Skip to main content

    Harvey Pollard

    BackgroundSARS-CoV-2-contributes to sickness and death in COVID-19 patients partly by inducing a hyper-proinflammatory immune response in the host airway. This hyper- proinflammatory state involves activation of signaling by NFκB and... more
    BackgroundSARS-CoV-2-contributes to sickness and death in COVID-19 patients partly by inducing a hyper-proinflammatory immune response in the host airway. This hyper- proinflammatory state involves activation of signaling by NFκB and ENaC, and expression of high levels of cytokines and chemokines. Post-infection inflammation may contribute to “Long COVID”, and there are long term consequences for acute severe COVID-19, which double or triple the chances of dying from any cause within a year. Enhanced signaling by NFκB and ENaC also marks the airway of patients suffering from cystic fibrosis, a lethal proinflammatory genetic disease due to inactivating mutations in the CFTR gene. We therefore hypothesized that inflammation in the COVID-19 airway might be due to inhibition of CFTR signaling by SARS- CoV-2 Spike protein.MethodsThis hypothesis was tested using the hTERT-transformed BCi-NS1.1 basal stem cell, previously derived from small airway epithelia, which were differentiated into ...
    Background Analysis of somatic mutations from tumor whole exomes has fueled discovery of novel cancer driver genes. However, ~ 98% of the genome is non-coding and includes regulatory elements whose normal cellular functions can be... more
    Background Analysis of somatic mutations from tumor whole exomes has fueled discovery of novel cancer driver genes. However, ~ 98% of the genome is non-coding and includes regulatory elements whose normal cellular functions can be disrupted by mutation. Whole genome sequencing (WGS), on the other hand, allows for identification of non-coding somatic variation and expanded estimation of background mutation rates, yet fewer computational tools exist for specific interrogation of this space. Results We present MutEnricher, a flexible toolset for investigating somatic mutation enrichment in both coding and non-coding genomic regions from WGS data. MutEnricher contains two distinct modules for these purposes that provide customizable options for calculating sample- and feature-specific background mutation rates. Additionally, both MutEnricher modules calculate feature-level and local, or “hotspot,” somatic mutation enrichment statistics. Conclusions MutEnricher is a flexible software pac...
    INTRODUCTION AND OBJECTIVE:DNA damage repair genes (DDRGs) play a critical role in genomic stability and their dysfunction contributes to mutagenesis in several cancer types. In prostate cancer (Ca...
    In prostate cancer, emerging data highlight the role of DNA damage repair genes (DDRGs) in aggressive forms of the disease. However, DDRG mutations in African American men are not yet fully defined. Here, we profile germline mutations in... more
    In prostate cancer, emerging data highlight the role of DNA damage repair genes (DDRGs) in aggressive forms of the disease. However, DDRG mutations in African American men are not yet fully defined. Here, we profile germline mutations in all known DDRGs (N = 276) using whole genome sequences from blood DNA of a matched cohort of patients with primary prostate cancer comprising of 300 African American and 300 European Ancestry prostate cancer patients, to determine whether the mutation status can enhance patient stratification for specific targeted therapies. Here, we show that only 13 of the 46 DDRGs identified with pathogenic/likely pathogenic mutations are present in both African American and European ancestry patients. Importantly, RAD family genes (RAD51, RAD54L, RAD54B), which are potentially targetable, as well as PMS2 and BRCA1, are among the most frequently mutated DDRGs in African American, but not in European Ancestry patients.
    Tumor suppressor function of Annexin-A7 (ANXA7) was demonstrated by cancer-prone phenotype in Anxa7(+/-) mice and ANXA7 profiling in human cancers including prostate and breast. Consistent with its more evident in vivo tumor suppressor... more
    Tumor suppressor function of Annexin-A7 (ANXA7) was demonstrated by cancer-prone phenotype in Anxa7(+/-) mice and ANXA7 profiling in human cancers including prostate and breast. Consistent with its more evident in vivo tumor suppressor role in prostate cancer, wild-type(wt)-ANXA7 in vitro induced similar G2-arrests, but reduced survival more drastically in prostate cancer cells compared to breast cancer cells (DU145 versus MDA-MB-231 and -435). In all three hormone-resistant cancer cell lines, wt-ANXA7 abolished the expression of the oncogenic low-molecular weight (LMW) cyclin E which was for the first time encountered in prostate cancer cells. Dominant-negative nMMM-ANXA7 (which lacks phosphatidylserine liposome aggregation properties) failed to abrogate LMW-cyclin E and simultaneously induced fibroblast growth factor 8 (FGF8) in DU145 that was consistent with the continuing cell cycle progression and reduced cell death. Adenoviral vector alone induced FGF8 in MDA-MB-231/435 cell l...
    The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form... more
    The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.
    The platelet release reaction is analogous to the process of exocytosis by which many other secretory cells release hormones or mediators from intracellular granules. Anion transport blocking (ATB) drugs Inhibit release of epinephrine... more
    The platelet release reaction is analogous to the process of exocytosis by which many other secretory cells release hormones or mediators from intracellular granules. Anion transport blocking (ATB) drugs Inhibit release of epinephrine from isolated chromaffin granules (CG) by blocking chloride uptake and preventing osmotic lysis. Studies on platelets analagous to those done on CG showed that increasing osmotic strength in the range 600-1000 m0sm progressively suppressed serotonin release to completion and that ATB drugs (viz, probenecid, SITS, pyridoxal phosphate and suramin) at mM concentrations completely inhibited release and aggregation of human platelets stimulated by thrombin, ADP, A23187, epinephrine or collagen. Sulfinpyrazone has the appropriate structure for anionic blocking, and may suppress platelet function as effectively by this mechanism as by cycloxy-genase inhibition. The ATB drugs acted apparently to prevent movement of OH- from the more alkaline medium into the re...
    Cystic fibrosis (CF) is due to mutations in the CFTR gene, which prevents correct folding, trafficking and function of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) protein. The dysfunctional effect of CFTR... more
    Cystic fibrosis (CF) is due to mutations in the CFTR gene, which prevents correct folding, trafficking and function of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) protein. The dysfunctional effect of CFTR mutations, principally the F508del-CFTR mutant, is further manifested by hypersecretion of the pro-inflammatory chemokine interleukin-8 into the airway lumen, which further contributes to morbidity and mortality. We have hypothesized that microRNA (miR)-based therapeutics could rescue the dysfunctional consequences of mutant CFTR. Here we report that a miR-16 mimic can effectively rescue F508del-CFTR protein function in airway cell lines and primary cultures, of differentiated human bronchial epithelia from F508del homozygotes, which express mutant CFTR endogenously. We also identify two other miRs, miR-1 and miR-302a, which are also active. Although miR-16 is expressed at basal comparable levels in CF and control cells, miR-1 and miR-302a are undetectable...
    Based on the finding that the expression of some annexins varies dramatically as a function of cellular proliferation state [Schlaepfer and Haigler (1990) J. Cell Biol. 111, 229–238], it has been proposed that the cellular level of the... more
    Based on the finding that the expression of some annexins varies dramatically as a function of cellular proliferation state [Schlaepfer and Haigler (1990) J. Cell Biol. 111, 229–238], it has been proposed that the cellular level of the annexins might be critical for the regulation of cell growth. To further test this hypothesis, we have studied the expression of various annexins in normal human IMR-90 fibroblasts synchronized by serum deprivation. Using immunoblotting, the cellular content of annexins (Anxs) II, V and VI was found to vary by less than 10% during the cell cycle. However, Anx IV expression increased by 50% during S-phase and the levels of Anxs I and VII were reduced by 40% in early G2/M. However, using RNase protection assays, the mRNAs of Anxs I and VII were found to be uniformly expressed throughout the cell cycle, suggesting that down-regulation of both proteins in G2/M occurred through a post-transcriptional process. In addition, cells transfected with Anx VII cDN...
    Genetic and biochemical analyses of the Gag protein of HIV-1 indicate a crucial role for this protein in several functions related to viral replication, including viral assembly. It has been suggested that Gag may fulfill some of the... more
    Genetic and biochemical analyses of the Gag protein of HIV-1 indicate a crucial role for this protein in several functions related to viral replication, including viral assembly. It has been suggested that Gag may fulfill some of the functions by recruiting host cellular protein(s). In our effort to identify structural and functional homologies between Gag and cellular cytoskeletal and secretory proteins involved in transport, we observed that HIV-1 Gag contains a unique PGQM motif in the capsid region. This motif was initially noted in the regulatory domain of synexin the membrane fusion protein of Xenopus laevis . To evaluate the functional significance of the highly conserved PGQM motif, we introduced alanine (A) in place of individual residues of the PGQM and deleted the motif altogether in a Gag expression plasmid and in an HIV-1 proviral DNA. The proviral DNA containing mutations in the PGQM motif showed altered expression, assembly, and release of viral particles in compariso...
    A1 adenosine-receptor-antagonist drugs such as 8-cyclopentyl-1,3-dipropylxanthine (CPX) and xanthine amine congener (XAC) are found to activate the efflux of 36Cl- from CFPAC cells. These cells are a pancreatic adenocarcinoma cell line... more
    A1 adenosine-receptor-antagonist drugs such as 8-cyclopentyl-1,3-dipropylxanthine (CPX) and xanthine amine congener (XAC) are found to activate the efflux of 36Cl- from CFPAC cells. These cells are a pancreatic adenocarcinoma cell line derived from a cystic fibrosis (CF) patient homozygous for the common mutation, deletion of Phe-508. The active concentrations for these compounds are in the low nanomolar range, consistent with action on A1 adenosine receptors. In addition, drug action can be blocked by exogenous agonists such as 2-chloroadenosine and also can be antagonized by removal of endogenous agonists by treatment with adenosine deaminase. Cells lacking the CF genotype and phenotype, such as HT-29 and T84 colon carcinoma cell lines, appear to be resistant to activation of chloride efflux by either drug. CFPAC cells transfected with the CF transmembrane regulator gene, CFTR, are also resistant to activation by CPX. We conclude that, since these antagonists are of relatively low...
    Annexin A7/ANXA7 is a calcium-dependent membrane fusion protein with tumor suppressor gene (TSG) properties, which is located on chromosome 10q21 and is thought to function in the regulation of calcium homeostasis and tumorigenesis.... more
    Annexin A7/ANXA7 is a calcium-dependent membrane fusion protein with tumor suppressor gene (TSG) properties, which is located on chromosome 10q21 and is thought to function in the regulation of calcium homeostasis and tumorigenesis. However, whether the molecular mechanisms for tumor suppression are also involved in the calcium- and phospholipid-binding properties of ANXA7 remain to be elucidated. We hypothesized that the 4 C-terminal endonexin-fold repeats in ANXA7 (GX(X)GT), which are contained within each of the 4 annexin repeats with 70 amino acids, are responsible for both calcium- and GTP-dependent membrane fusion and the tumor suppressor function. Here, we identified a dominant-negative triple mutant (DNTM/DN-ANXA7J) that dramatically suppressed the ability of ANXA7 to fuse with artificial membranes while also inhibiting tumor cell proliferation and sensitizing cells to cell death. We also found that the [DNTM]ANA7 mutation altered the membrane fusion rate and the ability to ...
    Breast Cancer is the most common form of cancer in women worldwide, impacting nearly 2.1 million women each year. Identification of new biomarkers could be key for early diagnosis and detection. Vitronectin, a glycoprotein that is... more
    Breast Cancer is the most common form of cancer in women worldwide, impacting nearly 2.1 million women each year. Identification of new biomarkers could be key for early diagnosis and detection. Vitronectin, a glycoprotein that is abundantly found in serum, extracellular matrix, and bone, binds to integrin αvβ3, and promotes cell adhesion and migration. Current studies indicate that patients with amplified vitronectin levels have lower survival rates than patients without amplified vitronectin levels. In this study, we focused on the role of vitronectin in breast cancer survival and its functional role as a non-invasive biomarker for early stage and stage specific breast cancer detection. To confirm that the expression of vitronectin is amplified in breast cancer, a total of 240 serum samples (n = 240), 200 from breast cancer patients and 40 controls were analyzed using the Reverse Phase Protein Array (RPPA) technique. Of the 240 samples, 120 samples were of African American (AA) de...
    Cystic fibrosis (CF) is a life‐limiting autosomal recessive genetic disease caused by variants in the CFTR gene, most commonly by the [F508del] variant. Although CF is a classical Mendelian disease, genetic variants in several modifier... more
    Cystic fibrosis (CF) is a life‐limiting autosomal recessive genetic disease caused by variants in the CFTR gene, most commonly by the [F508del] variant. Although CF is a classical Mendelian disease, genetic variants in several modifier genes have been associated with variation of the clinical phenotype for pulmonary and gastrointestinal function and urogenital development. We hypothesized that whole genome sequencing of a well‐phenotyped CF populations might identify novel variants in known, or hitherto unknown, modifier genes. Whole genome sequencing was performed on the Illumina HiSeq X platform for 98 clinically diagnosed cystic fibrosis patient samples from the Adult CF Clinic at the University of California San Diego (UCSD). We compared protein‐coding, non‐silent variants genome wide between CFTR [F508del] homozygotes vs CFTR compound heterozygotes. Based on a single variant score test, we found 3 SNPs in common variants (MAF >5%) that occurred at significantly different rat...
    To initiate SARS-CoV-2 infection, the Receptor Binding Domain (RBD) on the viral spike protein must first bind to the host receptor ACE2 protein on pulmonary and other ACE2-expressing cells. We hypothesized that cardiac glycoside drugs... more
    To initiate SARS-CoV-2 infection, the Receptor Binding Domain (RBD) on the viral spike protein must first bind to the host receptor ACE2 protein on pulmonary and other ACE2-expressing cells. We hypothesized that cardiac glycoside drugs might block the binding reaction between ACE2 and the Spike (S) protein, and thus block viral penetration into target cells. To test this hypothesis we developed a biochemical assay for ACE2:Spike binding, and tested cardiac glycosides as inhibitors of binding. Here we report that ouabain, digitoxin, and digoxin, as well as sugar-free derivatives digitoxigenin and digoxigenin, are high-affinity competitive inhibitors of ACE2 binding to the Original [D614] S1 and the α/β/γ [D614G] S1 proteins. These drugs also inhibit ACE2 binding to the Original RBD, as well as to RBD proteins containing the β [E484K], Mink [Y453F] and α/β/γ [N501Y] mutations. As hypothesized, we also found that ouabain, digitoxin and digoxin blocked penetration by SARS-CoV-2 Spike-ps...
    Background Several small molecule corrector and potentiator drugs have recently been licensed for Cystic Fibrosis (CF) therapy. However, other aspects of the disease, especially inflammation, are less effectively treated by these drugs.... more
    Background Several small molecule corrector and potentiator drugs have recently been licensed for Cystic Fibrosis (CF) therapy. However, other aspects of the disease, especially inflammation, are less effectively treated by these drugs. We hypothesized that small molecule drugs could function either alone or as an adjuvant to licensed therapies to treat these aspects of the disease, perhaps emulating the effects of gene therapy in CF cells. The cardiac glycoside digitoxin, which has been shown to inhibit TNFα/NFκB signaling in CF lung epithelial cells, may serve as such a therapy. Methods IB3–1 CF lung epithelial cells were treated with different Vertex (VX) drugs, digitoxin, and various drug mixtures, and ELISA assays were used to assess suppression of baseline and TNFα-activated secretion of cytokines and chemokines. Transcriptional responses to these drugs were assessed by RNA-seq and compared with gene expression in AAV-[wildtype]CFTR-treated IB3–1 (S9) cells. We also compared i...
    Hemophilia A and B coagulation defects, which are caused by deficiencies of Factor VIII and Factor IX, respectively, can be bypassed by administration of recombinant Factor VIIa. However, the short half-life of recombinant Factor VIIa in... more
    Hemophilia A and B coagulation defects, which are caused by deficiencies of Factor VIII and Factor IX, respectively, can be bypassed by administration of recombinant Factor VIIa. However, the short half-life of recombinant Factor VIIa in vivo negates its routine clinical use. We report here an in vivo method for the continuous generation of Factor VIIa. The method depends on
    Chromosomal abnormalities, including homozygous deletions and loss of heterozygosity at 10q, are commonly observed in most human tumors, including prostate, breast, and kidney cancers. The ANXA7-GTPase is a tumor suppressor, which is... more
    Chromosomal abnormalities, including homozygous deletions and loss of heterozygosity at 10q, are commonly observed in most human tumors, including prostate, breast, and kidney cancers. The ANXA7-GTPase is a tumor suppressor, which is frequently inactivated by genomic alterations at 10q21. In the last few years, considerable amounts of data have accumulated describing inactivation of ANXA7-GTPase in a variety of human malignancies and demonstrating the tumor suppressor potential of ANXA7-GTPase. ANXA7-GTPase contains a calcium binding domain that classifies it as a member of the annexin family. The cancer-specific expression of ANXA7-GTPase, coupled with its importance in regulating cell death, cell motility, and invasion, makes it a useful diagnostic marker of cancer and a potential target for cancer treatment. Recently, emerging evidence suggests that ANXA7-GTPase is a critical factor associated with the metastatic state of several cancers and can be used as a risk biomarker for HE...
    Cystic fibrosis (CF) is an autosomal recessive disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, F508del-CFTR being the most frequent mutation. The CF lung is characterized by a... more
    Cystic fibrosis (CF) is an autosomal recessive disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, F508del-CFTR being the most frequent mutation. The CF lung is characterized by a hyperinflammatory phenotype and is regulated by multiple factors that coordinate its pathophysiology. In CF the expression of CFTR as well as proinflammatory genes are regulated at the level of messenger RNA (mRNA) stability, which subsequently affect translation. These mechanisms are mediated by inflammatory RNA-binding proteins as well as small endogenous noncoding microRNAs, in coordination with cellular signaling pathways. These regulatory factors exhibit altered expression and function in vivo in the CF lung, and play a key role in the pathophysiology of CF lung disease. In this review, we have described the role of mRNA stability and associated regulatory mechanisms in CF lung disease. For further resources related to this article, please visit the WIREs w...
    Tumor necrosis factor-α-inducible protein 8 (TNFAIP8) is the first discovered oncogenic and an anti-apoptotic member of a conserved TNFAIP8 or TIPE family of proteins. TNFAIP8 mRNA is induced by NF-kB, and overexpression of TNFAIP8 has... more
    Tumor necrosis factor-α-inducible protein 8 (TNFAIP8) is the first discovered oncogenic and an anti-apoptotic member of a conserved TNFAIP8 or TIPE family of proteins. TNFAIP8 mRNA is induced by NF-kB, and overexpression of TNFAIP8 has been correlated with poor prognosis in many cancers. Downregulation of TNFAIP8 expression has been associated with decreased pulmonary colonization of human tumor cells, and enhanced sensitivities of tumor xenografts to radiation and docetaxel. Here we have investigated the effects of depletion of TNFAIP8 on the mRNA, microRNA and protein expression profiles in prostate and breast cancers and melanoma. Depending on the tumor cell type, knockdown of TNFAIP8 was found to be associated with increased mRNA expression of several antiproliferative and apoptotic genes (e.g., IL-24, FAT3, LPHN2, EPHA3) and fatty acid oxidation gene ACADL, and decreased mRNA levels of oncogenes (e.g., NFAT5, MALAT1, MET, FOXA1, KRAS, S100P, OSTF1) and glutamate transporter gene SLC1A1. TNFAIP8 knockdown cells also exhibited decreased expression of multiple onco-proteins (e.g., PIK3CA, SRC, EGFR, IL5, ABL1, GAP43), and increased expression of the orphan nuclear receptor NR4A1 and alpha 1 adaptin subunit of the adaptor-related protein complex 2 AP2 critical to clathrin-mediated endocytosis. TNFAIP8-centric molecules were found to be predominately implicated in the hypoxia-inducible factor-1α (HIF-1α) signaling pathway, and cancer and development signaling networks. Thus TNFAIP8 seems to regulate the cell survival and cancer progression processes in a multifaceted manner. Future validation of the molecules identified in this study is likely to lead to new subset of molecules and functional determinants of cancer cell survival and progression.
    Genomics has revolutionized large-scale and high-throughput sequencing and has led to the discovery of thousands of new proteins. Protein chip technology is emerging as a miniaturized and highly parallel platform that is suited to rapid,... more
    Genomics has revolutionized large-scale and high-throughput sequencing and has led to the discovery of thousands of new proteins. Protein chip technology is emerging as a miniaturized and highly parallel platform that is suited to rapid, simultaneous screening of large numbers of proteins and the analysis of various protein-binding activities, enzyme substrate relationships, and posttranslational modifications. Specifically, reverse capture protein microarrays provide the most appropriate platform for identifying low-abundance, disease-specific biomarker proteins in a sea of high-abundance proteins from biological fluids such as blood, serum, plasma, saliva, urine, and cerebrospinal fluid as well as tissues and cells obtained by biopsy. Samples from hundreds of patients can be spotted in serial dilutions on many replicate glass slides. Each slide can then be probed with one specific antibody to the biomarker of interest. That antibody's titer can then be determined quantitatively for each patient, allowing for the statistical assessment and validation of the diagnostic or prognostic utility of that particular antigen. As the technology matures and the availability of validated, platform-compatible antibodies increases, the platform will move further into the desirable realm of discovery science for detecting and quantitating low-abundance signaling proteins. In this chapter, we describe methods for the successful application of the reverse capture protein microarray platform for which we have made substantial contributions to the development and application of this method, particularly in the use of body fluids other than serum/plasma.
    SW1116 cells have a profound capacity for secreting mucin molecules bearing the Lewisa epitope. Mucin molecules with the same epitope have been found to be elevated in the serum of patients with cystic fibrosis, a disease with defective... more
    SW1116 cells have a profound capacity for secreting mucin molecules bearing the Lewisa epitope. Mucin molecules with the same epitope have been found to be elevated in the serum of patients with cystic fibrosis, a disease with defective ion channels. We therefore decided to study ion channels in this cell line. In the present work, we report the presence of two K(+)-channels and two Cl(-)-channels in the apical membrane of SW1116 cells. One of the K(+)-channels has a large conductance (approximately 278 pS), anomalous rectifying properties, and is inactivated rapidly. The second type exhibited a linear I/V curve (19 pS), was voltage insensitive and inactivation was not observed. In cell-attached patches, spontaneous openings of chloride channels were seen with higher frequency than previously reported in other colon carcinoma cell lines or airway epithelial cells. Inside-out experiments allowed identification of two different Cl(-)-channels (Cl(-)-1 and Cl(-)-2). Both exhibited rectification, but in opposite directions, and both were insensitive to NIPAB.

    And 244 more