important for a broad class
of real-time applications, ranging from financial analysis to net-
work traffic monitoring. Existing solutions for tackling this prob-
lem aim to reduce the computational costs by incrementally up-
dating the top-k results upon each window slide. However, they
all suffer from the performance bottleneck of periodically requir-
ing a complete recomputation of the top-k results from scratch.
Such an operation is not only computationally expensive but also
causes significant memory consumption, as it requires keeping all
objects alive in the query window. To solve this problem, we iden-
tify the "Minimal Top-K candidate set" (MTK), namely the subset
of stream objects that is both necessary and sufficient for contin-
uous top-k monitoring. Based on this theoretical foundation, we
design the MinTopk algorithm that elegantly maintains MTK and
thus eliminates the need for recomputation. We prove the optimal-
ity of the MinTopk algorithm in both CPU and memory utilization
for continuous top-k monitoring. Our experimental study shows
that both the efficiency and scalability of our proposed algorithm is
clearly superior to the state-of-the-art solutions.

Categories and Subject Descriptors

H.2.4 [Database Management]: Query processing

General Terms

Algorithms Performance

Keywords

Streaming Data, Top-k Query, Optimality

1. INTRODUCTION
Motivation. Given a dataset and a preference function, a top-k

query returns k objects with the highest preference function score
among all objects. For example, a financial analyst may submit a
top-k query to a stock transaction database asking for the top 100

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

most significant transactions (with largest price × volume) in the
year 2010. While most research efforts focus on supporting top-k
queries in conventional databases [4, 8, 19], recently researchers
started to look at the problem of tackling top-k query execution
in the streaming context [15]. Given the infinite nature of data
streams, window constraints are adopted to make top-k queries ap-
plicable to data streams. Top-k queries over streaming windows
serve many important real-time applications ranging from financial
analysis and e-marketing to network security. For example, a fi-
nancial analyst may submit a continuous top-k query to monitor
the 5 most significant transactions within the last ten minutes as
potential key indicators of the most recent market trend changes.
Or, a bidding-based hotel booking system, such as priceline.com,
needs to continuously monitor the top k room bids with highest
bidding prices, each from a traveler, where k equals the total num-
ber of rooms that its associated hotels have. Also, in network traffic
analysis [15], analysts can discover the potential victim of an on-
going Distributed Denial of Service (DDoS) attack by monitoring
the nodes with the top-k largest throughput.

In some applications, the top-k results are to be returned in ranked
order based on preference scores, as the higher ranked objects may
be more preferred. In the previous hotel room bidding example,
although the booking system always monitors the top k bids, at
any particular time point, only a subset of these k rooms, say k′

(k′ ≤ k) rooms, will be available. The availability of the rooms,
indicated by k′, changes continuously over time, but will never ex-
ceed k. At any particular moment, only the top ranked k′ bids with
highest price from the travelers can be accepted by the system for
booking. Therefore, in such scenarios, the top-k result needs to be
returned in the ranked order of the preference scores.

Challenges. Efficient execution of continuous top-k queries
in streaming environments is challenging. The techniques devel-
oped for top-k queries in conventional databases [4, 8, 19] cannot
be directly applied nor easily adapted to fit streaming environments.
This is because the key problem they solved is, given huge volumes
of static data, how to pre-analyze the data to prepare appropriate
meta information to subsequently answer incoming top-k queries
efficiently [4, 8]. Streaming data however is dynamic with its char-
acteristics dramatically changing over time. Given the real-time
response requirement of streaming applications, relying on static
algorithms to re-compute the top-k results from scratch for each
window is not feasible in practice [15].

Therefore, the key problem to be tackled for continuous top-k
query execution is to design a top-k maintenance mechanism that
efficiently updates the top-k results even under extremely high in-
put data rates and over huge query windows. The state-of-the-art
technique [15] for this problem did not succeed to eliminate the key
performance bottleneck of being forced to periodically recompute

the top-k results from scratch.
Corresponding to the window sliding process, any incremental

top-k maintenance mechanism needs to handle the impact of the
insertion of new objects and of the expiration of existing objects to
the top-k result set. The major challenge for designing such a mech-
anism lies in handling expirations, as they may frequently trigger
the expensive recomputation process. More specifically, when the
existing top-k objects expire from the query window, while the new
objects fail to fill all the “openings" left by the expired objects, the
recomputation process must now search for the qualified substitutes
among all objects in the window. This recomputation process rep-
resents a serious bottleneck for top-k maintenance in terms of both
CPU and memory consumption. Computationally, when search-
ing for qualified substitutes for new top-k results, this process has
to look at potentially all objects in the query window. Thus, the
computational cost is close to or even equivalent to calculating the
full top-k result from scratch. Memory-wise, as current non-top-k
objects may qualify as top-k in future windows, such a recompu-
tation process requires keeping and maintaining all objects alive
in the window. This can be a huge burden on memory utilization.
For queries that have large window sizes, the number of objects re-
quired to be stored can easily reach millions or higher, even when
the actual number of objects a user is interested in is fairly small,
say k = 10 or k = 100.

Proposed Solution. In this work, we design a solution that
achieves optimal CPU and memory complexity for continuous top-
k query monitoring. Our solution eliminates the need for any re-
computation. It achieves not only incremental computation
(recomputation-free), but also, due to its novel state encoding strat-
egy, it realizes minimal memory utilization in the order of parame-
ter k only and independent from the window size.

To tackle the recomputation bottleneck, we observe that, given
the query window semantics, the life span of incoming objects
is known upon their arrival. Thus, by analyzing the life span as
well as the preference scores of the objects in the current window,
we can pre-determine which subset of the current objects has the
potential to contribute to the top-k results in future windows, and
generate the “predicted top-k results" for a sequence of future win-
dows. The objects in those “predicted top-k results" constitute the
“Minimal Top-K candidate set" (MTK) for continuous top-k mon-
itoring, which we prove to be the minimal set of objects that any
algorithm has to keep for accurate query execution. We also show
that the size of MTK is independent from the window size, and we
prove it to be only 2k in the average case. As consequence, any
object not belonging to MTK can be discarded immediately, result-
ing in significant savings in both CPU and memory utilization. By
incrementally maintaining MTK, we eliminate the need for han-
dling object expiration in top-k monitoring and successfully solve
the recomputation bottleneck problem.

However, the straightforward MTK maintenance method is far
from an efficient, not to mention optimal, solution for continuous
top-k monitoring in many cases. Its performance in both CPU and
memory utilization can be significantly affected by repeatedly stor-
ing overlapped top-k candidates for adjacent windows. Our ex-
perimental studies (Section 6) confirm such insufficiency of the
straightforward MTK maintenance method.

To solve this problem, we design a compact MTK encoding method
that enables the integrated representation of top-k candidates for
all future windows. The integrated representation strategy does
not only eliminate the redundant object references that need to be
stored by the straightforward MTK maintenance method, but also
guarantees constant time maintenance effort for each future win-
dow at the arrival of each new object. Based on this compact en-

coding, we present our proposed algorithm, MinTopk. In general,
for each new object, MinTopk updates the top-k results in only log-
arithmic time in the size of MTK, O(log(MTK.size)) (Section
5). In the average case, such cost is only O(log(k)). We prove
that MinTopk achieves optimal memory complexity for top-k mon-
itoring in sliding windows. We also prove that MinTopk achieves
optimal CPU complexity for this problem, when the top-k results
are returned in a ranked order.

Our experimental studies on real data streams from stock trans-
action and moving object domains demonstrate that MinTopk saved
at least 85% of the CPU time compared with the state-of-the-art
solution [15], while using almost negligible memory space, in all
our test cases. For example, when processing a top-k query with
1M-tuple window size and k equal to 1K tuple, our method only
takes 10 seconds to update the query result for each window slide
(100K new tuples), while [15] takes more than 2 minutes, which
can hardly fulfill the requirement of real-time analysis (See Figure
11 in our Experimental Section). Put differently, our system can
comfortably handle a 10K/sec data rate, while the state-of-the-art
technique can barely catch up with a 1K/sec data rate.

The contributions of this work include: 1) We identify and for-
malize the “Minimal Top-K candidate set" (MTK), which is the
minimal but sufficient set for monitoring top-k objects in sliding
windows over data streams. We prove that in the average case the
size of MTK is independent from the window size and linear in k.
2) We present a novel algorithm MinTopk, which eliminates a key
performance bottleneck suffered by prior state-of-the-art solutions,
namely full recomputation from scratch for the whole window. 3)
We prove that MinTopk achieves optimal complexity in memory
utilization for monitoring top-k objects in sliding windows. We
also prove that the MinTopk algorithm achieves optimal CPU com-
plexity for continuous top-k queries, when the top-k results are re-
turned in a ranked order on preference scores. 4) Our experimental
studies based on real streaming data confirm the clear superiority
of MinTopk over all existing methods.

For better readability, the proofs for all lemmas and theorems,
except the final proof for the optimality of our proposed algorithm,
have been put into the Appendix.

2. PRELIMINARIES

2.1 Problem Definition
Given a dataset D and a preference function F , a top-k query

Q(D, F, k) returns k objects o1, o2, ..., ok from D that have the
highest F (oi) score among all objects in D. The preference func-
tion F (oi) can be a complex function on one or more attributes of
oi.

In the sliding window scenario [1, 17, 14], a continuous top-k
query Q(S,win, slide, F, k) returns the top-k objects within each
query window Wi on the data stream S. This query window can
be either time- or count-based. In either case, the query window
has a fixed window size Q.win and a fixed slide Q.slide (either a
time interval or an object count). The window periodically slides by
Q.slide from Wi to Wi+1 (a certain amount of objects have arrived
or a certain amount of time has passes) to include new objects from
S and to remove the expired objects from the previous window
Wi−1. The top-k results will be generated for the new window Wi

only based on the objects alive in that window.

2.2 The Recomputation Bottleneck
Any incremental top-k monitoring algorithm over sliding win-

dows needs to handle the impact of both including new objects and
expiring old objects at each window slide. It is easy to see that

handling the impact of a new object onew on the current top-k re-
sults is straightforward. We can simply compare F (onew) with
F (omin_topk), where omin_topk is the object in the current top-k
set with the smallest F score. If F (onew) < F (omin_topk), this
new object will not change the top-k result, otherwise we include it
in the top-k result set and remove omin_topk from the top-k set.

However, handling the impact of expired objects on the top-k
results is more expensive in terms of resource utilization. Specifi-
cally, when existing top-k objects are expired from the window, the
incoming new objects may fail to re-fill all the “openings" in the
top-k set. In such cases, the state-of-the-art technique [15] needs
to recompute the qualified substitutes based on all objects in the
window. To do this, two alternative strategies could be adopted:
1) Keep the whole window content sorted by F , and continuously
maintain this sorted list with each insertion and expiration of all
stream objects. 2) Recompute the top-k from scratch, while using
index structure to relieve the computational intensity of recomputa-
tion. The state-of-the-art technique [15] adopts the second strategy.

No matter which implementation strategy is chosen, this top-
k recomputation process clearly constitutes the key performance
bottleneck in terms of both CPU and memory resource utilization.
Computationally, when searching for the substitutional top-k can-
didates, it requires us to re-consider potentially huge numbers of
objects. More precisely, all objects in the window need to be re-
examined if no index structure has been deployed, or expensive
index maintenance costs are needed to load and purge every stream
object into and from the index . Alternatively, one could maintain a
completely sorted list upon the whole window. As windows could
potentially be huge in size, this would further increase the cost of
the update process.

Memory-wise, as all objects in the window may later be re-
considered by the recomputation processes, the recomputation pro-
cess requires complete storage of the whole window. Such memory
consumption for queries with large window sizes (millions of ob-
jects or even more) can be huge, even when a query only asks for
a small k, say 10 or 100. To the best of our knowledge, this re-
computation bottleneck remains an open research problem, as no
existing technique is able to completely eliminate it from the top-k
monitoring process.

3. THEORETICAL FOUNDATIONS

AND AN INITIAL APPROACH

3.1 Minimal Top-k Candidate Set
To solve the recomputation problem, we study the predictabil-

ity property of sliding window semantics. In the sliding window
scenarios, query windows tend to partially overlap (Q.slide <
Q.win) [1, 15, 17]. For example, an analyst may monitor the
top 10 significant transactions within the last one hour (Q.win =
3600(s)) with a result refresh rate of every minute (Q.win =
60(s)). Therefore, an object that falls into the window Wi will
also participate in the sequence of the future windows Wi+0, Wi+1

... Wi+n until the end of its life span. Based on our knowledge
about objects in the current window and the slide size, we can pre-
determine the specific subset of the current objects that will partic-
ipate (be alive) in each of the future windows. This enables us to
pre-generate the partial query results for future windows, namely
the “predicted" top-k result for each of the future windows. They
would be based on the objects in the current window but have al-
ready taken the expiration of these objects in future windows into
consideration. While this overlap property of window semantics
has been considered for aggregation [14] and clustering [15, 18]

queries, here we apply it for top-k computation.
Figure 1 shows an example of a top-k result for the current win-

dow and predicted top-k results for the next three future windows
(Q.win = 16, Q.slide = 4). Each object is depicted as a circle
labeled with its object id. The position of an object on the Y-axis
indicates its F score, while the position on the X-axis indicates the
time it arrived at the system.

Figure 1: (Predicted) Top-k results four consecutive windows

at time of W0 (slide size = 4 objects)

Based on the objects in W0, we not only calculate the top-k (k=3)
result in W0, but we also pre-determine the potential top-k results
for the next three future windows, namely W1, W2 and W3, until
the end of life spans of all objects in W0. In particular, the top-k
results for the current window W0 are generated based on all 16
objects in W0, namely objects o1 to o16. While the predicted top-
k results for future windows are calculated based on smaller and
smaller subsets of objects in W0, namely the predicted top-k results
for W1, W2 and W3 are calculated based on object o5 to o16, o9

to o16 and o13 to o16 respectively. All other objects belonging to
W0 but determined to not fall into the (predicted) top-k results for
any of these (future) windows (from W0 to W3 in this case) can be
discarded immediately.

In the example shown in Figure 1, only the 7 objects within the
predicted top-k results for the current and the three future windows
(depicted using circles with solid lines) are kept in our system,
while the other 9 objects (depicted using circles with dashed lines)
are immediately discarded. The latter are guaranteed to have no
chance to become part of top-k result throughout their remaining
life spans. On the left of Figure 3, we list the predicted top-k results
maintained for these four windows. Although these pre-generated
top-k results are only “predictions" based on our current knowl-
edge of the objects that have already arrived so far, meaning that
they may need to be adjusted (updated) when new objects come in,
they guarantee an important property as described below.

Theorem 3.1. At any time, the objects in the predicted top-k re-

sult constitute the “Minimal Top-K candidate set" (MTK), namely

the minimal object set that is both necessary and sufficient for ac-

curate top-k monitoring.

The proof for Theorem 3.1 as well as all subsequent Lemmas
and Theorems can be found in the appendix.

3.2 An Initial Approach: PreTopk

Now we first introduce the first step toward solving this problem,
which is based on incremental maintenance of MTK. We call this
approach PreTopk. When the window slides, the following two
steps update the predicted top-k results. At step 1, we simply purge
the view of the expired window. For example, as shown in Figure 3,
the top-k result of W0 in Figure 2 is removed, and W1 becomes the
new current view. This simple operation is sufficient for handling
the object expiration. At step 2, we create an empty new predicted
top-k result for the newest future window to cover the whole life
span of the incoming objects. Using our example in Figure 3, the
newest future window in this case is W4. Therefore, each new
object will fall into the current window and all future windows that
we are currently maintaining. We thus update these predicted top-k
results by simply applying the addition of each new object.

In particular, when a new object onew comes in, we attempt to
insert it into the predicted top-k result of each window. If the pre-
dicted top-k result of a window has not reached the size of k yet,
we simply insert onew into it. Otherwise we also remove the exist-
ing top-k object with the smallest F score once onew is inserted. If
it fails, namely the predicted top-k result sets of all future windows
maintained have reached size k and F (onew) is no larger than the
F score of any object in them, onew will be discarded immediately.
Again, such computation is straightforward. Figure 2 shows the
updated predicted top-k results of our running example (Figure 1)
after the insertion of four new objects.

Figure 2: Updated predicted top-k results of four consecutive

windows at time of W1 (slide size = 4 objects)

Figure 3: Update process of predicted top-k sets from time of

W0 to W1

3.3 Cost Analysis and Limitations of PreTopk

The predicted top-k result for each future window can be orga-
nized using different data structures, such as a sorted list supported
by a tree-based index structure or a min-heap organized on the F
score of the objects. No matter which data structure is chosen,
the best possible CPU costs for inserting a new object into a top-k
object set and keeping the size of the top-k object set unchanged
has complexity O(log(k)). More precisely, log(k) for position-
ing the new object in the top-k object set, and log(k) for removing
the previous top-k object with the lowest F score. Thus the over-
all processing costs for handling all new objects for each window
slide is O(Nnew ∗ Cnw_topk ∗ log(k)), with Nnew the number of
new objects coming to the system at this slide, and Cave_topk

1 the
average number of windows each object is predicted to make top-k
when it arrives at the system. As the object expiration process is
trivial, this constitutes the total cost for updating the top-k result at
each window slide,

Memory-wise, PreTopk maintains predicted top-k results for
Cnw

2 windows. The memory consumption of PreTopk is com-
posed of two parts: first, the number of distinct objects stored in
memory; second, the number of references to the objects in the
predicted top-k results of all future windows. An object may ap-
pear in the predicted top-k results for multiple windows and thus
needs multiple references. In the example shown in Figure 4, ob-
ject 14 is predicted to be part of the top-k results in four windows,
and thus four references to it are needed.

For the first part, PreTopk achieves the minimal number of ob-
jects to maintain for continuous top-k monitoring (Theorem 3.1).
The size for this minimal set in the average case is analyzed below.

Theorem 3.2. In the average case 3, the number of distinct ob-

jects in predicted results for all future windows is 2k.

For the second part, the number of references stored by PreTopk
is simply Cnw ∗ k, as there are Cnw windows and k objects in
each of them. The size of an object reference (Refsize) is typically
significantly smaller than the size of the actual object (Objsize),
especially when the object contains a large number of attributes. In
summary, the average memory cost for PreTopk is 2k ∗ Objsize +
Cnw ∗ k ∗ refsize.

Conclusion. PreTopk solves the recomputation bottleneck suf-
fered by the state-of-the-art solutions [15]. Memory-wise, it only
keeps the minimal number of objects necessary for top-k query
monitoring, which is shown to be independent of the potentially
very large window size (in Theorem 3.2). Computation-wise, the
processing costs for generating the top-k result in each window are
no longer related to the window size. This is a significant improve-
ment over the state-of-the-art solution [15], because both the pro-
cessing and memory costs of any solution that involves recomputa-
tion are related to the window size, which is usually an overwhelm-
ing factor compared to k or the slide size.

However, the limitations of PreTopk are obvious. The above
cost analysis reveals that the performance of the PreTopk algo-
rithm is affected by a constant factor, namely Cnw, the number
of predicted top-k results to be maintained. More precisely, since
PreTopk maintains the predicted top-k result for each window in-
dependently, both its CPU and memory costs increase linearly with

1When data is uniformly distributed, Cave_top−k = 2k
3slide

. We
omit the derivation process due to the page limitations
2Cnw = ⌈ Qi.win

Qi.slide
⌉ which is equal to the maximum number of

windows a new object can be alive.
3Data is uniformly distributed on F (o), indicating that the objects
with different F scores have equal opportunity to expire after the
window slides.

the number of predicted top-k results to be maintained (Cnw). Al-
though Cnw is a constant, as it is fixed given the query speci-
fication and will never change during query execution, it can be
large in some cases. For example, if a query Q has a window size
Q.win = 10000 and a slide size Q.slide = 10, PreTopk maintains
predicted top-k results for 1000 different windows. Our experimen-
tal studies in Section 6 confirm this inefficiency of PreTopk as the
ratio between Q.win and Q.slide increases.

4. PROPOSED SOLUTION: MINTOPK

4.1 Properties of Predicted Top-k Results
To design a solution whose CPU and memory costs are indepen-

dent not only from the window size but also the number of future
windows to be maintained, we analyze the interrelationships among
the predicted top-k results maintained by PreTopk.

Property 1: Overlap. We observe that the predicted top-k
results in adjacent windows tend to partially overlap, or even be
completely identical, especially when the number of predicted top-
k results to maintain (Cnw) is large. We now explain the overlap
property of the predicted top-k results across multiple windows.

Lemma 4.1. At any given time point, the predicted top-k result

for a future window Wi is composed of two parts: 1) Kinherited,

a subset of predicted top-k objects inherited from the previous win-

dow Wi−1 ; 2) Knew , the “new" top-k objects which qualify as

top-k in Wi but not in Wi−1. |Kinherited| ∩ |Knew | = ∅ and

|Kinherited| + |Knew | = k. Then the following property holds:

For any object oi ∈ Knew and oj ∈ Kinherited, F (oi) < F (oj) .

In the earlier example in Figure 1, at time of window W0, objects
6 and 14 belong to Kinherited of W1, while object 7 belongs to
Knew of W1.

When Cnw is large, implying that the window moves a small
step (compared to the window size) at each slide, only a small per-
centage of the objects will expire after each window slide. Then,
the majority of the predicted top-k result of a window come from
Kinherited. In the previous example, where Q.win = 10000 and
Q.slide = 100, if k=500 objects, at least 80 percent of the pre-
dicted top-k objects in a window will be the same as those in the
previous window (worst case). On average, this percentage will be
even higher, as the expired top-k objects should be only a small
portion of all the expired objects. In the example shown earlier in
Figure 3, at W0, the current top-k of W0 and predicted top-k results
of W1 only differ in one object, and those of W2 and W3 are in fact
exactly the same.

Property 2: Fixed Relative Positions. The relative positions
between any two objects oi and oj in the predicted top-k result sets
of different windows remain the same.

Since the F score for any object is fixed and the predicted top-k
objects in any window are organized by F scores, oi will always
have a higher rank than oj in any window in which they both par-
ticipate, if F (oi) > F (oj).

4.2 Solution: Integrated View Maintenance
Given the two properties identified in Section 4.1, we now pro-

pose an integrated maintenance mechanism for the sequence of
predicted top-k results in future windows. As shown in the cost
analysis in Section 3.3, the major processing costs for PreTopk to
maintain top-k results lie in positioning each new object into the
predicted top-k results of all future windows. Thus, our objective
is to share the computation for the positioning each new object into
multiple predicted top-k results (multiple future windows).

To achieve this goal, instead of maintaining Cnw independent
predicted top-k result sets, namely one for each window, we pro-
pose to use a single integrated structure to represent the predicted
top-k result sets for all windows. We call this structure the super-

top-k list. At any given time point, this super-top-k list includes
all distinct objects in the predicted top-k results of the current as
well as all future windows. The super-top-k list is sorted by F (o).
Figure 4 shows an example of the super-top-k list containing the
objects in predicted top-k results for four windows.

Next, we tackle the problem of how to distinguish among and
maintain top-k results for multiple windows in this single super-

top-k list structure. As a straightforward solution, for each object,
we could maintain a window mark (a window Id) for each of the
windows in which the object is part of its predicted top-k result
set. We call this the complete window mark strategy. Using the
example in Figure 1, at the time of W0, object 14 needs to maintain
four window marks, namely W0, W1, W1 and W3, as it is in the
predicted top-k results for all these four windows. When an object
is qualified for or disqualified from the predicted top-k result set of
a window, we would respectively need to add a new or remove an
existing window mark from it for the corresponding window.

This solution suffers from a potentially large number of window
marks being maintained for each object. Thus, both the addition
and removal process of window marks may require traversing the
complete window mark lists. This is clearly not desirable.

Figure 4: Independent top-k result sets vs. super-top-k struc-

ture using complete and summarized window marks

4.3 Optimal Integration Strategy based on
Continuous Top-k Career

To overcome this shortcoming, we observe the following.

Lemma 4.2. At the time of the current window Wi, the min-

imal F score of the predicted top-k objects in a future window

Wi+n(n > 0) is smaller than or equal to that of any window

Wi+m(0 ≤ m < n), Wi+n.F (omin_topk) ≤ Wi+m.F (omin_topk).

Based on Lemma 4.2 we derive the lemma below.

Lemma 4.3. At any given moment, if an object is part of the

predicted top-k result for a window Wi, then at that moment it is

guaranteed to be in the predicted top-k results for all later windows

Wi+1, Wi+2 ... Wi+j (j ≥ 0), until the last window in its life span.

This continuous top-k career property in Lemma 4.3 establishes
the theoretical foundation for an innovative design of the super-top-

k list. Namely, we design a more compact encoding for window
marks of each object. In particular, for each object, as its “top-k
career" is continuous, we simply maintain a starting and an ending

window mark, which respectively represent the first and the last
windows in which it is predicted to belong to top-k. As shown on

the right of Figure 4, the first (upper) window mark maintained by
each object is its starting window mark and the second (lower) one
is its ending window mark. Clearly, the number of window marks
needed for each object is now constant, namely 2, no matter in how
many windows it is predicted to belong to the top-k result.

To enable us to efficiently decide in which windows a new object
is predicted to make top-k result set when it arrives at the system,
we also maintain one Lower Bound Pointer (lbp) for each win-
dow pointing at the top-k object with the smallest F (o). When a
new object arrives, we simply need to compare it with the object
pointed by the lbp of each window. In the example shown in Fig-
ure 4, the lbp of W0 and W1 point to objects 14 and 7 respectively,
while those of W2 and W3 both point to object 16. We call this the
summarized window mark strategy. This is not only an important
improvement in terms of memory usage but it significantly simpli-
fies the top-k update process, as demonstrated below.

4.4 Super-Top-K List Maintenance
Handling Expiration. Logically, we simply need to purge the

top-k result for the expired window from the super-top-k list. This
task seems to be no longer as trivial as in the independent view stor-
age solution (PreTopK), because now the top-k objects for different
windows are interleaved within one and the same super-top-k list.
We may need to search through the list to locate the top-k objects
of the expired window. However, the following observation bounds
such cost, indicating that searching is not needed.

Lemma 4.4. At any given time, the top-k objects of the current

to-be-expired window are guaranteed to be the first k objects in the

super-top-k list, namely the ones with the highest F scores.

Thus we can “purge" the first k objects on our super-topk-list

without search. Note that purging here is only a logical concept
to convey that these objects will no longer serve as top-k for this
to-be-expired window. However, some of the top-k objects for the
expired window may continue to be part of the predicted top-k re-
sults in future windows. We cannot simply delete them from the
super-top-k list without considering their future role.

Instead, when the window slides, we implement purging of the
expired window by updating the window marks of the first k ob-
jects in super-top-k list. More specifically, we increase the starting
window mark by 1 for each of these objects. As the “top-k careers"
of an object is continuous (Lemma 4.3), such update conveys that
these objects will no longer serve as top-k for the expired window
and their “top-k career" are predicted to start at the next window.
If the starting window mark of an object becomes larger than its
ending window mark, with the ending wondiw mark the latest win-
dow in which it can survive, we know that this object will have no
chance to be part of the top-k result in its remaining life-span. We
can thus physically remove it from the super-top-k list.

Figure 5: Update process of super-top-k list from W0 to W1

Handling Insertion. For the insertion of a new object onew ,
we take two steps to update the super-top-k list. First, we position
it into the super-top-k list. Second, we remove the object with the
smallest F score from the windows that the new object is predicted
to be part of their top-k results. For the first step, the position-
ing process has become fairly simple due to the support from the
summarized window marks. In particular, for each object, if the
predicted top-k result set of any future window represented by the
super-top-k list has not reached the size of k yet, or if its F score
is larger than that of any object in the super-top-k list, we insert
it into the super-top-k list based on its F score. Otherwise it will
be discarded immediately. If the new object is inserted into super-

top-k list, which indicates that it is in the predicted top-k results of
at least the last window in its life span, its ending window mark is
set to be the window Id of this last window. The starting window
mark of a new object is simply the oldest window on the super-

top-k list whose F (omin_topk) (the F score of the object pointed
by its lower bound pointer) is smaller than F (onew). We find this
window by comparing F (onew) with F (omin_topk) of the oldest
window on the super-top-k list, and keep comparing F (onew) with
that of the younger ones (with larger window Ids), until we find
the oldest window whose F (omin_topk) is smaller than F (onew),
(F (omin_topk) monotonically decreases as window Id increases in
Lemma 4.2). In the example shown in Figure 5, the F score of the
new object 17 is larger than F (omin_topk) of all windows, from
W1 to W4. Thus its starting window mark is set to W1, indicating
that its “top-k career" is predicted to start at W1.

Second, for each window in which the new object is inserted
into its predicted top-k result, one previous top-k object becomes
disqualified and thus must be removed. Given that we have an lbp,
for each window pointing to its top-k object with smallest F score,
locating such disqualified object is trivial. For such a disqualified
object, as it now serves in one less window as a top-k object, we
simply increment its starting window mark by 1. Same as in the
purging process, if its starting window mark now becomes larger
than its ending window mark, we physically remove it from super-

top-k list. Objects 7 and 16 are such examples in Figure 5.

4.5 Final Move Towards Optimality
Now we have the last but also the most challenging maintenance

task left. We must design a strategy to efficiently redirect the lower
bound pointer (lbp) of each window from which the object with the
smallest F (o) has just been removed. To do this, we need to locate
the object that currently has the smallest F (o) for each of those
affected windows on the super-top-k list. On first sight, this task
seems to require at least one complete search through the super-

top-k list for each affected window. This is because the objects be-
longing to different windows are now interleaved in this integrated
structure. Thus, we would have to search and locate the objects
whose F (o) scores used to be the second smallest one in each win-
dow. If so, the searches would make the redirecting process very
expensive computationally and thus would significantly affect the
overall performance of the MinTopk algorithm. To solve this prob-
lem, we carefully analyze the characteristics of the super-top-k list

and discover the following important property.

Lemma 4.5. For each window Wi whose predicted top-k result

is represented by the super-top-k list, the object with the second

smallest F score in its predicted top-k result, Wi.osec_min_topk, is

always directly in front of (adjacent to) the object with the smallest

F score in its predicted top-k result, Wi.omin_topk.

Using Lemma 4.5, we can now conduct the redirection proce-
dure effortlessly. We simply move the lower bound pointer of each

affected window by one position up in the super-top-k list. Lastly,
after the insertion of all new objects, the first k objects on the super-

top-k list correspond to the top-k results for the current window and
can be output directly. We call this proposed algorithm MinTopK.
The pseudo code of MinTopK can be found in Figure 6.

4.6 Cost Analysis of MinTopK
CPU and Memory Costs in the General Case. The CPU pro-

cessing costs of MinTopk to handle object expiration are O(k), as
we simply need to update the window marks of the first k objects
on the super-top-k list. For handling the new objects, the cost for
each object pnew is P intopk ∗ (log(MTK.size) + Cnw_topk) +
(1 − P intopk) ∗ 1 (0 ≤ P intopk ≤ 1), with MTK.size the size
of MTK (the number of objects maintained in the super-top-k list)
and P intopk the probability that pnew will make the MTK set.
In general, when pnew makes the MTK set (with P intopk prob-
ability), the cost for positioning pnew into the super-top-k list is
log(MTK.size) with the support of any tree-based index struc-
ture. The cost for redirecting the lower bound pointers is simply
equal to Cnw_top_k

4, the number of windows that are affected by
its insertion, because we only need to move that pointer for each
affected window by one position (Lemma 4.5). Otherwise, with
1 − P intopk probability, it will be discarded immediately with the
cost of just a single check (comparing its F score with the minimal
F score on the super-top-k list).

Lemma 4.6. The CPU complexity for MinTopk to handle each

new object is O(log(MTK.size)).

Therefore, the CPU complexity of MinTopk to process each win-
dow is O(Nnew ∗ (log(MTK.size)) in the general case, with
Nnew the number of new objects coming in that window slide.

Memory-wise, MinTopk only needs a constant memory size to
maintain each object in the MTK set.

Lemma 4.7. The memory size required by MinTopk to maintain

each object pi in super-top-k list is of constant size, in particular, it

is (Objsize + 2Refsize).

Therefore, the memory complexity of MinTopk is O(MTK.size)
in the general case.

From the analysis above, we can observe that the size of the
MTK, MTK.size, is a key factor affecting both CPU and mem-
ory costs of MinTopk. In the best case, MTK.size equals to k.
This would happen when the predicted top-k results for all future
windows are identical. In the worst case, it is equal to the max
size of each predicted top-k result set (k) times the number of win-
dows maintained (Cnw), namely Cnw ∗k. This would mean that all
predicted top-k objects expire after each window slide. However,
this special case is highly unlikely in real streams. It could only
happen when the F scores of the objects in a stream monotonically
decrease across time and the slide size is at least as large as k.

Clearly, the average case is the most important one. In the aver-

age case, the size of the super-top-k is only 2k, as we have proven
that the average number of distinct objects in MTK is 2k in Lemma
3.2. This is comparable to the size of the final top-k result, which is
equal to k. Thus, the average-case CPU complexity of MinTopk for
generating the top-k results at each window is O(Nnew ∗ log(k)).
The average-case memory complexity of MinTopk is O(k).

4Cnw_top_k is bounded by the constant Cnw , namely it is at most
equal to Cnw, the total number of windows maintained.

5. OPTIMALITY OF MINTOPK
In this section, we prove the optimality of our proposed MinTopk

algorithm in both CPU and memory utilization.

Theorem 5.1. MinTopk achieves optimal memory complexity

for continuous top-k monitoring in sliding windows. MinTopk also

achieves optimal CPU complexity for continuous top-k monitoring

in sliding windows, when the top-k results are returned in a ranked

order based on preference scores.

oi: an object. oi.T : object oi’s time stamp.
oi.start_w/.end_w: starting/ending window mark of oi.
Wi.Tend : ending time of a window Wi.
Wexp: the window just expired.
Wnew: the newest future window.
Wi.lbp: lower bound pointer of Wi.
Wi.tkc: top-k object counter of Wi.
owi.lbp

: object pointed by lower bound pointer of Wi.
omin_suptopk : object with smallest F score on super-top-k list.

MinTopk (S, win, slide, F, k)

1 For each new object onew in stream S
2 if onew .T > Wcur.Tend

//slide window

3 OutputTopKResults();
4 PurgeExpiredWindow();

// super-top-k list maintenance

5 UpdateSuperTopk (onew)

OutputTopKResults()

1 output first k objects on super-top-k list;

PurgeExpiredWindow()

1 For first k objects (oexp) on super-top-k list

2 oexp.start_w + +;
3 If oexp.start_w > oexp.end_w
4 remove oexp from super-top-k list;
5 remove Wexp;
6 create a new future window Wnew;
7 Wnew.tkc := 0;
8 Wnew.lbp := omin_suptopk ;

UpdateSuperTopk (oi)
1 If F (oi) < F (omin_suptopk) AND All Wi.tkc == k
2 discard oi immediately;
3 Else position oi into super-top-k list;
4 For each Wi that F (owi.lbp

) < F (oi)
5 If Wi.tkc < k
6 Wi.tkc + +;
5 Else owi.lbp

.start_w + +;
6 If owi.lbp

.start_w > owi.lbp
.end_w ;

9 remove owi.lbp
from super-top-k list;

10 move Wi.lbp by one position in super-top-k list;

Figure 6: Proposed Solution: MinTopk Algorithm

Proof: Memory-Optimality: We have proven that the MTK
set is the the minimal object set that is necessary for any algorithm
to accurately monitor top-k objects in sliding windows in Lemma
3.1. We emphasize that this minimality holds in the general case,
namely, given any unknown arrival rate distribution and preference
score distribution of the input stream. Thus the optimal memory

complexity of any top-k monitoring algorithm in sliding windows
is at least O(MTK.size).

Now we show that MinTopk achieves this optimal memory com-
plexity. First, MinTopk only maintains one reference for each ob-
ject in MTK set. Then, in Lemma 4.7, we have shown that the
memory space needed by MinTopk for each object in the super-

top-k list is Objsize + 2 ∗ Refsize. Denoting the size of MTK by
MTIK.size, then the memory cost of MinTopk is MTK.size ∗
(Objsize + 2 ∗ Refsize). Since Objsize and Refsize are both of
constant size, the memory complexity of MinTopk is O(MTK.size).
This proves that MinTopk has optimal memory complexity in the
general case.

CPU-Optimality. To prove that MinTopk algorithm achieves the
optimal CPU complexity for generating the ranked top-k results at
each window slide, we formalize this problem as Pnewk .

Problem Pnewk: Given two datasets Dnew and D, which re-

spectively represent the new object set for a window slide and the

objects inherited from the previous window, |Dnew | = Nnew and

|D| = N . Each object oi in Dnew or D has a unique F (oi) score
5. The objects in Dnew and D are unsorted on F(o) score. The

goal is to return a dataset K which is composed of k objects from

Dnew ∪ D which have the largest F (o) scores in Dnew ∪ D in

ranked order of F (o).

Next we show that the problem Pnewk is at least as hard as the
following problem Pnewk′ .

Problem Pnewk′ :Given two datasets Dnew and Dk , which re-

spectively represent the new object set coming with a window slide

and the existing top-k object set of D (Dk ⊆ D), |Dnew | = Nnew

and |Dk| = k. Each object oi in Dnew or Dk has a unique

F (oi) score. The objects in Dnew are unsorted on F(o) score.

The goal is to return a dataset K which is composed of k objects

from Dnew ∪Dk which have the largest F (o) scores in Dnew∪Dk

in ranked order of F (o).

The problem Pnewk is at least as hard as Pnewk′ , because any
algorithm that solves Pnewk has to consider any object oi ∈ D,
as any of them may be part of the new top-k results. However,
given that Dk is the top-k object set in D, thus for any object oi, if
oi ∈ D but oi /∈ Dk, it cannot be in the new top-k results, because
there are already k objects in Dk having larger F(o) scores than
this oi. Thus, any algorithm solving Pnewk can solve Pnewk′ also,
indicating that Pnewk is at least as hard as Pnewk′ .

Now we prove the lower bound of Pnewk′ by showing that Pnewk′

can be reduced to the sorting based on comparison problem [6]. In
particular, first, Let A denote any algorithm that solves this prob-
lem. Then we give the following inputs to A, namely the input
datasets Dnew and Dk , in which for any oi ∈ Dnew and oj ∈ Dk,
F (oi) > F (oj) and |Dnew | = |Dk|. It is easy to see that if
A solves Pnewk with the inputs above, A sorts Dnew . This im-
plies that Pnewk′ can be reduced to sorting based on comparison

for Dnew , namely any algorithm A solving Pnewk′ can be used
to solve sorting based on comparison problem. It is well known
that the lower bound for sorting based on comparison problem on
a dataset of size n is O(n ∗ log(n)) [6]. Therefore the lower bound
of the Pnewk′ is O(Nnew ∗ log(k)).

Since we have shown that any algorithm that solves the top-k
problem in sliding windows with ranked top-k results returned is
dealing with a problem at least as hard as Pnewk′ , we now have
proven that the lower bound for any top-k monitoring algorithm

5The assumption on uniqueness of preference scores is a common
assumption for top-k and most sorting related problems [6]. It is
mainly for simplifying the problem definition. While our proposed
techniques do not require such uniqueness of preference scores in
query processing.

for generating the top-k results in ranked order for each window is
O(Nnew ∗ log(k)).

As we have shown in Lemma 4.6, MinTopk takes only
O(log(MTK.size)) to process each new object that arrives within
a window slide. Its CPU complexity to process each window is
O(Nnew∗(log(MTK.size)). Now we must determine what is the
size of MTK in the general case. In Section 4.6, we have shown that
in the average case MTK.size = 2k, and even in the worst case,
MTK.size is bounded by a constant factor Cnw = win

slide
. This

indicates that no matter what the input rate and preference score
distributions of the input stream are, the design of MTK guarantees
that it contains at most Cnw ∗ k objects. Namely, MTK.size =
Cnw ∗ k in the worst case. Therefore the CPU cost of MinTopk is
O(Nnew ∗log(Cnw∗k)) in the worst case. Since Cnw is a constant
that is known and will not change once the query is specified, the
CPU complexity of MinTopk is O(Nnew ∗ log(k)). This proves
that MinTopk achieves the optimal CPU complexity for generating
ranked top-k objects at each window in the general case.

6. EXPERIMENTAL STUDY
Experimental Setup. We conducted our experiments on an HP

G70 Notebook PC with an Intel Core(TM)2 Due T6400 2.00GHz
processor and 3GB memory, which runs Windows Vista operating
system. We implemented the algorithms in C++ using Eclipse.

Streaming Datasets. The first dataset we used is the Stock
Trading Traces data (STT) from [11], which has one million trans-
action records throughout the trading hours of a day from NYSE.
For this data, we use the amount of each transaction, namely the
price times the volume, as the preference function F .

The second dataset, GMTI (Ground Moving Target Indicator) is
provided by MITRE Corp. modeling troop movement in a certain
area. It captures the information of moving objects gathered by
different ground stations or aircraft in a 6-hour time frame. It has
around 100,000 records regarding the information on vehicles and
helicopters (speed ranging from 0-200 mph) moving in a certain
geographic region. For this dataset, the preference function F is
each target’s distance from a stationary ground station calculated
based on their latitude and longitude.

For the experiments that involve data sets larger than the sizes of
these two datasets, we augment them to the required sizes by ap-
pending similar data after them. In particular, we append multiple
rounds of the original data varied by setting random differences on
all attributes, until it reaches the desired size.

Alternative Algorithms. We compare our proposed algorithm
MinTopk’s performance with two alternative methods, namely the
state-of-the-art solution SMA [15] (Section 2.2), and the basic al-
gorithm we presented in this work, PreTopk (Section 3).

Experimental Methodologies. For all alternatives, we measure
two common metrics for stream processing, namely average pro-
cessing time for each object (CPU time) and the memory footprint,
indicating the maximum memory space required by an algorithm.
We run each experiment 10 times (runs). Within each run, we pro-
cess each query for 10K windows (slides for 10K times). The statis-
tics results are averages from the 10 runs. To thoroughly evaluate
the alternative algorithms, we compare their performance under a
broad range of parameter settings and observe how these settings
affect their performance.

Evaluation for Different k Cases. This experiment is to evalu-
ate how the number of preferred objects, k, affects the performance
of the three algorithms. We use the STT data. We fix the window
size at 1M and slide size at 100K, while varying k from 10 to 10K.
As shown in Figures 7 and 8, both the CPU and memory usage
of all three alternatives increases as k increases. This is expected,

because the sizes of the key meta-data, namely the predicted top-
k results for PreTopk and MinTopk (organized differently though)
and the skyband for SMA, all increase linearly with k. However,
both the CPU and memory usage of PreTopk and MinTopk are sig-
nificantly less than those utilized by SMA.

Figure 7: CPU time used by

three algorithms with differ-

ent k values

Figure 8: Memory space

used by three algorithms

with different k values

CPU-wise, both PreTopk and MinTopk saved at least 85% of the
processing time for each object compared with that used by SMA
in the four test cases. By further analyzing the specific components
of the processing time, we found that SMA used a large portion
(around 60%) of its processing time on loading and purging large
numbers of objects from the grid file. Such cost is completely elim-
inated by both PreTopk and MinTopk, as they do not maintain any
index for the whole window and the “useless" objects are discarded
immediately upon their arrival at the system. Also, we found that
SMA used around 10 − 30% of the processing time for top-k re-
computation in different cases. More specifically, its recomputa-
tion rate (number of recomputations divided by the number of win-
dow slides) increases from 23% to 56%, as k increases from 10
to 10K. This indicates that the recomputation process is more fre-
quently needed in SMA when the ratio between k to the slide size
increases. This is because, when k is large, it is more likely that
the same amount of new objects cannot re-fill the skyband to reach
the size of at least k. Again, such recomputation process is needed
by neither PreTopk nor MinTopk. In general, the huge CPU time
savings of PreTopk and MinTopk are achieved by eliminating the
need for expensive index maintenance and top-k recomputation.

The memory consumption of both PreTopk and MinTopk is neg-
ligible compared with that used by SMA in all test cases, and es-
pecially when k is small. The reason is obvious. Namely, both
PreTopk and MinTopk only keep the “necessary" objects (MTK),
whose size is only 2k on average (see Theorem 3.2 in Section 3),
while SMA needs to keep all 1M objects alive in the window. Our
measurement of the size of MTK, namely the length of super-top-k

list, also confirms Theorem 3.2, as in all four test cases, the size of
MTK never exceeds 3.5k and is 2.4k on average.

The performance of MinTopk is also better than PreTopk in all
these test cases. In particular, MinTopk uses on average 23% less
processing time and 33% less memory. Such comparable perfor-
mance of these two algorithms is caused by the relatively large
slide/win rate adopted in this experiment, which makes the num-
ber future windows maintained by both algorithms small (only 10
for all cases). We will further analyze this issue in experiment 3.

Evaluation for Different win Cases. Next, we evaluate the ef-
fect of the window size win on the algorithms. We use the GMTI
data for this experiment. We fix the value of k at 1K and the
slide/window rate at 1

10
, while varying win from 1K to 1M . As

shown in Figures 9 and 10, both the CPU and memory usage of
PreTopk and MinTopk are significantly less than those utilized by
SMA in all test cases, and especially when win is large.

In particular, both the CPU and memory usage of SMA increase
dramatically as the window size increases. This is expected, be-
cause it requires full storage of all objects alive in the window and
thus its memory usage increases almost linearly with the window
size. The increase of the CPU time for SMA is also obvious, while
less sharp than that of its memory utilization. This is because to
process the same number of objects, no matter what the window
size is, SMA needs to load and purge each object once into the in-
dex. Thus this part of the processing time is the same for all test
cases. The increase of CPU time for SMA is primarily caused by
the increasing cost of top-k recomputation in larger windows.

Both the CPU and memory usage of PreTopk and MinTopk are
not affected by the window size. This confirms our cost analysis
in Sections 3 and 4, namely the costs of PreTopk and MinTopk are
independent from the window size.

Figure 9: CPU times for

varying window sizes

Figure 10: Memory space for

varying window sizes

Evaluation for Different slide Cases. In this case, we evalu-
ate the effect of the window size win on the algorithms. We use
the STT data for this experiment. We fix the value of k at 1K
and window size at 1M, while varying the slide/window ratio from
0.01% − 10%, namely the slide size from 100 to 100K.

Figure 11: CPU times for

varying slide sizes
Figure 12: Memory space for

varying slide sizes

As shown in Figures 11 and 12, both the CPU and memory us-
age of MinTopk are still significantly less than those utilized by
SMA in all test cases. In particular, in the slide = 100k case,
MinTopk only takes 0.097 ms to process each object on average,
while SMA needs 0.172 ms for each object. In terms of the re-
sponse time needed for processing each window, this means that
our method only takes around 10 seconds to update the query result
for each window slide (100K new objects), while SMA needs more
than 2 minutes, This is as expected and can be explained by the
same reasons as in the previous test cases. However, an important
observation made from this experiment is that the performance of
PreTopk can be strongly affected by the slide/win rate. In particular,
both the CPU and memory usage of PreTopk increase dramatically
as the slide/window rate decreases. Its performance is compara-
ble with MinTopk when the slide/window rate is 10%, while it

gets even worse than SMA when it decreases to 0.01%. This is as
expected. Since PreTopk maintains the predicted top-k results for
each future window independently, its resource utilization increases
linearly with the number of future windows maintained, which is
equal to ⌈ win

slide
⌉ (see cost analysis in Section 3).

The performance of both SMA and MinTopk are not affected by
the change of slide/win rate. Their average processing time even
drops a little bit, because to process the same amount of objects,
the larger slide size will cause less frequent output and thus requires
less output cost.

In conclusion, although PreTopk shows comparable performance
with MinTopk in the cases in which the slide/win rate is modest, its
performance can be very poor when the slide/win rate is small. In
short, the performance of MinTopk has been shown to be stable
under any parameter settings.

Evaluation for Non-uniform Arrival Rate Cases. In this
experiment, we evaluate the algorithms’ performance under non-
uniform arrival rate. Namely, the number of objects that arrive at
each window slide varies in this case. We use the STT dataset and
use the real time stamp of each transaction to present the arrival
rates of the stream. The average arrival rate of the transactions in
this data is around 400 transactions each second, while the actual
arrival rate at each window slide varies significantly depending on
the choice of slide size and the particular time period.

As in this experiment the number of objects needed to be pro-
cessed for each window varies significantly, instead of measuring
the average CPU time for processing each tuple, we measure the re-
sponse time for processing each window, namely the accumulative
time for answering the query at each window slide from all objects
arrived to results outputted. We evaluate three different cases with
slide size slide equal to 1, 10 and 100 seconds respectively, while
we fix the window size at 1000 seconds and k equal to 1K for all
three cases. For each case, we run the query for 10K windows and
we measure the minimum, maximum, average and standard devia-
tion of the response time at each window.

Figure 13: Response time for processing each window given

non-uniform arrival rate.

As shown in Figure 13, we observe that given the non-uniform
arrival rate, the response time of all three algorithms varies by slide
sizes. In general, when the slide size is small, as in the Slide = 1s
case, the variations of the response time tend to be very large. This
is because given very short time period granularities, the number of
objects arriving at each window can vary significantly. As shown
in the Case 1 in Figure 13, the minimum response time of all three
algorithms are very close to zero. This is because in some windows
very few objects arrived (less than 20), and thus they only required
limited computation. While when slide size increases, as in the
Slide = 10s and Slide = 100s cases, we can observe that the
variations of the response time of all algorithms tend to be smaller.

This is because the unevenness of the arrival rates in short time
periods is now averaged in the larger time frames.

However, no matter what kind of variations exist in the arrival
rate, our proposed MinTopk algorithm still shows obvious superi-
orities to the other two alternatives. Since the overall trends for
all three competitor algorithms observed are similar to those trends
for the uniform arrival rate cases, the results can again be explained
using similar reasoning as given in the previous experiments.

7. RELATED WORK
The problem of top-k query processing was first studied for static

databases. The well-known top-k algorithms on a single rela-
tion, such as Onion [4] and Prefer [8], are preprocessing-based
techniques. They focus on preparing the meta-data through a pre-
analysis of the data to facilitate subsequent run-time query process-
ing. For example, Onion [4] computes and stores the convex hulls
for the data, and later evaluates the top-k query based on these con-
vex hulls.

Previous works regarding top-k result generation based on joins
over multiple relations include [9, 10]In these works, to optimize
the system resources, top-k processing is usually interleaved with,
rather than simply being built on top of, the join operation. For
example, [9] proposes a pipelined algorithm which integrates the
top-k processing into a hierarchy of join operators. [10] further
explores the integration of rank-join operators into conventional
database systems.

There is also work in computing the top-k results in distributed
data repositories. These works focus on two technical issues: 1) To
minimize the communication costs for retrieving the top-k candi-
dates from distributed data repositories [2, 3, 5]. 2) To efficiently
combine the top-k candidates reported from distributed data repos-
itories [5, 16].

[19] presents a technique to incrementally maintain the material-
ized top-k views in static database when updates happen. The basic
idea of their methods is simple: instead of maintaining a material-
ized top-k view, a larger view containing k′ > k objects is main-
tained. Thus the most expensive operation for top-k maintenance,
namely recomputing the top-k results from the whole database, is
only needed when the top − k′ view has less than k members.
Thus it happens less frequently. However, as the proposed opti-
mizations are designed to handle a single update or deletion to the
database, it does not scale well for streaming applications in which
large amounts of objects are inserted and deleted at every window
slide.

In general, these techniques designed for the static environment
are based on two assumptions. First, all relevant data is a priori
available, either locally or on distributed servers, before query exe-
cution. Second, the top-k queries are ad-hoc queries executed only
one single time. However, both assumptions do not hold for stream-
ing environments in which data are continuously coming in and the
top-k queries are continuously re-executed. Thus, clearly, these
techniques cannot be directly used to solve our problem, namely
continuous top-k monitoring in streaming environments.

More recently, researchers have started to look at the problem
of processing top-k queries in streaming environments [15, 7,
13, 12]. Among these works, [15] is the closest to our work in
that it also tackles the problem of exact continuous top-k query
monitoring over a single stream. This work presents two tech-
niques. First, the TMA algorithm computes the new answer of
a query whenever some of the current top-k points expire. Sec-
ond, the SMA algorithm partially precomputes the future changes
in the result, achieving better running time at the expense of slightly
higher space requirements. More specifically, as the key contribu-

tions of this work, SMA maintains a “skyband structure" which
aims to contain more than k objects. This idea is similar to the one
used in [19] for materialized top-k view maintenance. However,
unfortunately, neither of these two algorithms eliminate the recom-
putation bottleneck (see Section 3) from the top-k monitoring pro-
cess. Thus, they both require full storage of all objects in the query
window. Furthermore, they both need to conduct expensive top-k
recomputation from scratch in certain cases, though SMA conducts
recomputation less frequently than TMA. While our proposed al-
gorithm eliminates the recomputation bottleneck, and thus realizes
completely incremental computation and minimal memory usage.

[7, 12, 13] handle incomplete and probabilistic top-k models re-
spectively in data streams. while we work with a complete and
non-probabilistic model. Thus, they target different problems from
ours. In particular, the key fact affecting the top-k monitoring al-
gorithm design is the meta information maintained for real-time
top-k ranking and the corresponding update methods , which vary
fundamentally by specific top-k models. For example, due to the
characteristics of the incomplete top-k model, [7] proves that main-
taining a object set with its size linear in the size of the sliding
window is necessary for incomplete top-k query processing. While
in our (complete) top-k model, we maintain a much smaller ob-
ject set, whose size is independent from the window size but linear
in the query parameter k only (see Lemma 3.2). Similarly, due to
the characteristics of uncertain top-k models, [12, 13] maintain a
significantly larger amount of meta information, namely a series
of candidate top-k object sets (they call Compact Sets) that con-
tain more objects than the Minimal Top-k Candidate Set (MTK)
identified and maintained in this work. These candidate objects are
organized and updated in different manners from us to serve their
specific models. In general, those specific data structures and the
corresponding update algorithms designed for other top-k methods
are not optimized for our problem and thus do not achieve the opti-
mal complexities in system resource utilization for our problem.

8. CONCLUSION AND FUTURE WORK
In this work, we present the MinTopk algorithm for continu-

ous top-k query monitoring in streaming environments. MinTopk
leverages the “predictability" of sliding window semantics to over-
come a key performance bottleneck of the state-of-the-art solu-
tions. By identifying and elegantly updating the minimal object
set (MTK) that is necessary and sufficient for top-k monitoring,
MinTopk not only minimizes the memory utilization for executing
top-k queries in sliding windows, but also achieves optimal CPU
complexity when returning the top-k results in a ranked order. Our
experimental studies based on real streaming data confirm the clear
superiority of MinTopk to the state-of-the-art solution.

In our future work, a major research direction is to study the mul-
tiple top-k query sharing problem in the streaming environments.
We believe that the techniques proposed in this work, such as the
“Minimum Top-k Candidate Set" (Section 3) and the “Integrated
Top-k Candidate Set Encoding" (Section 4), can be easily extended
to benefit multiple top-k query sharing as well.

9. ACKNOWLEDGEMENT
This work is supported under NSF grants CCF-0811510, IIS-

0119276 and IIS-00414380. We thank our collaborators at MITRE,
J. Casper and P. Leveille, for providing us the GMTI data stream.

10. REFERENCES
[1] A. Arasu, S. Babu, and J. Widom. The cql continuous query

language: semantic foundations and query execution. VLDB

J., 15(2):121–142, 2006.

[2] B. Babcock and C. Olston. Distributed top-k monitoring. In
SIGMOD, pages 28–39, 2003.

[3] K. C.-C. Chang and S. won Hwang. Minimal probing:
supporting expensive predicates for top-k queries. In
SIGMOD Conference, pages 346–357, 2002.

[4] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo,
and J. R. Smith. The onion technique: Indexing for linear
optimization queries. In SIGMOD Conference, pages
391–402, 2000.

[5] S. Chaudhuri, L. Gravano, and A. Marian. Optimizing top-k
selection queries over multimedia repositories. IEEE Trans.

Knowl. Data Eng., 16(8):992–1009, 2004.

[6] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[7] P. Haghani, S. Michel, and K. Aberer. Evaluating top-k
queries over incomplete data streams. In CIKM, pages
877–886, 2009.

[8] V. Hristidis and Y. Papakonstantinou. Algorithms and
applications for answering ranked queries using ranked
views. VLDB J., 13(1):49–70, 2004.

[9] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Joining
ranked inputs in practice. In VLDB, pages 950–961, 2002.

[10] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K.
Elmagarmid. Rank-aware query optimization. In SIGMOD

Conference, pages 203–214, 2004.

[11] I. INETATS. Stock trade traces. http://www.inetats.com/.

[12] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. Sliding-window
top-k queries on uncertain streams. PVLDB, 1(1):301–312,
2008.

[13] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. Sliding-window
top-k queries on uncertain streams. VLDB J., 19(3):411–435,
2010.

[14] S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly
sharing for streamed aggregation. In SIGMOD Conference,
pages 623–634, 2006.

[15] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous
monitoring of top-k queries over sliding windows. In
SIGMOD, pages 635–646, 2006.

[16] M. Theobald, G. Weikum, and R. Schenkel. Top-k query
evaluation with probabilistic guarantees. In VLDB, pages
648–659, 2004.

[17] D. Yang, E. A. Rundensteiner, and M. O. Ward.
Neighbor-based pattern detection for windows over
streaming data. In EDBT, pages 529–540, 2009.

[18] D. Yang, E. A. Rundensteiner, and M. O. Ward. A shared
execution strategy for multiple pattern mining requests over
streaming data. PVLDB, 2(1):874–885, 2009.

[19] K. Yi, H. Yu, J. Y. 0001, G. Xia, and Y. Chen. Efficient
maintenance of materialized top-k views. In ICDE, pages
189–200, 2003.

APPENDIX

Proof for Theorem 3.1: (MTK) Proof: We first prove the
sufficiency of the objects in the predicted top-k results for monitor-
ing the top-k results. For each of the future windows Wi (the ones
that the life span of any object in the current window can reach), the
predicted top-k results maintain k objects with the highest F scores
for each Wi based on the objects that are in the current window
and are known to participate in Wi. This indicates that any other

object in the current window can never become a part of the top-k
results in Wi, as there are already at least k objects with larger F
scores than it in Wi. So, they don’t need to be kept. Then, even
if no new object comes into Wi in the future or all newly arriving
objects have a lower F score, the predicted top-k results would still
have sufficient (k) objects to answer the query for Wi. This proves
the sufficiency of the predicted top-k results.

Next we prove that any object maintained in the predicted top-k
results are necessary for top-k monitoring. This would imply that
this object set is the minimal set that any algorithm needs to main-
tain for correctly answering the continuous top-k query. Any object
in the predicted top-k result for a Wi may eventually be a part of
its real top-k result. This would happen if no new object comes
into Wi or all new objects have a lower F score. Thus discarding
any of them may cause a wrong result to be generated for a future
window. This proves the necessity of keeping these objects.

Based on the sufficiency and necessity we have just proved, the
objects in the predicted top-k results constitute the “Minimal Top-K
candidate set" (MTK), namely the minimal object set that is neces-
sary and sufficient for accurate top-k monitoring.
Proof for Theorem 3.2: (super-top-k size) Proof: Since
PreTopk maintains predicted top-k results for Cnw windows, when
data are uniformly distributed, 1

Cnw
of objects in current window

Wi will expire after each window slide. For the same reason,
the same portion, namely 1

Cnw
, of top-k objects will expire after

each window slide. Thus k
Cnw

“new" objects will be stored by the
next window Wi+1 as substitution, while the other top-k objects
in the window Wi+1 overlap with those in the previous window
Wi. The same situation holds for each of the later windows until
Wi+Cnw−1. As there are k

Cnw
new (distinct) objects for each win-

dow and we maintain Cnw windows, there are in total k distinct
objects in the predicted top-k results besides the k objects in the
current window. They add up to 2k distinct objects.
Proof for Lemma 4.1: Proof: If there exists an oi ∈ Knew

with F (oi) larger or equal to F (oj) of any object oj ∈ Kinherited,
oi will be in the predicted top-k results for the previous window
Wi−1 and thus oi ∈ Kinherited. As |Kinherited| ∩ |Knew | = ∅
by definition, this is a contradiction. Thus, there cannot exist any
oi ∈ Knew and oj ∈ Kinherited such that F (oi) > F (oj).
Proof for Lemma 4.2: Proof: Since some objects may ex-
pire after each window slide, the objects in the current window Wi

that will participate in Wi+n, D_Wi+n, is a subset of those will
participate in Wi+m, D_Wi+m (m < n). Thus, the minimal F
score of the top-k objects selected from the object set D_Wi+n in
Wi+n cannot be larger than the minimal F score of the top-k ob-
jects selected from a super set of D_Wi+n, namely the object set
D_Wi+m in Wi+m.
Proof for Lemma 4.3: Proof: The necessary and sufficient
condition for an object oi to appear in the predicted top-k result of a
window Wi is that F (oi) is no less than the minimal F score of the
predicted top-k objects in Wi, namely F (oi) ≥ Wi.F (omin_topk).
Given oi appears in the predicted top-k result of Wi, and we have
shown that at any given moment Wi.F (omin_topk) ≥
Wi+j .F (omin_topk) (Lemma 4.2), we can infer that
F (oi) ≥ Wi+j.F (omin_topk). This implies that oi will also appear
in the predicted top-k result of any Wi+j within oi’s life span.
Proof for Lemma 4.4: Proof: First, since the objects in the
super-top-k list are sorted by F scores, the first k objects in super-

top-k list are those objects with highest F scores within the whole
list. Second, the top-k objects of the current window are selected
from all the objects in the current window, while the predicted top-
k objects for any future window are selected based on a subset of
objects in the current window. Therefore, the top-k objects of the

current window must be the ones with highest F scores among the
current window. Their F scores cannot be lower than those of the
other objects belonging to the predicted top-k results of future win-
dows, which constitute the later part of the super-top-k list.
Proof for Lemma 4.5: Proof: This lemma can be proven
by an exhaustive examination of all possible scenarios. By Lemma
4.1, we know that, at any given moment, the predicted top-k result
set for a future window Wi, Wi.topk, is composed of two parts:
1) Kinherited, a set of inherited top-k objects from the previous
window Wi−1 ; 2) Knew , a set of “new" objects that qualify as
top-k in Wi but did not in Wi−1. By Lemma 4.2, any object oi ∈
Wi.Knew has a lower F score than any object oj ∈ Wi.Kinherited

. For the current window Wi, the proof is straightforward. Since
the top-k objects of the current window Wi are always the first
k objects in super-top-k list (Lemma 4.4), and the objects on the
super-top-k list are sorted by F scores, Wi.osec_min_topk is in the
(k − 1)th position of super-top-k list, and Wi.omin_topk is in the
kth position.

Now let us consider the next window right after Wi, namely
Wi+1. There are four possible situations. 1) Wi+1.osec_min_topk,
Wi+1.omin_topk ∈ Wi+1.Kinherited. It is easy to see that, in this
case, Wi+1.Knew is empty and the top-k objects of Wi+1 are ex-
actly the same as those in Wi. Thus these two objects are simply
the same two top-k objects with the lowest F scores in Wi, and
have been shown to be adjacent to each other in the case above.
2) Wi+1.osec_min_topk, Wi+1.omin_topk ∈ Wi+1.Knew . Since
any object oi ∈ Wi.Knew has a lower F score than any object
oj ∈ Wi.Kinherited, we know that these two objects with low-
est F scores in Wi+1.Knew definitely have lower scores than any
object in Wi+1.Kinherited . Thus no top-k objects in the previ-
ous window can be in between of them two. Also, any “new"
predicted top-k object in the next window Wi+2, namely any ob-
ject in Wi+2.Knew , must have a smaller F score than these two
objects do, otherwise it would have already made top-k in Wi+1

and thus would not be in Wi+2.Knew but in Wi+2.Kinherited.
So, no predicted top-k object of any later window can be in be-
tween of them. This proves the case for the second situation. 3)
Wi+1.osec_min_topk ∈ Wi+1.Kinherited and Wi+1.omin_topk ∈
Wi+1.Knew . This case is possible only if exactly one top-k ob-
ject will expire from Wi. In this case, Wi+1.osec_min_topk must be
the last one in Wi+1.Kinherited , and Wi+1.omintopk

must be the
only one in Wi+1.Knew . They are thus also adjacent to each other.
4) Wi+1.omin_topk ∈ Wi+1.Knew and Wi+1.osec_min_topk ∈
Wi+1.Kinherited. This case is simply impossible, because any
object oi ∈ Wi.Knew has lower F score than any object oj ∈
Wi.Kinherited (Lemma 4.1), but clearly F (Wi+1.omin_topk) >
F (Wi+1.osec_min_topk). Now we have covered all four possible
situations for Wi+1. We thus can prove that, at the same moment,
Wi+j .osec_min_topk and Wi+j .omin_topk (j > 1) in any future
window are also in adjacent positions using the same method.
Proof for Lemma 4.6: Proof: We have shown that the CPU
cost of MinTopk to handle each new object is
P intopk ∗ (log(MTK.size) + Cnw_topk) + (1 − P intopk) (See
Section 4.6). No matter what is the probablity for the new object
to make the MTK set (P intopk), log(MTK.size) is the dominant
term in this cost expression.
Proof for Lemma 4.7: Proof: This includes the cost for
storing both the raw data and the meta data. In particular, for each
object in the super-top-k list, the memory cost for storing the object
itself is Objsize . Also, MinTopk maintains 2 window marks for it
as meta data, which take 2Refsize memory space.

