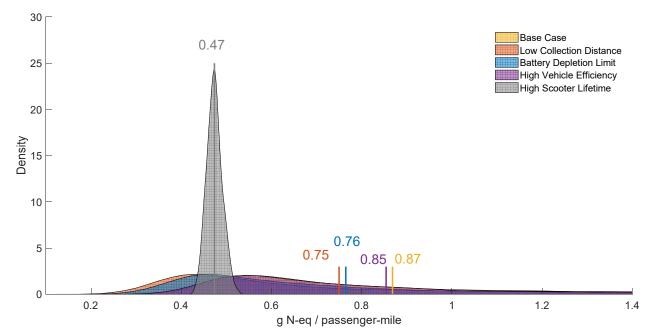

Supporting Information

Are E-Scooters Polluters? The Environmental Impacts of Shared Dockless Electric Scooters Authors: Joe Hollingsworth¹, Brenna Copeland¹, Jeremiah X. Johnson¹ *


1. Department of Civil, Construction, and Environmental Engineering, North Carolina State University * Corresponding Author: Jeremiah Johnson; jjohns24@ncsu.edu

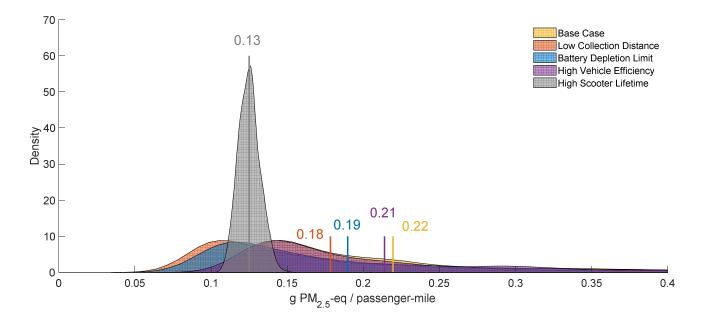

Figure S1: Recorded battery state of charge at the end of the day with 800 data points. Records were taken from 8-10pm from March 29th – April 28th, 2019. These data are fit to a lognormal distribution in the manuscript as shown in Table 1.

Figure S2: Shared e-scooter Monte Carlo analysis of acidification impact. Similar to Figure 3 in the manuscript, kernal density functions show the Base Case and four alternative collection and distribution scenarios: Low Collection Distance, Battery Depletion Limit, High Vehicle Efficiency, and High Scooter Lifetime. Colored vertical lines indicate the mean value for each scenario.

Figure S3: Shared e-scooter Monte Carlo analysis of eutrophication impact. Similar to Figure 3 in the manuscript, kernal density functions show the Base Case and four alternative collection and distribution scenarios: Low Collection Distance, Battery Depletion Limit, High Vehicle Efficiency, and High Scooter Lifetime. Colored vertical lines indicate the mean value for each scenario.

Figure S4: Shared e-scooter Monte Carlo analysis of respiratory effects impact. Similar to Figure 3 in the manuscript, kernal density functions show the Base Case and four alternative collection and distribution scenarios: Low Collection Distance, Battery Depletion Limit, High Vehicle Efficiency, and High Scooter Lifetime. Colored vertical lines indicate the mean value for each scenario.

Flows into Scooter	Flow		ne cycle my	entory for materials and manufacturing	Measured/Proxy, Data	
Production	property	Unit	Amount	Description	Source	
Aluminum alloy,	property			Description	Jource	
AlMg $_3^2$	Mass	kg	5.731	Frame and wheels	Measured, ecoinvent	
Aluminum, cast alloy ²	Mass	kg	0.256	Brakes, bell, circuit board cover, misc	Measured, ecoinvent	
Aluminum, cast anoy	IVId55	ĸg	0.230	Drakes, ben, encurt board cover, mise	Measured, Ellingsen et	
Battery cell, produced	Mass	ka	1.159	Li-ion NMC 111 Cathode	al.	
Battery cen, produced	Iviass	kg	1.139	Includes mass of anode, cathode, separator,	al.	
Used Li-ion battery	Mass	ka	1.169	electrolyte, and cell container	ecoinvent	
Charger, for electric	IVIASS	kg	1.109	electrolyte, and cell container	econivent	
scooter	Mass	ka	0.385	Charging cord	Measured, ecoinvent	
Electric motor, for	IVIASS	kg	0.385	Charging cord	Wiedsureu, econivent	
	Mass	l.a	1 1 9 7	Mator with magnets	Management and invent	
electric scooter	Mass	kg	1.187	Motor with magnets	Measured, ecoinvent	
Electricity, medium	F actor	1 3371	6.90	Man for the internet	Dec 1 and a set	
voltage, at grid	Energy	kWh	6.89	Manufacturing requirements	Proxy ¹ , ecoinvent	
Heat, district or	_		10-5			
industrial, natural gas	Energy	MJ	13.6	Manufacturing requirements	Proxy ¹ , ecoinvent	
Heat, district or						
industrial, other than	_				- 1 -	
natural gas	Energy	MJ	0.193	Manufacturing requirements	Proxy ¹ , ecoinvent	
Light emitting diode	Mass	kg	0.016	LED brake and headlights	Measured, ecoinvent	
				Splash guard, wheel cover, hub caps cover,		
Polycarbonate	Mass	kg	0.266	base trim, accelerator, frame cover	Measured, ecoinvent	
Polycarbonate	Mass	kg	0.008	Misc plastic	Measured, ecoinvent	
Powder coat, aluminum						
sheet	Area	m^2	0.35	Manufacturing requirements	Proxy ¹ , ecoinvent	
Printed wiring board,						
mixed mounted,						
unspec., solder mix, at						
plant	Mass	kg	0.059	Circuit boards for battery and to power on	Measured, ecoinvent	
				Screws, washers, frame items, brake disc,		
Steel, low-alloyed	Mass	kg	1.349	misc hardware	Measured, ecoinvent	
				Wheels, handle grips, standing mat, frame		
Synthetic rubber	Mass	kg	1.185	wire plugs	Measured, ecoinvent	
Tap water	Mass	kg	0.744	Manufacturing requirements	Proxy ¹ , ecoinvent	
Transistor, wired, small						
size, through-hole				Wiring		
mounting	Mass	kg	0.062		Measured, ecoinvent	
Welding, arc,						
aluminum	Length	m	0.75	Manufacturing requirements	Proxy ¹ , ecoinvent	
			End o	f Life Flows		
Electric scooter -	Number of					
produced	items	Item(s)	1			
Municipal solid waste	Mass	kg	4.5	Disposal requirements	Proxy ¹ , ecoinvent	
Wastewater, average	Volume	m ³	0.0007	Disposal requirements	Proxy ¹ , ecoinvent	
Wastewater, average Water	Mass		0.0007	Disposal requirements	Proxy ¹ , ecoinvent	
	Mass	kg	0.8487			
Used Li-ion battery		kg		Disposal requirements	ecoinvent	

Table S1 - E-scooter life cycle inventory for materials and manufacturing

¹Proxy values for manufacturing requirements are drawn from the ecoinvent process for electric bicycle production.

²Used lognormal distributions for inputs as seen in ecoinvent 3.3 in Monte Carlo analysis

Flows into Battery Production	Flow property	Unit	Amount	Description	Measured/Proxy, Data Source
Anode	Mass	kg	0.39		Ellingsen et al.
Cathode	Mass	kg	0.43	NMC 111	Ellingsen et al.
Cell Container	Mass	kg	0.0067		Ellingsen et al.
Electricity mix - CN	Energy	kWh	28		ecoinvent, Ellingsen et al.
Electrolyte	Mass	kg	0.16		Ellingsen et al.
Facilities precious metal refinery - SE	No. Items	Item(s)	2E-08		ecoinvent, Ellingsen et al.
Separator	Mass	kg	0.022		ellingsen et al.
Transport, freight, rail - RER	Transport	t*km	0.26		ecoinvent, Ellingsen et al.
Transport, lorry >32t, EURO3 - RER	Transport	t*km	0.1		ecoinvent, Ellingsen et al.
Water, decarbonized, at plant - RER	Mass	kg	380		ecoinvent, Ellingsen et al.

Table S2 - Battery inputs for 1 kg of battery cell, produced

Materials	Acidification (kg SO ₂ -eq)	Respiratory Effects (PM 2.5-eq)	Eutrophication (kg N-eq)	GWP (kg CO ₂ -eq)	Human Health - Carcin (CTUh)
Aluminum Frame					
(76/24: P/R)	4.4E-01	1.2E-01	2.3E-01	7.4E+01	1.5E-05
Aluminum (Other)	2.9E-02	7.1E-03	1.4E-02	4.8E+00	1.0E-06
Battery	7.4E-01	7.1E-02	4.4E-01	4.5E+01	4.3E-06
Battery Recycled					
Content	-9.2E-03	-1.5E-03	-4.3E-03	-9.2E-01	-5.8E-08
Motor	1.2E-01	2.3E-02	1.7E-01	1.1E+01	3.1E-06
Disposal	1.1E-02	3.5E-03	1.7E-02	5.8E+00	1.5E-07
Plastics	1.4E-02	1.8E-03	1.5E-03	4.4E+00	1.4E-07
Charger	5.8E-02	9.8E-03	8.7E-02	4.8E+00	1.3E-06
Circuit Board	6.3E-02	5.8E-03	2.4E-01	9.3E+00	2.3E-06
Steel	5.9E-03	2.2E-03	4.4E-03	1.1E+00	3.7E-06
Rubber	1.7E-02	3.9E-03	9.0E-03	3.6E+00	1.5E-07
Water	1.3E-06	5.2E-07	9.5E-07	2.5E-04	1.3E-11
Manufacturing	7.9E-02	8.8E-03	1.0E-02	8.8E+00	2.9E-07
Other	4.0E-02	1.0E-02	4.4E-02	6.4E+00	1.0E-06
Materials	Human Health- Non-Carcin (CTU _h)	Ozone Depletion (kg CFC11- eq)	O ₃ Formation (kg O ₃ -eq)	Ecotoxicity (CTU _e)	RD (MJ Surplus)
Aluminum Frame	1 6E 05	2 OF 06	4.05+00	2 7E+02	2 1E+01

 Table S3 - Scooter impacts for 1 Xiaomi m365 e-scooter

Materials	Human Health- Non-Carcin (CTU _h)	Ozone Depletion (kg CFC11- eq)	O ₃ Formation (kg O ₃ -eq)	Ecotoxicity (CTUe)	RD (MJ Surplus)
Aluminum Frame					
(76/24: P/R)	1.6E-05	3.0E-06	4.0E+00	3.7E+02	3.1E+01
Aluminum (Other)	8.5E-07	2.0E-07	2.6E-01	1.9E+01	2.0E+00
Battery	7.7E-05	1.1E-06	4.7E+00	1.5E+03	1.8E+01
Battery Recycled					
Content	-3.5E-07	-7.7E-08	-4.3E-02	-7.4E+00	-7.1E-01
Motor	3.0E-05	1.1E-06	7.2E-01	6.1E+02	9.9E+00
Disposal	8.4E-06	4.3E-07	1.3E-01	2.5E+02	1.5E+00
Plastics	5.2E-08	2.0E-09	1.7E-01	2.5E+00	6.9E+00
Charger	1.7E-05	2.5E-07	3.3E-01	3.5E+02	4.5E+00
Circuit Board	4.1E-05	1.1E-06	6.2E-01	8.2E+02	8.6E+00
Steel	4.8E-07	9.0E-08	6.7E-02	4.4E+01	1.1E+00
Rubber	5.8E-07	9.7E-07	1.7E-01	1.3E+01	1.2E+01
Water	3.8E-11	1.5E-11	1.3E-05	8.2E-04	1.6E-04
Manufacturing	9.5E-07	1.1E-07	6.7E-01	1.1E+01	2.6E+00
Other	5.6E-06	4.6E-07	3.9E-01	1.2E+02	5.3E+00

Table S4 - MCS scenarios associated with Figure 2 in manuscript					
Scenario	Static Value				
1. Low collection & distribution miles (miles/scooter) ¹	0.6				
2. High scooter lifetime (years) ¹	2				
3. Efficient vehicles for collection/distribution $(g CO_2-eq/mile)^2$	235				
4. Battery depletion limit to charge $(\%)^3$	50%				

Table S4 - MCS scenarios associated with Figure 2 in manuscript

*This table displays the scenario with a new static value which was previously a range in the MCS base case ¹Represents the low end of the uniform range used in the MCS

²Represent the 5th percentile value from the lognormal distribution fit

³Represents a minimum battery state of charge that must be reached for employees to be sent to pick up.

Global Warming Respiratory Acidification Eutrophication Potential Effects (kg SO₂-eq) (kg N-eq) (kg CO₂-eq) $(PM_{2.5}-eq)$ Scenario Base Case 178 0.989 0.697 0.179 Low Collection Distance 123 0.814 0.567 0.142 Battery Depletion Limit 134 0.841 0.601 0.149 0.961 High Vehicle Efficiency 150 0.690 0.174 High Scooter Lifetime 152 0.707 0.473 0.125

 Table S5 - Median values results from Monte Carlo analysis for each scenario and impact category

	Table 50 - Survey results for fiders reaso	n to nde						
	1.) Why did you try e-scooters for the first time?							
	Answer	%	Count					
1	To save money on transport	0.00%	0					
2	To get around quickly or more conveniently	46.67%	28					
3	To help the environment	1.67%	1					
4	For recreation / Curious to try it out.	48.33%	29					
5	Other	3.33%	2					
	Total	100%	60					

Table S6 - Survey results for riders reason to ride

2.) Thinking of your most recent e-scooter trip, why did you choose to take an e-scooter?

	Answer	%	Count
1	It was the fastest and most reliable.	49.18%	30
2	It was the least expensive	0.00%	0
3	Parking would be too difficult	9.84%	6
4	No other more of transport was available	1.64%	1
5	Don't own a car	4.92%	3
6	Didn't want to get sweaty	8.20%	5
7	For fun / recreation	26.23%	16
8	Other	0.00%	0
	Total	100%	61

Table S7 - Survey results for riders use and alternatives

Q3 - 3.) When riding e-scooters, what percentage of the time do you use them for getting to a destination or for recreation? (Note your answers should add up to 100%)

	Field	Minimum	Maximum	Mean		Std Deviation	Count
1	Travel to a destination	0		100	67.72	33.64	61
2	Recreation	0		100	32.28	33.64	61

Q4 - 4.) If e-scooters were not available, what percentage of the time would you use these alternatives? (Note the total value should add up to 100%)

	Field	Minimum	Maximum		Mean		Std Deviation	Count
1	Walk	0		100		41.18	30.34	61
2	Drive	0		100		23.8	29.4	61
3	Bicycle	0		80		7.39	15.65	61
4	Bus	0		100		10.51	18.69	61
5	Taxi / Uber / Lyft	0		100		9.98	18.6	61
6	Would not have gone	0		100		7.13	19.11	61