Skip to main content

Preclinical In-Vivo Assessment of Tissue Engineered Vascular Grafts and Selection of Appropriate Animal Models

  • Living reference work entry
  • First Online:
Tissue-Engineered Vascular Grafts

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

Worldwide the population affected by cardiovascular diseases is increasing. Among others, vascular occlusion due to atherosclerosis is the major underlying mechanism. Surgical revascularization therapies are often indicated and require sufficient vascular substitutes with long-term function. Autologous vessels such as the saphenous vein or internal thoracic artery are still the gold standard for small diameter revascularizations like coronary artery bypass procedures. Unfortunately these vessels are often not available or of poor quality due to concomitant disease. Alternative vascular grafts are needed to overcome these limitations. Significant advances have been made in the development of tissue-engineered conduits over the last decades showing impressive results especially when these conduits were applied in young patients in high-flow, low-pressure vascular applications. Clinical studies are also currently ongoing showing successful application of tissue engineered vascular grafts (TEVGs) in adults as arteriovenous shunt grafts for dialysis access.

TEVGs are classified as tissue engineered medicinal products. Currently new regulatory approaches for tissue-engineered products are defined to comply with safety issues and to guarantee consistent product quality. Preclinical testing in adequate animal models is an important part of these evaluations to assess safety and functionality of cardiovascular tissue engineered devices to predict successful long-term clinical application.

The selection of the most appropriate animal model is an important consideration for significant preclinical trials because there are important variables between the different animal species. Small and large animals have been assigned to different graft testing procedures. To simulate, all the challenges to the implant after human application knowledge of comparative anatomy and physiology of the animal model is of utmost importance. Although no unique ideal animal model for all requirements of vascular graft testing exists, there are a number of animal species, which can be used for different test settings. Appropriate interpretation of test results based on relevant knowledge of species-dependent characteristics will help to assess preclinical biocompatibility of TEVGs and to predict potential harm for the patient as far as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott WM et al (1987) Effect of compliance mismatch on vascular graft patency. J Vasc Surg 5(2):376–382

    Article  Google Scholar 

  • Abbott WM et al (1993) Evaluation and performance standards for arterial prostheses. J Vasc Surg 17(4):746–756

    Article  Google Scholar 

  • Ahasan A, Islam M, Kabria A, Rahman M, Hassan M, Uddin M (2012) Major variation in branches of the abdominal aorta in New Zealand white rabbit (Orycotolagus Cuniculus). Int J Nat Sci 2(4):91–98

    Article  Google Scholar 

  • Ahmed M, Hamilton G, Seifalian AM (2014) The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials 35(33):9033–9040

    Article  Google Scholar 

  • Alexandre N et al (2016) Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. Int J Pharm 513(1–2):332–346

    Article  Google Scholar 

  • Ali ML et al (1996) The sheep as an animal model for heart valve research. Cardiovasc Surg 4(4):543–549

    Article  Google Scholar 

  • Amensag S et al (2017) Pilot assessment of a human extracellular matrix-based vascular graft in a rabbit model. J Vasc Surg 65(3):839–847.e1

    Article  Google Scholar 

  • Anderson DE et al (2014) Engineering an endothelialized vascular graft: a rational approach to study design in a non-human primate model. PLoS One 9(12):e115163

    Article  Google Scholar 

  • Andrews EJ, Ward B, Altmann NH (1979) Spontanous animal models of human disease. Academic, New York

    Google Scholar 

  • Aussel A et al (2017) Chitosan-based hydrogels for developing a small-diameter vascular graft: in vitro and in vivo evaluation. Biomed Mater 12(6):065003

    Article  MathSciNet  Google Scholar 

  • Bahr A, Wolf E (2012) Domestic animal models for biomedical research. Reprod Domest Anim 47(Suppl 4):59–71

    Article  Google Scholar 

  • Baumann DS et al (1994) The role of cholesterol accumulation in prosthetic vascular graft anastomotic intimal hyperplasia. J Vasc Surg 19(3):435–445

    Article  Google Scholar 

  • Bayon Y et al (2015) Turning regenerative medicine breakthrough ideas and innovations into commercial products. Tissue Eng Part B Rev 21(6):560–571

    Article  Google Scholar 

  • Benjamin EJ et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603

    Article  Google Scholar 

  • Benjamin EJ et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492

    Article  Google Scholar 

  • Bergmeister H et al (2015) Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomater 11:104–113

    Article  Google Scholar 

  • Best CA et al (2018) Oversized biodegradable arterial grafts promote enhanced neointimal tissue formation. Tissue Eng Part A 24:1251–1261

    Article  Google Scholar 

  • Bianco RW, Wasiluk KR, Voight JM, Lahti MT, Rivard AL, Gallegos RP (2013) Large animal models in cardiac and vascular biomaterials research and assessment. In: Biomaterials science, 3rd edn. Academic, pp 653–676

    Google Scholar 

  • Bijnens AP et al (1997) Expression and characterization of recombinant porcine plasminogen activator inhibitor-1. Thromb Haemost 77(2):350–356

    Article  Google Scholar 

  • Bockamp E et al (2002) Of mice and models: improved animal models for biomedical research. Physiol Genomics 11(3):115–132

    Article  Google Scholar 

  • Brennan MP et al (2008) Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg 248(3):370–377

    Google Scholar 

  • Buscemi S et al (2017) Electrospun PHEA-PLA/PCL scaffold for vascular regeneration: a preliminary in vivo evaluation. Transplant Proc 49(4):716–721

    Article  Google Scholar 

  • Byrom MJ et al (2010) Animal models for the assessment of novel vascular conduits. J Vasc Surg 52(1):176–195

    Article  Google Scholar 

  • Callow AD (1996) Arterial homografts. Eur J Vasc Endovasc Surg 12(3):272–281

    Article  Google Scholar 

  • Callow AD et al (1982) Platelet–arterial synthetic graft interaction and its modification. Arch Surg 117(11):1447–1455

    Article  Google Scholar 

  • Chesne P et al (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20(4):366–369

    Article  Google Scholar 

  • Chlupac J, Filova E, Bacakova L (2010) Vascular prostheses: 50 years of advancement from synthetic towards tissue engineering and cell therapy. Rozhl Chir 89(1):85–94

    Google Scholar 

  • Cho SW et al (2009) Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery. Tissue Eng Part A 15(4):901–912

    Article  Google Scholar 

  • Clarke DR et al (2001) Transformation of nonvascular acellular tissue matrices into durable vascular conduits. Ann Thorac Surg 71(5 Suppl):S433–S436

    Article  Google Scholar 

  • Crick SJ et al (1998) Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat 193(Pt 1):105–119

    Article  Google Scholar 

  • Cutiongco MF et al (2016) Submillimeter diameter poly(vinyl alcohol) vascular graft patency in rabbit model. Front Bioeng Biotechnol 4:44

    Article  Google Scholar 

  • Dahan N et al (2017) Dynamic autologous Reendothelialization of small-caliber arterial extracellular matrix: a preclinical large animal study. Tissue Eng Part A 23(1–2):69–79

    Article  Google Scholar 

  • Dahl SL et al (2011) Readily available tissue-engineered vascular grafts. Sci Transl Med 3(68):68ra9

    Article  Google Scholar 

  • de Valence S et al (2012) Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater 8(11):3914–3920

    Article  Google Scholar 

  • DeBakey ME et al (2008) Clinical application of a new flexible knitted Dacron arterial substitute. 1958. Am Surg 74(5):381–386

    Google Scholar 

  • Dixon JL et al (1999) Dyslipidemia and vascular dysfunction in diabetic pigs fed an atherogenic diet. Arterioscler Thromb Vasc Biol 19(12):2981–2992

    Article  Google Scholar 

  • Feingold HM et al (1986) Coagulation assays and platelet aggregation patterns in human, baboon, and canine blood. Am J Vet Res 47(10):2197–2199

    Google Scholar 

  • FELASA Working Group on Revision of Guidelines for Health Monitoring of Rodents and Rabbits et al (2014) FELASA recommendations for the health monitoring of mouse, rat, hamster, Guinea pig and rabbit colonies in breeding and experimental units. Lab Anim 48(3):178–192

    Article  Google Scholar 

  • Flecknell P (2018) Analgesics in small mammals. Vet Clin North Am Exot Anim Pract 21(1):83–103

    Article  Google Scholar 

  • Fukunishi T et al (2016) Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PLoS One 11(7):e0158555

    Article  Google Scholar 

  • Fukunishi T et al (2017) Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. J Thorac Cardiovasc Surg 153(4):924–932

    Article  Google Scholar 

  • Fukunishi T et al (2018) Role of bone marrow mononuclear cell seeding for nanofiber vascular grafts. Tissue Eng Part A 24(1–2):135–144

    Article  Google Scholar 

  • Furukoshi M, Moriwaki T, Nakayama Y (2016) Development of an in vivo tissue-engineered vascular graft with designed wall thickness (biotube type C) based on a novel caged mold. J Artif Organs 19(1):54–61

    Article  Google Scholar 

  • Gao Y et al (2016) Pilot mouse study of 1 mm inner diameter (ID) vascular graft using electrospun poly(ester urea) nanofibers. Adv Healthc Mater 5(18):2427–2436

    Article  Google Scholar 

  • Glynn JJ, Hinds MT (2015) Endothelial outgrowth cells regulate coagulation, platelet accumulation, and respond to tumor necrosis factor similar to carotid endothelial cells. Tissue Eng Part A 21(1–2):174–182

    Article  Google Scholar 

  • Goyal A et al (2006) Development of a model system for preliminary evaluation of tissue-engineered vascular conduits. J Pediatr Surg 41(4):787–791

    Article  Google Scholar 

  • Gui L et al (2016) Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 102:120–129

    Article  Google Scholar 

  • Gun G, Kues WA (2014) Current progress of genetically engineered pig models for biomedical research. Biores Open Access 3(6):255–264

    Article  Google Scholar 

  • Hamamdzic D, Wilensky RL (2013) Porcine models of accelerated coronary atherosclerosis: role of diabetes mellitus and hypercholesterolemia. J Diabetes Res 2013:761415

    Article  Google Scholar 

  • Hampshire V (2016) Anticoagulation therapy in animal research. Lab Anim (NY) 45(11):431–432

    Article  Google Scholar 

  • Hanson SR et al (1985) Platelet interactions with Dacron vascular grafts. A model of acute thrombosis in baboons. Arteriosclerosis 5(6):595–603

    Article  Google Scholar 

  • Hao YH et al (2006) Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Res 15(6):739–750

    Article  Google Scholar 

  • Harper DD et al (2001) Anatomic study of the pulmonary artery as a conduit for an artificial lung. ASAIO J 47(1):34–36

    Article  Google Scholar 

  • Hjortnaes J et al (2010) Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study. Tissue Eng Part C Methods 16(4):597–607

    Article  Google Scholar 

  • Hoerstrup SP et al (2006) Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation 114(1 Suppl):I159–I166

    Google Scholar 

  • Höhle P (2000) Zur Übertragbarkeit tierexperimenteller endovaskulärer Studien: Unterschiede der Gerinnungs- und Fibrinolyse-Systeme bei häufig verwendeten Tierspezies im Vergleich zum Menschen. RWTH Aachen University, Aachen. http://publications.rwth-aachen.de/record/56297/files/Hoehle_Philip.pdf

    Google Scholar 

  • Hu S, Wang LV (2010) Photoacoustic imaging and characterization of the microvasculature. J Biomed Opt 15(1):011101

    Article  Google Scholar 

  • Huang F, Sun L, Zheng J (2008) In vitro and in vivo characterization of a silk fibroin-coated polyester vascular prosthesis. Artif Organs 32(12):932–941

    Article  Google Scholar 

  • Ichihara Y et al (2015) A new tissue-engineered biodegradable surgical patch for high-pressure systems dagger. Interact Cardiovasc Thorac Surg 20(6):768–776

    Article  Google Scholar 

  • Ishii D et al (2016) Development of in vivo tissue-engineered microvascular grafts with an ultra small diameter of 0.6 mm (MicroBiotubes): acute phase evaluation by optical coherence tomography and magnetic resonance angiography. J Artif Organs 19(3):262–269

    Article  Google Scholar 

  • Jiang B et al (2017) Assessment of an engineered endothelium via single-photon emission computed tomography. Biotechnol Bioeng 114(10):2371–2378

    Article  Google Scholar 

  • Joscht M et al (2016) Angiographic anatomy of external iliac arteries in the sheep. Anat Histol Embryol 45(6):443–449

    Article  Google Scholar 

  • Ju YM et al (2017) Electrospun vascular scaffold for cellularized small diameter blood vessels: a preclinical large animal study. Acta Biomater 59:58–67

    Article  Google Scholar 

  • Kajbafzadeh AM et al (2016) Aortic valve conduit implantation in the descending thoracic aorta in a sheep model: the outcomes of pre-seeded scaffold. Int J Surg 28:97–105

    Article  Google Scholar 

  • Kampmeier T et al (2017) Provision of physiological data and reference values in awake and anaesthetized female sheep aged 6–12 months. Vet Anaesth Analg 44(3):518–528

    Article  Google Scholar 

  • Kang TY et al (2015) In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins. Biofabrication 7(1):015007

    Article  Google Scholar 

  • Kapadia MR, Popowich DA, Kibbe MR (2008) Modified prosthetic vascular conduits. Circulation 117(14):1873–1882

    Article  Google Scholar 

  • Keough EM et al (1984) Healing pattern of small caliber dacron grafts in the baboon: an animal model for the study of vascular prostheses. J Biomed Mater Res 18(3):281–292

    Article  MathSciNet  Google Scholar 

  • Kilkenny C et al (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412

    Article  Google Scholar 

  • Koens MJ et al (2015) Vascular replacement using a layered elastin-collagen vascular graft in a porcine model: one week patency versus one month occlusion. Organogenesis 11(3):105–121

    Article  Google Scholar 

  • Kohler TR, Kirkman TR (1999) Dialysis access failure: a sheep model of rapid stenosis. J Vasc Surg 30(4):744–751

    Article  Google Scholar 

  • Koobatian MT et al (2016) Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials 76:344–358

    Article  Google Scholar 

  • Krawiec JT et al (2016) In vivo functional evaluation of tissue-engineered vascular grafts fabricated using Human adipose-derived stem cells from high cardiovascular risk populations. Tissue Eng Part A 22(9–10):765–775

    Article  Google Scholar 

  • Krawiec JT et al (2017) Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft. J Vasc Surg 66(3):883–890.e1

    Article  Google Scholar 

  • Kumar VA et al (2013) Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomater 9(9):8067–8074

    Article  Google Scholar 

  • Kurobe H et al (2012) Concise review: tissue-engineered vascular grafts for cardiac surgery: past, present, and future. Stem Cells Transl Med 1(7):566–571

    Article  Google Scholar 

  • Kurobe H et al (2015) Development of small diameter nanofiber tissue engineered arterial grafts. PLoS One 10(4):e0120328

    Article  Google Scholar 

  • L’Heureux N et al (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12(1):47–56

    Article  Google Scholar 

  • L’Heureux N et al (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12(3):361–365

    Article  Google Scholar 

  • Li C, Hill A, Imran M (2005) In vitro and in vivo studies of ePTFE vascular grafts treated with P15 peptide. J Biomater Sci Polym Ed 16(7):875–891

    Article  Google Scholar 

  • Li S, Sengupta D, Chien S (2014) Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip Rev Syst Biol Med 6(1):61–76

    Google Scholar 

  • Liao J, Huang W, Liu G (2015) Animal models of coronary heart disease. J Biomed Res 31(1):3–10

    Google Scholar 

  • Lopes-Berkas VC, Jorgenson MA (2011) Measurement of peripheral arterial vasculature in domestic Yorkshire swine by using quantitative vascular angiography. J Am Assoc Lab Anim Sci 50(5):628–634

    Google Scholar 

  • Lopez-Soler RI et al (2007) Development of a mouse model for evaluation of small diameter vascular grafts. J Surg Res 139(1):1–6

    Article  Google Scholar 

  • Ma X et al (2017) Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells. J Cardiothorac Surg 12(1):101

    Article  Google Scholar 

  • Madhavan K et al (2018) Performance of marrow stromal cell-seeded small-caliber multilayered vascular graft in a senescent sheep model. Biomed Mater 13(5):055004

    Article  Google Scholar 

  • Mahaney MC et al (2018) Diet-induced early-stage atherosclerosis in baboons: lipoproteins, atherogenesis, and arterial compliance. J Med Primatol 47(1):3–17

    Article  Google Scholar 

  • Mangell P et al (1996) Regional differences in mechanical properties between major arteries–an experimental study in sheep. Eur J Vasc Endovasc Surg 12(2):189–195

    Article  Google Scholar 

  • Matsumura G et al (2013) Long-term results of cell-free biodegradable scaffolds for in situ tissue engineering of pulmonary artery in a canine model. Biomaterials 34(27):6422–6428

    Article  Google Scholar 

  • Maurer KJ, Quimby FW (2015) Chapter 34 – animal models in biomedical research. In: Anderson LC, Fox JG, Otto GM, Pritchett-Corning KR, Whary MT (eds) Laboratory animal medicine, 3rd edn. Academic, pp 1497–1534

    Google Scholar 

  • Maxfield MW et al (2017) Novel application and serial evaluation of tissue-engineered portal vein grafts in a murine model. Regen Med 12(8):929–938

    Article  Google Scholar 

  • McBane JE et al (2011) Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications. Biomaterials 32(26): 6034–6044

    Article  Google Scholar 

  • McIlhenny S et al (2015) eNOS transfection of adipose-derived stem cells yields bioactive nitric oxide production and improved results in vascular tissue engineering. J Tissue Eng Regen Med 9(11):1277–1285

    Article  Google Scholar 

  • Members ATF et al (2007) Public statement: guidelines for the assessment and management of pain in rodents and rabbits. J Am Assoc Lab Anim Sci 46(2):97–108

    Google Scholar 

  • Mirensky TL et al (2009) Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. J Pediatr Surg 44(6):1127–1132; discussion 1132–3

    Article  Google Scholar 

  • Mocco J et al (2001) The baboon (Papio anubis) extracranial carotid artery: an anatomical guide for endovascular experimentation. BMC Cardiovasc Disord 1:4

    Article  Google Scholar 

  • Mrocki MM et al (2018) Moderate preterm birth affects right ventricular structure and function and pulmonary artery blood flow in adult sheep. J Physiol 596(23):5965–5975

    Article  Google Scholar 

  • Mrowczynski W et al (2014) Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis. J Vasc Surg 59(1):210–219

    Article  Google Scholar 

  • Müller M (2014) Evaluation der Blutgerinnung verschiedener Großtiermodelle und Vergleich des prokoagulatorischen Effektes der Hämostyptika QuikClot® Gauze™, Celox™ Gauze, QuikClot ACS+™ und H&H PriMed compressed gauze mit der Rotationsthromboelastometrie. Thesis, Medizinische Fakultät der Universität Ulm

    Google Scholar 

  • Naito Y et al (2011) Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev 63(4–5):312–323

    Article  Google Scholar 

  • National Research Council (2011) Guide for the Care and Use of Laboratory Animals: Eighth Edition. Washington, DC: The National Academies Press. https://doi.org/10.17226/12910

  • Nieponice A et al (2010) In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A 16(4):1215–1223

    Article  Google Scholar 

  • Niklason LE et al (1999) Functional arteries grown in vitro. Science 284(5413):489–493

    Article  Google Scholar 

  • OECD (1998) OECD Series on principles of good laboratory practice and compliance monitoring. https://doi.org/10.1787/2077785x

  • Ong CS et al (2017) Bilateral arteriovenous shunts as a method for evaluating tissue-engineered vascular grafts in large animal models. Tissue Eng Part C Methods 23(11):728–735

    Article  MathSciNet  Google Scholar 

  • Onwuka E et al (2017) The role of myeloid cell-derived PDGF-B in neotissue formation in a tissue-engineered vascular graft. Regen Med 12(3):249–261

    Article  Google Scholar 

  • Patterson JT et al (2012) Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med 7(3):409–419

    Article  Google Scholar 

  • Pektok E et al (2008) Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 118(24): 2563–2570

    Article  Google Scholar 

  • Pennel T, Zilla P, Bezuidenhout D (2013) Differentiating transmural from transanastomotic prosthetic graft endothelialization through an isolation loop-graft model. J Vasc Surg 58(4): 1053–1061

    Article  Google Scholar 

  • Pennel T et al (2014) The performance of cross-linked acellular arterial scaffolds as vascular grafts; pre-clinical testing in direct and isolation loop circulatory models. Biomaterials 35(24): 6311–6322

    Article  Google Scholar 

  • Pepper VK et al (2017) Intravascular ultrasound characterization of a tissue-engineered vascular graft in an ovine model. J Cardiovasc Transl Res 10(2):128–138

    Article  Google Scholar 

  • Prather RS et al (2013) Genetically engineered pig models for human diseases. Annu Rev Anim Biosci 1:203–219

    Article  Google Scholar 

  • Prichard HL et al (2011) An early study on the mechanisms that allow tissue-engineered vascular grafts to resist intimal hyperplasia. J Cardiovasc Transl Res 4(5):674–682

    Article  Google Scholar 

  • Quint C et al (2012) Allogeneic human tissue-engineered blood vessel. J Vasc Surg 55(3):790–798

    Article  Google Scholar 

  • Rehbinder C et al (2000) FELASA recommendations for the health monitoring of experimental units of calves, sheep and goats report of the federation of European Laboratory Animal Science Associations (FELASA) working group on animal health. Lab Anim 34(4):329–350

    Article  Google Scholar 

  • Rocco KA et al (2014) In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Eng Part B Rev 20(6):628–640

    Article  Google Scholar 

  • Roh JD et al (2008) Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials 29(10):1454–1463

    Article  Google Scholar 

  • Rotmans JI et al (2005) In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 112(1):12–18

    Article  Google Scholar 

  • Sanchez PF, Brey EM, Briceno JC (2018) Endothelialization mechanisms in vascular grafts. J Tissue Eng Regen Med 12(11):2164–2178

    Article  Google Scholar 

  • Sasaki T et al (2012) Maintenance dose of warfarin in sheep and effect of diet: a preliminary report. J Investig Surg 25(1):29–32

    Article  Google Scholar 

  • Schneider KH et al (2018) Acellular vascular matrix grafts from human placenta chorion: impact of ECM preservation on graft characteristics, protein composition and in vivo performance. Biomaterials 177:14–26

    Article  Google Scholar 

  • Schwartz RS et al (1992) Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 19(2):267–274

    Article  Google Scholar 

  • Shinoka T et al (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94(9 Suppl):II164–II168

    Google Scholar 

  • Shinoka T et al (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115(3):536–545; discussion 545–6

    Article  Google Scholar 

  • Shum-Tim D et al (1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68(6):2298–2304; discussion 2305

    Article  Google Scholar 

  • Siller-Matula JM et al (2008) Interspecies differences in coagulation profile. Thromb Haemost 100(3):397–404

    Article  Google Scholar 

  • Snow HM et al (1994) The relationship between blood flow and diameter in the iliac artery of the anaesthetized dog: the role of endothelium-derived relaxing factor and shear stress. Exp Physiol 79(5):635–645

    Article  Google Scholar 

  • Stacy MR et al (2014) Targeted imaging of matrix metalloproteinase activity in the evaluation of remodeling tissue-engineered vascular grafts implanted in a growing lamb model. J Thorac Cardiovasc Surg 148(5):2227–2233

    Article  Google Scholar 

  • Stewart SF, Lyman DJ (2004) Effects of an artery/vascular graft compliance mismatch on protein transport: a numerical study. Ann Biomed Eng 32(7):991–1006

    Article  Google Scholar 

  • Swartz DD, Andreadis ST (2013) Animal models for vascular tissue-engineering. Curr Opin Biotechnol 24(5):916–925

    Article  Google Scholar 

  • Swindle MM et al (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49(2):344–356

    Article  Google Scholar 

  • Tellez A et al (2014) Experimental evaluation of efficacy and healing response of everolimus-eluting stents in the familial hypercholesterolemic swine model: a comparative study of bioabsorbable versus durable polymer stent platforms. Coron Artery Dis 25(3):198–207

    Google Scholar 

  • Tillman BW et al (2012) Bioengineered vascular access maintains structural integrity in response to arteriovenous flow and repeated needle puncture. J Vasc Surg 56(3):783–793

    Article  Google Scholar 

  • Tsang HG et al (2016) Large animal models of cardiovascular disease. Cell Biochem Funct 34(3):113–132

    Article  Google Scholar 

  • Tseng YC et al (2017) An in vivo study on endothelialized vascular grafts produced by autologous biotubes and adipose stem cells (ADSCs). J Mater Sci Mater Med 28(10):166

    Article  Google Scholar 

  • Ueberrueck T et al (2005) Comparison of the ovine and porcine animal models for biocompatibility testing of vascular prostheses. J Surg Res 124(2):305–311

    Article  Google Scholar 

  • Valence S et al (2013) Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 85(1):78–86

    Article  Google Scholar 

  • Wells SM, Langille BL, Adamson SL (1998) In vivo and in vitro mechanical properties of the sheep thoracic aorta in the perinatal period and adulthood. Am J Phys 274(5 Pt 2):H1749–H1760

    Google Scholar 

  • Wong ML et al (2016) In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation. Biomaterials 92:1–12

    Article  Google Scholar 

  • Wu W, Allen RA, Wang Y (2012) Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med 18(7):1148–1153

    Article  Google Scholar 

  • Xiong Y et al (2013) Decellularized porcine saphenous artery for small-diameter tissue-engineered conduit graft. Artif Organs 37(6):E74–E87

    Article  Google Scholar 

  • Xu C et al (2016) Preclinical study of anticoagulation regimens in sheep after implantation of CH-VAD blood pump. Artif Organs 42(9):891–898. https://doi.org/10.1111/aor.12595

    Article  Google Scholar 

  • Xu S et al (2017) Preparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model. Biomed Eng Online 16(1):55

    Article  Google Scholar 

  • Yang D et al (2009) Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study. Ann Plast Surg 62(3):297–303

    Article  Google Scholar 

  • Zakhartchenko V et al (2011) Cell-mediated transgenesis in rabbits: chimeric and nuclear transfer animals. Biol Reprod 84(2):229–237

    Article  Google Scholar 

  • Zaragoza C et al (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841

    Article  Google Scholar 

  • Zhang J et al (2017) In vivo biocompatibility and hemocompatibility of a polytetrafluoroethylene small diameter vascular graft modified with sulfonated silk fibroin. Am J Surg 213(1):87–93

    Article  Google Scholar 

  • Zhao J et al (2012) A novel strategy to engineer small-diameter vascular grafts from marrow-derived mesenchymal stem cells. Artif Organs 36(1):93–101

    Article  Google Scholar 

  • Zheng W et al (2012) Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials 33(10):2880–2891

    Article  Google Scholar 

  • Zhou F et al (2016) Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomater 43:303–313

    Article  Google Scholar 

  • Zhu M et al (2015) Circumferentially aligned fibers guided functional neoartery regeneration in vivo. Biomaterials 61:85–94

    Article  Google Scholar 

  • Zilla P, Bezuidenhout D, Human P (2007) Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 28(34):5009–5027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helga Bergmeister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bergmeister, H., Podesser, B.K. (2020). Preclinical In-Vivo Assessment of Tissue Engineered Vascular Grafts and Selection of Appropriate Animal Models. In: Walpoth, B., Bergmeister, H., Bowlin, G., Kong, D., Rotmans, J., Zilla, P. (eds) Tissue-Engineered Vascular Grafts. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-71530-8_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71530-8_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71530-8

  • Online ISBN: 978-3-319-71530-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics