Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

The concentrations and distribution of phytic acid-phosphorus and other mineral nutrients in wild-type and low phytic acid1-1 (lpa1-1) corn (Zea mays L.) grains and grain parts

Publication: Canadian Journal of Botany
January 2005

Abstract

A comparison of mineral nutrient and phytic acid-phosphorus (PA-P) distribution in the grains of wild-type (WT) and low phytic acid1-1 (lpa1-1) corn (Zea mays L.) was conducted to determine how the lpa1-1 mutation influences mineral element concentrations in different grain parts and impacts the structure of phosphorus-rich inclusions (globoids) in the grain cells. This is the first report regarding total phosphorus (P) and PA-P concentrations in scutellum and root-shoot axis portions of cereal embryos of WT in comparison to its matching lpa1-1 genotype. In WT, 95% of the grain PA-P was located in the embryo, mostly in the scutellum. The lpa1-1 mutation reduced whole-grain PA-P by 62% but influenced the scutella more than the root-shoot axes and rest-of-grain fractions. In spite of the lpa1-1 mutants containing greatly reduced PA-P, whole-grain amounts of Mg, Fe, and Mn were higher in lpa1-1 than in WT, K and Zn were similar, and Ca was lower. Iron was 1/3 higher in lpa1-1 grains than WT while Ca was 18% lower. Decreased phytic acid in lpa1-1 grains resulted in reduction in globoid size in both scutellum and aleurone layer cells. Most lpa1-1 aleurone globoids were non-spherical and scutellum globoids were clusters of small spheres while WT globoids were large discrete spheres. X-ray analyses of globoids in both grain types revealed major amounts of P, K, and Mg and traces of Ca, Fe, and Zn. Both grain types contained almost no mineral nutrient stores in the starchy endosperm.Key words: corn (Zea mays L.), phytic acid-phosphorus, low phytic acid1-1 (lpa1-1) grains, mineral nutrients, globoids, electron microscopy.

Résumé

Les auteurs ont comparé la distribution des nutriments minéraux et du phosphore sous forme d'acide phytique (PA-P), dans les grains du maïs de type sauvage (WT) et du faibles en acide phytique1-1 (lpa1-1), afin de déterminer comment la mutation lpa1-1 influence les teneurs en éléments minéraux dans les différentes parties des grains, et affecte la structure des inclusions riches en phosphore (globoïdes) dans les cellules des grains. Il s'agit du premier rapport comparant la répartition des teneurs en phosphore total (P) et en PA-P, dans le scutellum et l'axe racine-tige d'embryons de la céréale du type sauvage, avec le génotype lpa1-1 correspondant. Chez le WT, 95 % du PA-P de la graine se retrouve dans l'embryon, surtout dans le scutellum. La mutation lpa1-1 réduit le PA-P de l'ensemble de la graine de 62 %, mais affecte plus les scutellums que les axes racine-tige et le reste de la graine. Bien que les mutants lpa1-1 contiennent beaucoup moins de PA-P, les quantités totales de Mg, Fe et Mn dans les graines sont plus importantes chez les mutants lpa1-1 que chez le WT, alors que les K et Zn sont semblables et le Ca plus faible. Le fer est 1/3 plus élevé chez les grains lpa1-1 que chez le WT, alors que le Ca est plus bas de 18 %. La diminution de l'acide phytique dans les grains lpa1-1 conduit à une réduction de la grosseur des globoïdes, à la fois dans les scutellums et dans les cellules des couches d'aleurone. La plupart des globoïdes de l'aleurone du lpa1-1 ne sont pas sphériques et les globoïdes du scutellum sont constitués de groupes de petits sphères, alors que les globoïdes du WT sont constitués de grosses sphères discrètes. Les analyses aux rayons X des globoïdes, chez les deux types de grains, révèlent la présence de grandes quantités de P, K et Mg et des traces de Ca Fe et Zn. On ne trouve presque pas de nutriments minéraux accumulés dans l'endosperme riche en amidon.Mots clés : maïs (Zea mays L.), phosphore acide-phytique, grains faibles en acide phytique1-1 (lpa1-1), nutriments minéraux, globoïdes, microscopie électronique.[Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

cover image Canadian Journal of Botany
Canadian Journal of Botany
Volume 83Number 1January 2005
Pages: 131 - 141

History

Version of record online: 2 February 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Pre and post milling fortification of iron and zinc on physical, nutrition, rheological and storage properties of wheat flour
2. Current Acquaintance on Agronomic Biofortification to Modulate the Yield and Functional Value of Vegetable Crops: A Review
3. Impact of Exogenous Xylanase and Phytase, Individually or in Combination, on Performance, Digesta Viscosity and Carcass Characteristics in Broiler Birds Fed Wheat-Based Diets
4. Changes in chemical form of phosphorus in rice bran during fermentation process as determined by 31 P nuclear magnetic resonance spectroscopy
5. Health Implications and Nutrient Bioavailability of Bioactive Compounds in Dry Beans and Other Pulses
6. Impact of micronutrients in mitigation of abiotic stresses in soils and plants—A progressive step toward crop security and nutritional quality
7. Comparison of seed germination and vigour in low and high phytic acid maize synthetic populations and commercially available hybrids
8. Calcium Biofortification of Crops–Challenges and Projected Benefits
9. Phytic acid accumulation in plants: Biosynthesis pathway regulation and role in human diet
10. A first glance at the micro-ZnO coating of maize ( Zea mays L.) seeds: a study of the elemental spatial distribution and Zn speciation analysis
11. Zinc biofortification of immature maize and sweetcorn (Zea mays L.) kernels for human health
12. Globoids and Phytase: The Mineral Storage and Release System in Seeds
13. Calcium redistribution contributes to the hard-to-cook phenotype and increases PHA-L lectin thermal stability in common bean low phytic acid 1 mutant seeds
14. Modelling the vigour of maize seeds submitted to artificial accelerated ageing based on ATR-FTIR data and chemometric tools (PCA, HCA and PLS-DA)
15. Phytic Acid and Transporters: What Can We Learn from low phytic acid Mutants?
16. Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition
17. In situ analyses of inorganic nutrient distribution in sweetcorn and maize kernels using synchrotron-based X-ray fluorescence microscopy
18. Minor Constituents and Phytochemicals of the Kernel
19. Phytate and phosphorus utilization by broiler chickens and laying hens fed maize-based diets
20. Zinc seed priming improves salt resistance in maize
21. Preharvest Biofortification of Horticultural Crops
22. Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat
23. Zinc distribution and localization in primed maize seeds and its translocation during early seedling development
24. Performance, intestinal microflora, and amino acid digestibility altered by exogenous enzymes in broilers fed wheat- or sorghum-based diets
25. Biofortification: Introduction, Approaches, Limitations, and Challenges
26. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds
27. Rapid Estimation of Phenolic Content in Colored Maize by Near‐Infrared Reflectance Spectroscopy and Its Use in Breeding
28. Activation of Endogenous Phytase and Degradation of Phytate in Wheat Bran
29. Low Phytic Acid 1 Mutation in Maize Modifies Density, Starch Properties, Cations, and Fiber Contents in the Seed
30. Gene effects and heterosis for grain iron and zinc concentration in sorghum [Sorghum bicolor (L.) Moench]
31. Dynamic Changes in the Distribution of Minerals in Relation to Phytic Acid Accumulation during Rice Seed Development  
32. Effects of different Fe supplies on mineral partitioning and remobilization during the reproductive development of rice (Oryza sativa L.)
33. Quantifying phytate in dairy digesta and feces: Alkaline extraction and high-performance ion chromatography
34.
35. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy
36. Review: Supplementation of phytase and carbohydrases to diets for poultry
37. Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective
38. REVIEW: Biofortification of Durum Wheat with Zinc and Iron
39. Approaches and challenges to engineering seed phytate and total phosphorus
40. Ileal digestibility and endogenous flow of minerals and amino acids: responses to dietary phytic acid in piglets
41. Assessment of the contents of phytic acid and divalent cations in low phytic acid (lpa) mutants of rice and soybean
42. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine
43. Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant
44. Simulation Model of the Impact of Biofortification on the Absorption of Adequate Amounts of Zinc and Iron among Mexican Women and Preschool Children
45. Phytate: impact on environment and human nutrition. A challenge for molecular breeding
46. Interaction of myo-inositol hexakisphosphate with alkali and alkaline earth metal ions: Spectroscopic, potentiometric and theoretical studies
47. Seed Performance of Maize in Response to Phosphorus Application and Growth Temperature Is Related to Phytate-Phosphorus Occurrence
48. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds
49. The behaviour of myo-inositol hexakisphosphate in the presence of magnesium(II) and calcium(II): Protein-free soluble InsP6 is limited to 49 μM under cytosolic/nuclear conditions
50. Concentration and localization of zinc during seed development and germination in wheat
51. Characterization of myo ‐inositol hexakisphosphate deposits from larval Echinococcus granulosus

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Botany

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media