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Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular
physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems
such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative
stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to
carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression
of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or
detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy
and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in

promoting tumor progression and resistance to chemotherapy.

1. Pathophysiology of Reactive Oxygen
Species and Antioxidant Defenses

Reactive oxygen species (ROS) are highly reactive molecules
that are principally derived from the oxygen that is consumed
in various metabolic reactions occurring mainly in the mito-
chondria, peroxisomes, and the endoplasmic reticulum. ROS
include the superoxide anion (O,"") and hydroxyl radicals
(OH") as well as nonradical molecules such as hydrogen
peroxide (H,0,) [1]. H,O, is the more stable and diffusible
form of ROS, it is selectively reactive towards cysteine
residues on proteins, and, in the low nanomolar range, it can
control cellular signaling (Figure 1).

ROS are mainly produced by the mitochondrial respira-
tory chain and also by enzyme-catalyzed reactions involv-
ing NADPH oxidase (NOX), xanthine oxidase, nitric oxide
synthase (NOS), arachidonic acid, and metabolizing enzymes
such as the cytochrome P450 enzymes, lipoxygenase, and
cyclooxygenase [2] (Figure 1).

The modulation of intracellular ROS levels is crucial for
cellular homeostasis, and different ROS levels can induce
different biological responses. At low and moderate lev-
els ROS can act as signaling molecules that sustain cel-
lular proliferation and differentiation and activate stress-
responsive survival pathways [3]. For instance, ROS can stim-
ulate the phosphorylation of protein kinase C (PKC), p38
mitogen-activated protein kinase (p38 MAPK), extracellu-
lar signal-regulated kinase (ERK)1/2, phosphoinositide 3-
kinase/serine-threonine kinase (PI3K/Akt), protein kinase B
(PKB), and JUN N-terminal kinase (JNK) [4-6]. ROS are
also involved in the increased expression of antioxidant genes
related to the activation of transcription factors such as the
nuclear factor erythroid 2-related factor 2 (Nrf2), activa-
tor protein 1 (AP-1), nuclear factor kB (NF-xB), hypoxia-
inducible transcription factor la (HIF-1a), and p53 [7-9].

At high levels, ROS promote severe cell damage and
death. Cancer cells display elevated ROS compared to normal
counterparts as the result of the accumulation of intrinsic
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FIGURE 1: Redox homeostasis is a balance of ROS generation and elimination. Mitochondria, NAPH oxidase (NOX), and endoplasmic
reticulum are the three major intracellular sources of ROS. Anion superoxide (O, ") is the principal form of ROS and can be rapidly converted
into hydrogen peroxide (H,0,) by superoxide dismutase (SOD). H,O, can be catalyzed to hydroxyl radical (OH") in the presence of Fe** or
Cu** ions or be converted to H,O by catalase. The amount of H,O, is decisive for the cell fate: low and intermediate levels of the peroxide
stimulate loss of cell homeostasis and increased adaptation to stress leading to neoplastic transformation while high levels induce cell death.

and/or environmental factors. The more relevant factors
include hypoxia, enhanced cellular metabolic activity, mito-
chondrial dysfunction, oncogene activity, increased activity
of oxidases, lipoxygenases and cyclooxygenases, and the cross
talk between cancer cells and immune cells recruited to
the tumor site. Recent research has revealed that conditions
inducing oxidative stress lead the neoplastic cells to develop
powerful antioxidant mechanisms.

Several types of antioxidants play important roles in ROS
homeostasis, including dietary natural antioxidants (e.g.,
vitamins A, C, and E), endogenous antioxidant enzymes
(e.g., superoxide dismutase, catalase, glutathione peroxidase,
glutathione reductase, and peroxiredoxins), and antioxidant
molecules (e.g., glutathione, coenzyme Q, ferritin, and biliru-
bin).

Superoxide Dismutases. Superoxide dismutases (SOD) were
the first characterized antioxidant enzymes [10] able to
dismutate two O, anions into H,0, and molecular oxygen.
Three different types of SOD are expressed in human cells:
copper-zinc SOD (CuZnSOD), which is present mainly in the
cytoplasm, manganese SOD (MnSOD), located in the mito-
chondria, and extracellular SOD. It has been demonstrated

that mice lacking MnSOD produce a massive oxidative
stress and die perinatally [11] while CuZnSOD-deficient mice
have persistent oxidative damage and develop hepatocellular
carcinoma [12]. In addition, a variant allele of MnSOD has
been associated with an elevated risk of prostate [13], lung
[14], ovarian cancers [15], and non-Hodgkin’s lymphoma [16].

Catalase. Catalase, a heme enzyme that catalyzes the reaction
that converts two molecules of H,O, to O, and two molecules
of H,O, is responsible for the detoxification of various phe-
nols, alcohols, and hydrogen peroxide. Several epidemiologic
studies have investigated the relationship between the muta-
tions of catalase and human cancer but the results obtained
are contradictory. In fact, a decreased catalase activity has
been found both in blood samples and in tissues of breast
cancer patients [17, 18] and in oral and pancreatic carcinomas
[19, 20]. However, an increase in catalase levels has been
reported in breast cancer tissue [21], malignant mesothe-
lioma, and colorectal carcinoma [22, 23].

Peroxiredoxins. Peroxiredoxins (PRDXs) are a family of six
isoenzymes able to reduce alkyl hydroperoxides and H,O, to
their corresponding alcohol or H,O. PRDXs are considered to
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be amongst the most important antioxidant enzymes, known
to balance the production of cellular H,O, which is essential
for cell signaling and metabolism [24]. Under oxidative stress
conditions, PRDXs are upregulated by Nrf2 activity and
several studies have shown that the overexpression of PRDXs
could either inhibit the development of cancer or promote
growth of cancers [25].

In fact, PRDXI1 interacts with the c-Myc oncogene
and suppresses its transcriptional activity playing a tumor-
suppressive role in breast cancer development [26, 27]. On
the contrary, PRDXI is associated with the promotion of oral,
esophageal, lung, hepatocellular, and pancreatic carcinoma
by upregulating heme oxygenase 1 and activating the NF-xB
pathway [28-31]. Moreover, also PRDX2 promotes colorec-
tal carcinoma through upregulation of Wnt/f catenin and
prostate cancer through upregulation of androgen receptor
activity [32, 33]. Furthermore, several studies have demon-
strated that the overexpression of PRDXI1, PRDX2, and
PRDX3 has an important role in many cases of drug resistance
and that the therapeutic agents targeting these PRDXs are
frequently studied for the treatment of cancer [34]. While
PRDX3, PRDX4, and PRDX6 play a tumor-promoting role in
the progression of many cancers [35-37], PRDXS5, similar to
PRDX]I, has an antitumor effect in breast cancer development
(38, 39].

Thioredoxins. Thioredoxins (Trxs) protect cells from oxida-
tive stress by means of their 2-cysteine active site that reacts
with ROS and is able to reduce oxidized proteins. They
also serve as hydrogen donors to the thioredoxin-dependent
peroxide reductases. Trx1, expressed in the cytoplasm and the
nucleus, and Trx2, expressed in the mitochondria, are indis-
pensable for cell survival [40]. Nuclear Trx1 has been shown
to be overexpressed in in situ breasttumors [41], in melanoma,
lung, colon, cervix, gastric, liver, and pancreatic carcinomas
[42-45].

Glutathione. Glutathione (GSH) is the major cellular thiol
protein, consisting of three amino acids glutamine, cysteine,
and glycine, and it participates in antioxidant defense, in the
detoxification of xenobiotics, and in many metabolic pro-
cesses such as the synthesis of proteins and nucleic acids [46].
It is synthesized from L-glutamate, L-cysteine, and glycine in
two consecutive steps, catalyzed by glutamate-cysteine ligase
(GCL) and glutathione synthase (GS) [47]. GCL s considered
the rate-limiting enzyme of GSH synthesis. While GSH loss,
or a decrease in glutathione/glutathione disulphide ratio
(GSH/GSSG), leads to an increased susceptibility to oxidative
stress and to carcinogenesis, elevated GSH levels increase the
antioxidant capacity of many cancer cells enhancing their
resistance to oxidative stress [48]. Remarkably, the inhibition
of GSH and Trx dependent pathways induces a synergistic
cancer cell death, demonstrating the importance of these two
antioxidants in favoring tumor progression [49]. Glutathione
peroxidases (GPx) are another group of enzymes capable
of reducing hydroperoxides, including lipid hydroperoxides,
using GSH as a substrate and generating GSSG which is, once
again, reduced by the specific enzyme glutathione reductase
(GR). A proline-leucine substitution at codon 198 of human

GPx has been associated with the increased risk of breast
[50, 51], lung [52], and bladder cancer [53].

Heme Oxygenase. Heme oxygenase (HO)-1 is the first rate-
limiting enzyme in the degradation of heme into biliverdin/
bilirubin, carbon monoxide (CO), and free iron [54]. Nor-
mally expressed at low levels in most of the mammalian
tissues, HO-1 expression is efliciently upregulated by the
availability of its substrate heme and by different stress stimuli
such as heavy metals, UV irradiation, ROS, nitric oxide, and
inflammatory cytokines [55]. By increasing the availability of
bilirubin, ferritin, and CO, with antioxidant and antiapoptotic
properties, HO-1is recognized as a key player in the mainte-
nance of cellular homeostasis and in the adaptive response to
cellular stressors [56]. For this reason, HO-1 activity is crucial
in the protection of healthy cells, maintaining cell viability
and counteracting ROS-mediated carcinogenesis as well [57].
However, the involvement of HO-1 in cancer cell biology has
been proven [58] and the upregulation of HO-1 has been
widely related to cancer cell metastatic and proangiogenetic
potential and poor prognosis [59-61]. Nevertheless, the role
of HO-1seems to be strongly dependent on the types of tumor
considered. For instance, in breast cancer cells, HO-1 activity
reduces cell proliferation and favors the efficacy of certain
drugs [62, 63]. Thus, it is important to note that the metabolic
status of cancer cells may influence HO-1 expression that is
dependent on different signaling pathways and transcription
factors, suggesting a possible, but not completely understood,
regulation of HO-1 [64]. In addition, it has been recently
demonstrated that the response of myeloma cells to borte-
zomib could be due to the noncanonical functions of HO-
1 which translocates to the nucleus where it plays a role
in genetic instability, favoring cancer progression indepen-
dently of its enzymatic activity [65]. Within this context, the
nuclear localization of HO-1 has also been demonstrated to be
involved in the gain of resistance to other chemotherapeutic
agents such as imatinib in chronic myeloid leukemia [66]. As
a whole, these findings open up a new scenario of the role of
HO-1in cancer cell biology.

2. Redox-Signaling Pathways Involved in
Tumorigenesis and in Tumor Progression

In many tumors dysregulation of proliferation, apoptosis, and
autophagy depends on the constitutive activation of redox-
sensitive targets such as protein kinase C (PKC), protein
kinase B (Akt), mitogen-activated protein kinases (MAPK),
and ataxia telangiectasia mutated (ATM) kinase [135].

2.1. Protein Kinase C. Among redox-modulated signaling
molecules playing a role in cancer, PKC may be activated by
oxidative modifications of its enzymatic structure [136-138].
In this regard, in vivo and in vitro studies have demonstrated
that high doses of prooxidant compounds cause PKC inac-
tivation and proteolytic degradation while low doses induce
the stimulation of the kinase activity [139-142].

For most PKC isoenzymes there is conflicting evidence
as to whether they act as oncogenes or as tumor suppressors
[143]. For example, the overexpression of PKCa has been



demonstrated in prostate, endometrial, and high-grade uri-
nary bladder carcinoma [144] while downregulation of PKC«
has been described in basal cell carcinoma and colon cancers
[145, 146]. Also PKCf overexpression is an early event in
colon cancer development [147] and the transgenic overex-
pression of PKCPII induces hyperproliferation and invasive-
ness of intestine epithelial cells [148]. It has been reported that
PKCp isoenzyme is responsible for the activation/phosphor-
ylation of p66/shc, which can bind to cytochrome ¢ and
stimulate the generation of ROS [149]. Recent findings have
demonstrated that PKC« plays a critical role in hepatocarci-
noma development by inducing DUOX (a member family of
NOX) expression and ROS production [150]. Moreover, also
PKCJ has been shown to be implicated in NOX activation
that via alterations of redox state influence retinoic acid-
induced differentiation of neuroblastoma cells [151]. Likewise,
PKCd can act as either a positive or a negative regulator of
tumor progression [152, 153]. Specifically, PKC3 may be over-
expressed in colon cancers and downregulated in malignant
gliomas, bladder carcinomas, and endometrial tumors [154].
Moreover, while the upregulation of PKCS, in breast cancer
patients, has been linked with the acquisition of resistance
to tamoxifen [155] the overexpression of PKC§ in neuroblas-
toma cells induces apoptosis by sensitizing cells to etoposide
[156].

2.2. PI3K/AKT. PI3K/AKT signaling contributes to tumori-
genesis and to the expression of different cancer hallmarks.
It facilitates the invasion and metastasis of cancer cells by
promoting matrix metalloproteinase-9 (MMP-9) secretion
[157] and by inducing the epithelial mesenchymal transition
(EMT) [158] while it also increases telomerase activity and
replication by activating telomerase reverse transcriptase
(TERT) [159].

Furthermore, the PI3K/AKT signaling pathway has been
found to activate NOX with production of ROS that on one
hand may increase the genomic instability of cancer cells
[160] and on the other hand may render cancer cells more
sensitive to chemotherapy [161]. In addition, the upregulation
of PTEN (phosphatase and tensin homolog deleted on chro-
mosome 10), a tumor suppressor gene frequently deleted or
mutated in many human cancers, has been demonstrated to
reduce ROS generation by regulating the PI3K/AKT pathway
[162]. ROS-dependent PTEN inactivation shifts the kinase-
phosphatase balance in favor of tumorigenic tyrosine kinase
receptor signaling through Akt, which inhibits apoptosis by
phosphorylating and inactivating several targets, including
Bad, forkhead transcription factors, and c-Raf and caspase-
9 [163].

2.3. Apoptosis Signal-Regulating Kinase 1 (ASK1) and p38
MAPK. Apoptosis signal-regulating kinase 1 (ASKI1) has
been shown to act as a redox sensor by mediating the
sustained activation of JNK and p38MAPK [164] resulting in
apoptosis upon oxidative stress conditions [165]. In its inac-
tive state, ASK1 is coupled to the reduced form of Trx 1 that
induces its ubiquitination and degradation [166].

As above reported, p38 MAPK is able to inhibit tumor
initiation by inducing apoptosis, by regulating cell cycle
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progression, and/or by inducing premature senescence of
primary cells [167] This protein kinase contains four active
cysteine residues that can be potentially oxidized. Although
the activation of p38« is normally associated with antipro-
liferative functions [168, 169], several studies indicate that
p38a can positively modulate cancer progression [170] as
observed in malignant hematopoietic cells [171] and in other
tumor cell lines [172]. Consistent with the prooncogenic role
of p38MAPK, the inhibition of p38MAPK activity has been
found to impair the proliferation and anchorage-independent
growth of neuroblastoma cells [173].

2.4. Ataxia Telangiectasia Mutated (ATM) Kinase. A critical
enzyme in maintaining genome stability is ATM, which can
regulate DNA damage repair [174]. In fact, ATM upregulates
the glucose-6-phosphate dehydrogenase to promote NADPH
production and thus reduces ROS levels [175]. In cancer stem
cells (CSCs), the ATM signaling pathway is highly active.
In CD44+/CD24~ stem-like cells, compared with other cell
populations from breast cancer, the expression of ATM was
significantly increased [176] and the employment of an ATM
inhibitor reversed their resistance to radiotherapy, suggesting
the importance of ATM signaling in CSC formation [176].

3. Role of Transcription Factors as
ROS Modulators in Carcinogenesis and
Cancer Progression

Many transcription factors are key players in regulating
several pathways involved in carcinogenesis and cancer
progression. Through their binding to the gene promoter
regions, they can transactivate or repress the expression of
antioxidant genes leading to the alteration in redox state and
changes in proliferation, growth suppression, differentiation,
and senescence.

3.1. p53. p53 functions as a transcription factor able to acti-
vate or repress a large number of target genes that are involved
in cell cycle control, DNA repair, apoptosis, and cellular stress
responses [177]. It is kept at low levels by several E3 ubiquitin
ligases, such as Mdm?2, responsible for its degradation [178],
and it is stabilized by posttranslational modifications such as
phosphorylation, acetylation, and methylation [179, 180].

p53 has a controversial role in ROS regulation as it can
promote both pro- and antioxidant responses [174].

Stress-induced p53 activation leads to the upregulation
of several genes encoding ROS-generating enzymes, such as
NQOI (quinone oxidoreductase) [181] and proline oxidase
(POX) [182], and redox-active proteins, including Bax and
Puma. In particular, p53-induced ROS overproduction may
be due to the overexpression of Puma, a critical mediator of
mitochondrial membrane impairment [183], to the transcrip-
tional activation of p67phox, a component of NADPH oxi-
dase responsible for O," production [184] and to the action
of p66Shc which oxidizes cytochrome c and affects mitochon-
drial permeability [149].

Moreover, the prooxidant activity of p53 has been found
to be modulated by several genes named PIG1-13 (p53-
inducible genes 1-13) which are able to encode redox-active
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proteins [181]. In particular, PIGI, a member of the galectin
family, is involved in superoxide production; PIG3, homolog
of NADPH-quinone oxidoreductase, is a potent ROS gener-
ator and PIG8, a human homolog of mouse E-24 gene, is a
quinone able to regulate ROS [181].

In contrast, p53 is also able to transactivate different genes
controlling antioxidant response in order to maintain ROS
production at nontoxic levels [185]. In fact, p53 has been
found to activate MnSOD expression via the direct recogni-
tion of the MnSOD human gene promoter [186] and to induce
the expression of heme-oxygenase-1 (HO-1) by directly bind-
ing to the HO-1 promoter, favoring cell survival [187].

Another important antioxidant target of p53 is Tp53-
induced glycolysis and apoptosis regulator (TIGAR) [188].
TIGAR encodes a protein that is similar to the gly-
colytic enzyme fructose-2,6-bisphosphatase, which degrades
fructose-2,6-bisphosphate [189]. A decrease in fructose-2,6-
bisphosphate levels inhibits the activity of the rate-limiting
enzyme phosphofructokinase I (PFKI), thereby blocking
glycolysis and promoting the shuttling of metabolites to the
pentose phosphate pathway (PPP). By upregulating TIGAR,
p53 amplifies PPP-mediated NADPH production that is
required by glutathione reductase in order to convert GSSG to
GSH. A third important antioxidant target of p53 is glutami-
nase 2 (GLS2) that converts glutamine to glutamate which is
subsequently converted to GSH via GCLC and GCLM [190].

3.2. Nrf2. Nrf2is a transcription factor that controls not only
the expression of antioxidants as well as phase I and phase
II drug metabolizing systems, but also multidrug-resistance-
associated protein transporters [58]. In a resting state, Nrf2
is sequestered in the cytoplasm through the binding with
Keapl, responsible for Nrf2 ubiquitination and proteasomal
degradation via Cul3. Oxidative/electrophilic stress causes a
conformational change in Keapl-Cul3 by acting on specific
residues in Keapl, leading to Nrf2 dissociation. Thus, Nrf2
translocates to the nucleus where it dimerizes with a small
Maf protein and binds to the antioxidant response element
(ARE) sequence within regulatory regions of a wide variety of
target genes [191, 192]. In fact, Nrf2 is essential for the expres-
sion of stress-responsive or cytoprotective enzymes such as
NQOL, SODs, HO-1, catalase, and Trx. In addition, Nrf2 acti-
vation regulates GSH levels and metabolism by inducing the
expression of GCL, GS, GSH S-transferases (GSTs), GR, and
GPx [193, 194].

Several mechanisms have been shown to be involved in
the constitutive activation of Nrf2 in cancer cells, mainly
gain-of-function mutations in Nrf2 and loss-of-function
mutations in Keapl [195-198]. Shibata et al. [199] have
reported that Keapl and Nrf2 mutations, in lung cancer, are
responsible for the upregulation of ARE-modulated genes,
which favor cancer promotion and/or progression [58].
Recently, these alterations of Keapl/Nrf2 pathway have been
considered among the potential novel targets for the treat-
ment of lung adenocarcinoma [200].

Among Nrf2 target genes glucose-6-phosphate dehydro-
genase, phosphogluconate dehydrogenase, transketolase, and
transaldolase I are responsible for NADPH and purine regen-
eration and then accelerate cancer cell proliferation [201].

Moreover, Nrf2 is directly involved in the basal expression
of the p53 inhibitor Mdm2, through the binding to the
ARE sequence located in the first intron of this gene, and
inhibits cell death [202]. Cancer cells with high levels of Nrf2
have been shown to be less sensitive to etoposide, cisplatin,
and doxorubicin [203] and our studies demonstrated that
activation of Nrf2 and of its target genes plays a key role in
the resistance of neuroblastoma cells to GSH depletion or
proteasome inhibition 85, 204].

3.3. NF-xB. The transcriptionfactor NF-«kB plays a critical
role in cell survival, proliferation, immunity, and inflamma-
tion [205]. In stimulated cells, I-xB, an endogenous inhibitor
able to retain NF-«B in the cytoplasm, is phosphorylated by
[-xB kinase (IKK) which leads to I-xB ubiquitination and
proteasomal degradation and induces NF-xB translocation
to the nucleus where it can modulate the transcription of
its target genes [206]. Morgan and Liu showed that ROS
may regulate NF-«B activation to express antioxidant genes
coding MnSOD, Cu,Zn-SOD, catalase, Trx, GST-pi, HO-1,
and GPx [207]. NF-«B is also involved in the regulation of
some enzymes catalyzing ROS production such as NOX2,
xanthine oxidoreductase, NOS, and COX-2 [208].

NF-xB activation leads to the development and/or pro-
gression of cancer by upregulating several genes involved
in cell transformation, proliferation, and angiogenesis [209].
In this regard, it has been found that NF-«B activation and
ROS production promote the progression of hepatocellu-
lar carcinoma [210] and the initiation of colorectal cancer
[211]. Moreover, as observed in high-risk myelodysplastic
syndrome and in AML patients, NF-«xB activation, due to the
constitutive activation of ATM [212], is critical for the survival
of human leukemia cells [213] by increasing MnSOD activity,
reducing ROS levels and inhibiting oxidative cell death.

3.4. HIF-1. Hypoxia-inducible factor (HIF-I) is a het-
erodimeric transcription factor composed of an a-subunit
(HIF-1x) and a $-subunit (HIF-1f3) [214]. The expression of
HIF-l« is mainly regulated at the posttranslational level in an
oxygen-dependent manner and is largely responsible for the
regulation of HIF-1 activity [215].

It has been demonstrated that HIF-1« interacts with the
HIF-13 and acts as a transcription factor able to induce the
expression of genes involved in metabolic adaptation, such as
hexokinase II (HK II) and pyruvate dehydrogenase kinase 1
(PDK1) [216], and the expression of genes involved in improv-
ing oxygen availability [217, 218] and shifting the glucose
metabolism from mitochondrial oxidative phosphorylation
to anaerobic glycolysis [219].

In addition, it has been demonstrated that ROS, via the
modulation of PI3K/AKT and ERK pathways, are able to
activate HIF-11in hypoxic tumors [220]. In fact, HIF-1 overex-
pression correlates with poor outcomes in patients with head,
neck, nasopharyngeal, colorectal, pancreatic, breast, cervical,
bone, endometrial, ovarian, bladder, glial, and gastric cancers
[9] and it is associated with refractiveness to conventional
therapies [221].
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TaBLE 1: ROS modulating drugs undergoing clinical trials in oncology.
Drug Mechanism of action Cancer type Outcome Ref.
L—But}.no.n e Inhibits GSH synthesis; activates PKCS Neuroblastoma Efficacious in vitro [67-73]
sulfoximine Melanoma
Menadione Depletes GSH; activates ERK1/2 and Gastrointestinal and lung cancer Under clinical trial [74-77]
P38MAPK
Imexon Depletes intracellular thiols; increases Advanced breast cancer; NSCLC; Efficacious [78-82]
AP-1and Nrf2-DNA binding activity prostate and pancreatic tumors
Oxidizes GSH and inhibits Metastatic melanoma; liver
Disulfiram proteasome; activates JNK; inhibits ? Under clinical trial (68, 83, 84]
Nrf2 and NF-xB cancer
Inhibits proteasome activity; activates Myeloma, leukemia, AML,
Bortezomib NF-«B; activates Nrf2 and upregulates myelodysplastic syndrome, Under clinical trial [85-90]
HO-1 neuroblastoma, prostate cancer
NOV-002 Oxidizes F}SH afld induces NSCLGC; breast and ovarian Efficacious [91-93]
S-glutathionylation cancer
Ezatiostat };}El/)g}s{]((} ST-Pland activates Myelodysplastic syndrome Under clinical trial [94]
PX-12 Inactivates Trx-1 Advanced solid tumors Efficacious [95-97]
Dimesna Targets Trx and Grx Ovarian carcinoma, NSCLC Efficacious [95, 98, 99]
Motexafin Pancreatic, biliary and
.. Inhibits Trx haematological cancer, renal Under clinical trial [97,100-102]
gadolinium X
carcinoma
A.rser.nc Oxidizes GSH and thiol enzymes APL, melanoma Efficacious [68]
trioxide

4. ROS-Modulating Agents Undergoing
Clinical Trials in Oncology

Several anticancer drugs are able to produce high levels of
ROS leading to DNA damage and apoptosis [222, 223] that
can be further stimulated by depleting cancer cell of GSH.
The following compounds alter the intracellular redox state
and induce cell death; for this reason some of them have been
employed to improve the cytotoxic effects of conventional
drugs (Table 1).

L-Buthionine-S,R-sulfoximine (BSO) induces oxidative
stress by inhibiting GSH biosynthesis [67] and it synergizes
with cytotoxic chemotherapeutic agents, including arsenic
trioxide, cisplatin, doxorubicin, and melphalan [68]. Our
studies have demonstrated that BSO-induced ROS overpro-
duction and apoptosis of neuroblastoma cells is mediated by
PKCd activation [69-72] which is crucial for the sensitization
of cancer cells to BSO and to etoposide [156]. In this context,
BSO plus melphalan is currently undergoing clinical evalu-
ation in children with neuroblastoma and in patients with
persistent or recurrent stage III malignant melanoma [73].

Menadione (also known as vitamin K3) is a synthetic
derivative of vitamins K1 and K2. The oxidative stress gen-
erated by menadione is dose-dependent and is due to GSH
depletion capable of inducing cell death [74]. Moreover, a
recent study reported that menadione analogues at submicro-
molar concentrations activate apoptosis of myeloid leukemia
cells via the activation of ERK 1/2 and p38MAPK [75]. In vitro
investigations have led to the employment of menadione in
different human trials in patients with gastrointestinal and
lung cancer [76, 77].

Imexon is a prooxidant small molecule that depletes intra-
cellular thiols generating oxidative stress and, subsequently,
induces apoptosis [78]. Preclinical studies have demonstrated
that imexon treatment increases nuclear Nrf2 levels and AP-1-
DNA binding activity in myeloma cells and breast cancer cells
[79]. These findings suggest that imexon leads to an adaptive
response to oxidative stress involving upregulation of several
antioxidant genes such as Nrf2 [79] and CuZnSOD [224]. The
increased antioxidant gene expression and the enhancement
of GSH levels in myeloma cell lines have been associated with
the phenomenon of resistance to imexon [225].

Successful phase I trials have been completed in combi-
nation with cytotoxic chemotherapy in advanced breast, non-
small cell lung cancer (NSCLC), prostate [80], and pancreatic
[81] tumors. In addition, a phase II study has been carried
out in patients with relapsed/refractory B-cell non-Hodgkin
lymphoma [82].

Disulfiram is an acetaldehyde dehydrogenase inhibitor
that induces apoptosis via GSH oxidation and proteasome
inhibition [68, 83]. Preclinical studies have demonstrated that
disulfiram-induced apoptosis of human melanoma cells [226]
and of lymphoid malignant cells is mediated by JNK activa-
tion and Nrf2 and NF-xB inhibition [84]. A phase I/II trial
with disulfiram has recently been completed in patients with
metastatic melanoma and other early-phase studies are ongo-
ing in NSCLC and treatment-refractory liver tumors [68].

Bortezomib is a proteasome inhibitor that blocks induci-
ble I-xB degradation and consequently activates NF-«B [86,
87]. It induces cell cycle arrest and apoptosis by preventing
the degradation of p21/wafl, p53, and Bax [227]. Bortezomib
has been extensively studied either alone or in combination
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with other agents for the treatment of multiple myeloma [86]
and of chronic lymphocytic leukemia (CLL) [88]. In addition,
bortezomib has been demonstrated to exert cytotoxicity by
increasing ROS production [228] and, in this context, our
recent studies have shown that bortezomib treatment of
human neuroblastoma cells is less effective as a consequence
of Nrf2-mediated HO-1 upregulation [85]. Moreover, it has
been reported that bortezomib induces HO-1 activity in mul-
tiple myeloma via the endoplasmic reticulum stress pathway
and that HO-1 nuclear translocation confers resistance to
chemotherapy and induces genetic instability in cancer cells
[65].

NOV-002 is a product containing oxidized glutathione
that alters the GSH/GSSG ratio and induces S-glutathionyla-
tion [91]. NOV-002-induced S-glutathionylation has been
shown to have inhibitory effects on proliferation, survival
and invasion of myeloid cell lines and significantly increases
the efficacy of cyclophosphamide chemotherapy in a murine
model of colon cancer [229]. NOV-002 has been most exten-
sively studied with a phase III trial (NCT00347412) completed
in the treatment of advanced NSCLC [92] and data is available
from phase II trials in breast and ovarian cancers [230].
In a randomized phase II trial, NOV-002 in combination
with standard chemotherapy has shown promising effects in
patients with stage IIIb/IV of NSCLC [231]. Positive results
were also obtained from a phase II trial in patients with neo
adjuvant breast cancer therapy [93].

Ezatiostat hydrochloride (TLK199) is a GSH analogue that
inhibits GST PI-1leading to JNK/ERK activation and induc-
ing apoptosis of malignant cells [94]. Treatment of leukemia
cell lines with ezatiostat has been demonstrated to induce
myeloblast differentiation without affecting myelopoiesis
[94]. Ezatiostat has been evaluated in multiple phase I and
phase II clinical trials in myelodysplastic syndrome (MDS)
characterized by ineffective hematopoiesis presenting with
anemia and, in some cases, neutropenia and thrombocytope-
nia [94].

PX-12 (1-methylpropyl 2-imidazolyl disulfide) irreversibly
inactivates Trx-1 which is overexpressed in many human
cancers and it is associated with aggressive tumor growth and
decreased patient survival [95]. Furthermore, the antitumor
activity of PX-12 is also due to a reduction of VEGF in
cancer patient plasma [95] and it can be synergistically
enhanced after combination of PX-12 with 5-FU in HCC
cells [96]. PX-12 has shown promising pharmacokinetics
and pharmacodynamics in phase Ib trials in patients with
advanced solid tumors refractory to chemotherapy [97].

Dimesna (BNP7787, disodium 2,2-dithio-bis-ethane sul-
fonate) is a novel chemoprotective disulfide compound that
targets Trx and Grx which are overexpressed in many tumors
[98, 99]. Dimesna has been employed in the treatment of var-
ious solid tumors, including ovarian carcinoma and NSCLC.
In addition, it is currently undergoing phase III clinical
trials (NCT00966914), in combination with first-line taxane
and platinum chemotherapy, in patients with diagnosed or
relapsed advanced (stage ITIB/IV) NSCLC adenocarcinoma.

Motexafin gadolinium (MGd) is a Trx inhibitor that
reversibly accepts electrons from NADPH, NADH, GSH, and

ascorbate, with subsequent electron transfer to molecular
oxygen [232]. Preclinical studies have shown that MGd alone
has a proapoptotic effect in multiple myeloma, non-Hodgkin
lymphoma, and chronic lymphocytic leukemia [233]. MGd
has been tested in a phase I trial in patients with locally
advanced pancreatic or biliary cancers [97], and in a phase
II trial in renal cell carcinoma [100] and in haematological
malignancies [101].

Arsenic trioxide (As,05) is an inorganic compound that
has antiproliferative and apoptogenic effects on cancer cells
by inducing oxidation of cysteine residues in GSH and
thiol enzymes [68]. It has been approved by the European
Medicines Agency and US Food and Drug Administra-
tion, for induction and consolidation of chemotherapy in
adults with relapsed/refractory acute promyelocytic leukemia
(APL). Moreover, As,Q;, in combination with disulfiram, is
being evaluated as a second-line therapy in phase I trials
(NCT00571116) in patients with metastatic melanoma.

5. Conclusions

The modulation of oxidative stress is considered an important
factor in the development of cancer and in the response of
tumor cells to therapy [189]. As shown in this review, high
ROS levels in cancer cells are a consequence of alterations in
cellular metabolism and their overproduction is counteracted
by elevated defense mechanisms (Figure 2).

Among antioxidants, GSH is essential for maintaining a
correct redox balance, has a crucial role in the protection of
cancer cells from oxidative stress, and ensures cell survival
in both hypoxia and nutrient deprivation that are present in
solid malignant tumors [48]. For this reason, combinations
of GSH antagonists or other antioxidant inhibitors with
radio or chemotherapy may be useful for killing cancer cells.
This “epigenetic-genetic” therapeutic approach is in sharp
contrast to the conventional strategy of targeting oncogenes
and oncosuppressors, an approach that has turned out to be
uneffective also for the frequent gene mutations.

As reported in this review, many of these genes are
redox-sensitive transcription factors that are involved in
proliferation, angiogenesis, and metastasis and are able to
induce a common set of cell stress adaptive responses, thus
providing a survival advantage.

Therefore, the redox-signaling pathways underlying these
adaptations may represent the most critical weak point in
many cancers and the signaling molecules that mediate
these changes could be the next important targets for future
anticancer drug discovery research.

Recently, as summarized in Table 2, many clinical trials
with modulators of kinases or transcription factors associated
with conventional therapy are ongoing. Although the results
of some of these combined strategies seem to be promising,
further studies are needed in order to identify specific
markers for a more personalized therapy and to minimize the
side toxic effects.
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TABLE 2: Modulators of redox signaling pathways employed in combination with anticancer agents and their effects.
Drug Mechanism of action Cancer type Outcome Ref.
Trametinib MEK inhibitor Melanoma Efficacious [103]
Selumetinib MEK inhibitor Thyroid, ovarian cancer Efficacious [104-106]
Tamoxifen PKC inhibitor Gliomas, breast cancer Efficacious [107-111]
Perifosine Akt, MAPK and JNK inhibitor Haematologic tumors, myeloma Efficacious [112-116]
Sulfasalazine NF-«B inhibitor Colorectal cancer Efficacious [117,118]
Nelvinavir Decreases HIF-1a Aden01d'cyst1c carcinoma, Efficacious [119-122]
pancreatic cancer, NSCLC
Topotecan HIF_I and Topoisomerase | Endometrial and cervical cancer Efficacious [123, 124]
inhibitor
Aprinocarsen ?ngxnse ohgonucleotlde against Lymphoma, breast cancer Contrasting results [125-127]
Midostaurin \hgggalge;g‘ gjlitor of PKCs, AML, melanoma Contrasting results [128, 129]
MK-2206 Akt and PI3K inhibitor S:ilsilrc’ pancreatic and breast Under clinical trial (130]
Serdemetan mdm?2 inhibitor Refractory solid tumors Under clinical trial [131]
PRIMA-1and Reverse the oncogenic properties of . .. .
PRIMA-1MET mutant p53 & prop Ovarian cancer Under clinical trial [132,133]
AMG 232 mdm2-p53 interactions inhibitor Melanoma, myeloma, myeloid Under clinical trial (134]
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FIGURE 2: Redox-signaling pathways that are involved in cancer growth and progression. Cancer cells escape cell death and damage induced by
high ROS levels by increasing their antioxidant defenses such as GSH that contribute to lower the amount of ROS. ROS are produced by NOX
in the plasma membrane and by mitochondria, and at low levels they act as second messengers by activating many protein kinases (PI3/Akt,
p38 MAPK, and ATM) and transcription factors (Nrf2, NF-«B, p53, and HIF-1) able to contribute to cancer cell survival by stimulating cell
proliferation, inflammation, and angiogenesis. GR, glutathione reductase.
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