Skip to main content
Log in

Fabrication and Study of Micro- and Nanostructured Superhydrophobic and Anti-Icing Surfaces

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Different micro-and nanostructured superhydrophobic and anti-icing surfaces have been fabricated and studied. Methods for forming hierarchical structures on Teflon surfaces, ensuring a wetting angle of 163°, have been developed. It is shown that the contact wetting angle of the fabricated nanoporous anodic alumina surfaces coated with a fluoroorganic molecular layer attains 173°. Anti-icing slippery alumina surfaces containing an array of nanopores filled with a Krytox100 fluorinated synthetic oil, which does not freeze down to a temperature of –70°C, have been designed and fabricated. The thin oil layer on such surfaces is confined inside pores by capillary forces and ensures the slipping of water droplets and the absence of ice crystallization centers on such surfaces. In contrast to superhydrophobic surfaces, water droplets on these slippery surfaces do not freeze at temperatures reaching at least –10°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bhusnan, Y. C. Jung, and K. Koch, “Micro-, nanoand hierarchical structures for superhydrophobicity, self-cleaning and low adhesion,” Philos. Trans. R. Soc., A 367, 1631–1672 (2009).

    Article  Google Scholar 

  2. L. C. Gao and T. J. McCarthy, “A commercially available perfectly hydrophobic material (?A/?R), 180°/180°,” Langmuir 23, 9125–9127 (2007).

    Article  Google Scholar 

  3. H. Sawada, T. Suzuki, H. Takashima, and K. Takishita, “Preparation and properties of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanoparticles -a new approach to facile creation of a completely superhydro-phobic coating surface with these nanoparticles,” Colloid Polym. Sci. 286, 1569–1574 (2008).

    Article  Google Scholar 

  4. T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala, and R. H. A. Ras, “Mechanically durable superhydrophobic surfaces,” Adv. Mater. 23, 1–6 (2011).

    Article  Google Scholar 

  5. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathiset, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” Am. Chem. Soc. 6, 3789–3799 (2012).

    Google Scholar 

  6. G. Ciasca, M. Papi, L. Businaro, G. Campi, M. Ortolani, V. Palmieri, et al., “Recent advances in superhydrophobic surfaces and their relevance to biology and medicine,” Bioinspiration Biomimetics 11, 1 (2016).

    Article  Google Scholar 

  7. J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denision, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127, 10096–10100 (2005).

    Article  Google Scholar 

  8. J. B. Boreyko and C. P. Collier, “Delayed frost growth on jumping-drop superhydrophobic surfaces,” ACS Nano 7, 1618–1627 (2013).

    Article  Google Scholar 

  9. A. V. Rao, S. S. Latthe, S. A. Mahadik, and C. Kappenstein, “Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate,” Appl. Surf. Sci. 257, 5772–5776 (2011).

    Article  Google Scholar 

  10. D. Zhang, L. Wang, H. Qian, and X. Li, “Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions,” J. Coat. Technol. Res. 13, 11–29 (2016).

    Article  Google Scholar 

  11. T. C. Hobæk, K. G. Leinan, H. P. Leinaas, and C. Thaulow, “Surface nanoengineering inspired by evolution,” J. Bionanosci. 1, 63–77 (2011).

    Article  Google Scholar 

  12. B. Bhushan, Y. C. Jung, and K. Koch, “Self-cleaning efficiency of artificial superhydrophobic surfaces,” Langmuir 25, 3240–3248 (2009).

    Article  Google Scholar 

  13. N. Miljkovic, D. J. Preston, R. Enright, and E. N. Wang, “Jumping-droplet electrostatic energy harvesting,” Appl. Phys. Lett. 105, 013111 (2014).

    Article  Google Scholar 

  14. W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).

    Article  Google Scholar 

  15. L. Mishchenko, B. Hatton, V. Bahadur, J. A. Taylor, T. Krupenkin, and J. Aizenberg, “Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets,” ACS Nano 4, 7699–7707 (2010).

    Article  Google Scholar 

  16. A. J. Meuler, G. H. McKinley, and R. E. Cohen, “Exploiting topographical texture to impart icephobicity,” ACS Nano 4, 7048–7052 (2010).

    Article  Google Scholar 

  17. A. J. Meuler, J. D. Smith, K. K. Varanasi, J. M. Mabry, G. H. McKinley, and R. E. Cohen, “Relationships between water wettability and ice adhesion,” ACS Appl. Mater. Interfaces 2, 3100–3110 (2010).

    Article  Google Scholar 

  18. S. A. Kulinich, S. Farhadi, K. Nose, and X. W. Du, “Superhydrophobic surfaces: are they really ice-repellent?,” Langmuir 27, 25–29 (2011).

    Article  Google Scholar 

  19. S. Jung, M. Dorrestijn, D. Raps, A. Das, C. M. Megaridis, and D. Poulikakos, “Are superhydrophobic surfaces best for icephobicity?,” Langmuir 27, 3059–3066 (2011).

    Article  Google Scholar 

  20. V. Bahadur, L. Mishchenko, B. Hatton, J. A. Taylor, J. Aizenberg, and T. Krupenkin, “Predictive model for ice formation on superhydrophobic surfaces,” Langmuir 27, 14143–14150 (2011).

    Article  Google Scholar 

  21. S. A. Kulinich and M. Farzaneh, “How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces,” Langmuir 25, 8854–8856 (2009).

    Article  Google Scholar 

  22. L. L. Cao, A. K. Jones, V. K. Sikka, J. Z. Wu, and D. Gao, “Anti-icing superhydrophobic coatings,” Langmuir 28, 12444–12448 (2009).

    Article  Google Scholar 

  23. P. Tourkine, M. le Merrer, and D. Quéré, “Delayed freezing on water repellent materials,” Langmuir 25, 7214–7216 (2009).

    Article  Google Scholar 

  24. R. Carriveau, A. Edrisy, P. Cadieux, and R. Mailloux, “Ice adhesion issues in renewable energy infrastructure,” J. Adhes. Sci. Technol. 26, 447–461 (2012).

    Google Scholar 

  25. A. Alizadeh, M. Yamada, R. Li, W. Shang, S. Otta, S. Zhong, et al., “Dynamics of ice nucleation on water repellent surfaces,” Langmuir 28, 3180 (2012).

    Article  Google Scholar 

  26. C. Antonini, M. Innocenti, T. Horn, M. Marengo, and A. Amirfazli, “Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems,” Cold Reg. Sci. Technol. 67, 58–67 (2011).

    Article  Google Scholar 

  27. J. L. Palacios, E. C. Smith, H. Gao, and J. L. Rose, “Ultrasonic shear wave anti-icing system for helicopter rotor blades,” in Proceedings of the 62nd American Helicopter Society Annual Forum, Pheonix, AZ, May 2006.

  28. Y. Wang, D. Orol, J. Owens, K. Simpson, and H. J. Lee, “Design and development of anti-icing aluminum surface,” Mater. Sci. Appl. 4, 347–356 (2013).

    Google Scholar 

  29. K. K. Varanasi, T. Deng, J. D. Smith, M. Hsu, and N. Bhate, “Frost formation and ice adhesion on superhydrophobic surfaces,” Appl. Phys. Lett. 97, 234102 (2010).

    Article  Google Scholar 

  30. P. Kim, T.-S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, and J. Aizenberg, “Liquidinfused nanostructured surfaces with extreme anti-ice and anti-frost performance,” ACS Nano 6, 6569–6577 (2012).

    Article  Google Scholar 

  31. M. Nosonovsky and B. Bhushan, “Hierarchical roughness optimization for biomimetic superhydrophobic surfaces,” Ultramicroscopy 107, 969–979 (2007).

    Article  Google Scholar 

  32. C. E. Wang, S. Tanaka, K. Saito, T. Shimizu, and S. Shingubara, “Fabrication of ordered arrays of anodic aluminum oxide pores with interpore distance smaller than the pitch of nano-pits formed by ion beam etching,” J. Mater. Sci. Nanotechnol. 1, 1 (2014).

    Google Scholar 

  33. M. Beck, M. Graczyk, I. Maximov, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).

    Article  Google Scholar 

  34. P. van der Wal and U. Steiner, “Super-hydrophobic surfaces made from teflon,” Soft Matter 3, 426–429 (2007).

    Article  Google Scholar 

  35. K. L. O’Neal, H. Zhang, Y. Yang, L. Hong, D. Lu, and S. G. Weber, “Fluorous media for extraction and transport,” J. Chromatogr. A 1217, 2287 (2010).

    Article  Google Scholar 

  36. P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, and S.-Y. Liu, “High-sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection,” Anal. Chem. 70, 4661 (1998).

    Article  Google Scholar 

  37. S. V. Gangal, “Perfluorinated polymers, tetafluoroethylene-perfluorodioxole copolymers,” in Encyclopedia of Polymer Science and Technology (Wiley, Chichester, 2002).

    Google Scholar 

  38. M. K. Yang and E. W. Tokarsky, “Optical properties of teflon AF amorphous fluoropolymers,” J. Micro/Nanolithogr., MEMS MOEMS 7, 033010-1 (2008).

    Article  Google Scholar 

  39. P. R. Resnick and W. H. Buck, “Teflon® AF amorphous fluoropolymers,” in Modern Fluoropolymers (Wiley, 1997), pp. 397–419.

    Google Scholar 

  40. M. J. Kim, J.-E. Park, S. Song, and H. H. Lee, “Simple 'solutal' method for preparing teflon nanostructures and molds,” J. Vacuum Sci. Technol. B 25, 1412–1415 (2007).

    Article  Google Scholar 

  41. S. Fujimori, “Fine pattern fabrication by the molded mask method (nanoimprint lithography) in the 1970,” Jpn. J. Appl. Phys. 48, 06FH01-7 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Korneev.

Additional information

Original Russian Text © I.A. Korneev, V.A. Seleznev, V.Ya. Prinz, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneev, I.A., Seleznev, V.A. & Prinz, V.Y. Fabrication and Study of Micro- and Nanostructured Superhydrophobic and Anti-Icing Surfaces. Nanotechnol Russia 12, 485–494 (2017). https://doi.org/10.1134/S1995078017050068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017050068

Navigation