Skip to main content

Pandemics in Modern Era: Impact of Geographical Landscapes on Disease Risk

  • Chapter
  • First Online:
Preparedness for Future Pandemics
  • 106 Accesses

Abstract

Pandemic, by definition, is an outbreak of infectious disease across wide geographical area covering several continents around the globe, which encompasses extensive variation in geographical landscapes, ecological network, culture, ethnicity, disease susceptibility, and so on. Most evidently, all these factors directly govern the spread and intensity of infectious disease outbreak. Devastating outcomes of recent pandemic diseases of modern era such as COVID-19 have challenged our knowledge and technological capabilities to predict, prevent, and manage the menace of infectious disease pandemics. This has further emphasized upon dire need to enhance our deeper understanding on the influence and interplay of various geographical landscape factors in fueling the uncontrollable disease spread. Innumerable factors, although not limiting to, viz. socio-economic status, ethnic cultures, regional geopolitics geography, demography, and globalization warrant immediate attention to better equip mankind for handling future pandemics and minimize the crippling ill effects of these infectious diseases on global community at large. Thus, the present chapter is an attempt to educate the readers about interplay of geographical factors in triggering and propelling an unbreakable chain of infectious disease spread with a special emphasis on dynamics of these factors during modern era of globalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostfeld RS, Keesing F. Effects of host diversity on infectious disease. Annu Rev Ecol Evol Syst. 2012;43:157–82. https://doi.org/10.1146/annurev-ecolsys-102710-145022.

    Article  Google Scholar 

  2. Oche B, Dobson AP, Guégan JF, Rohani P. Linking community and disease ecology: the impact of biodiversity on pathogen transmission. Philos Trans R Soc B. 2012;367:2807–13. https://doi.org/10.1098/rstb.2011.0364.

    Article  Google Scholar 

  3. Muyembe-Tamfum JJ, Mulangu S, Masumu J, Kayembe JM, Kemp A, Paweska JT. Ebola virus outbreaks in Africa: past and present. Onderstepoort J Vet Res. 2012;79:451.

    Article  CAS  PubMed  Google Scholar 

  4. Olivero J, Fa JE, Real R, Márquez AL, Farfán MA, Vargas JM, Gaveau D, Salim MA, Park D, Suter J, King S, Leendertz SA, Sheil D, Nasi R. Recent loss of closed forests is associated with Ebola virus disease outbreaks. Sci Rep. 2017;7(1):14291. https://doi.org/10.1038/s41598-017-14727-9. PMID: 29085050; PMCID: PMC5662765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kali A. Schistosome infections: an Indian perspective. J Clin Diagn Res. 2015;2:1–4. https://doi.org/10.7860/JCDR/2015/10512.5521. Epub 2015 Feb 1.

    Article  Google Scholar 

  6. Purse BV, Darshan N, Kasabi GS, Gerard F, Samrat A, George C, Vanak AT, Oommen M, Rahman M, Burthe SJ, Young JC, Srinivas PN, Schäfer SM, Henrys PA, Sandhya VK, Chanda MM, Murhekar MV, Hoti SL, Kiran SK. Predicting disease risk areas through co-production of spatial models: the example of Kyasanur Forest Disease in India's forest landscapes. PLoS Negl Trop Dis. 2020;7:14.

    Google Scholar 

  7. Morand S, Lajaunie C. Outbreaks of vector-borne and zoonotic diseases are associated with changes in forest cover and oil palm expansion at global scale. Front Vet Sci. 2021;8:661063.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Despommier D, Ellis BR, Wilcox BA. The role of ecotones in emerging infectious diseases. Ecosyst Health. 2006;3:281–9.

    Google Scholar 

  9. Ziegler M. Landscapes of disease. Landscape. 2016;17:99–107. https://doi.org/10.1080/14662035.2016.1251100.

    Article  Google Scholar 

  10. Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr. 2010;9:54.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reisen WK. Landscape epidemiology of vector-borne diseases. Annu Rev Entomol. 2010;55:461–83.

    Article  CAS  PubMed  Google Scholar 

  12. Halaji M, Heiat M, Faraji N, Ranjbar R. Epidemiology of COVID-19: An updated review. J Res Med Sci. 2021;30:82.

    Google Scholar 

  13. Petersen LR, Powers AM. Chikungunya: epidemiology. Facult Rev. 2016;5:82.

    Google Scholar 

  14. Mehrjardi MZ. Is Zika virus an emerging TORCH agent? An invited commentary. Virology. 2017; https://doi.org/10.1177/1178122X17708993. PMC 5439991. PMID 28579764.

  15. Carlson CJ, Dougherty ER, Getz W. An ecological assessment of the pandemic threat of Zika virus. PLoS Negl Trop Dis. 2016;10:e0004968. https://doi.org/10.1371/journal.pntd.0004968. PMC 5001720. PMID 27564232.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Centers for Disease Control and Prevention (CDC). Archived from the original on 2 October 2014. Ebola Outbreak in West Africa. 2014. Retrieved 5 August 2014.

    Google Scholar 

  17. Schnitzler SU, Schnitzler P. An update on swine-origin influenza virus A/H1N1: a review. Virus Genes. 2009;39(3):279–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sklenovská N, Van Ranst M. Emergence of Monkeypox as the most important orthopoxvirus infection in humans. Front Public Health. 2018;6:241.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lum FM, Torres-Ruesta A, Tay MZ, Lin RTP, Lye DC, Rénia L, Ng LFP. Monkeypox: disease epidemiology, host immunity and clinical interventions. Nat Rev Immunol. 2022;22(10):597–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boender GJ, Meester R, Gies E, De Jong MCM. The local threshold for geographical spread of infectious diseases between farms. Prev Vet Med. 2007;82:90–101.

    Article  PubMed  Google Scholar 

  21. Carlson CJ et al. Climate change will drive novel cross-species viral transmission. 2020. Preprint at bioRxiv. https://doi.org/10.1101/2020.01.24.918755.

  22. Chen LH, Wilson ME. The role of the traveler in emerging infections and magnitude of travel. Med Clin North Am. 2008;92:1409–32.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Johnson M, Bhopal R, Ingleby J, et al. A glossary for the first world congress on migration, ethnicity, race and health. Public Health. 2019;172:85–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ikram UZ, Mackenbach JP, Harding S, et al. All-cause and cause-specific mortality of different migrant populations in Europe. Eur J Epidemiol. 2016;31:655–65.

    Article  PubMed  Google Scholar 

  25. Antony R, Tamara A, Kok LT. Association between ethnicity and severe COVID-19 disease: a systematic review and meta-analysis. J Racial Ethnic Health Disp. 2021;8:1563–72.

    Article  Google Scholar 

  26. Egede LE, Walker RJ. Structural racism, social risk factors, and Covid-19 - a dangerous convergence for Black Americans. N Engl J Med. 2020;383:e77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Centers for Disease Control and Prevention. Deaths related to 2009 pandemic influenza A (H1N1) among American Indian/Alaska natives - 12 states. MMWR Morb Mortal Wkly Rep. 2009;58(48):1341–4.

    Google Scholar 

  28. Baqui P, Bica I, Marra V, et al. Ethnic and regional variations in hospital mortality from COVID-19 in Brazil: a cross-sectional observational study. Lancet Glob Health. 2020;8:e1018–26.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stadtländer CT. One Health: people, animals, and the environment. Infect Ecol Epidemiol. 2015;31:30514.

    Google Scholar 

  30. Aslam B, Khurshid M, Arshad MI, Muzammil S, Rasool M, Yasmeen N, Shah T, Chaudhry TH, Rasool MH, Shahid A, Xueshan X, Baloch Z. Antibiotic resistance: one health one world outlook. Front Cell Infect Microbiol. 2021;11:771510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hernando-Amado S, Coque TM, Baquero F, Martínez JL. Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol. 2019;4(9):1432–42.

    Article  CAS  PubMed  Google Scholar 

  32. Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Front Microbiol. 2019;10:338. https://doi.org/10.3389/fmicb.2019.00338.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swati, Saxena, S. (2023). Pandemics in Modern Era: Impact of Geographical Landscapes on Disease Risk. In: Varshney, R., Garg, I., Srivastava, S. (eds) Preparedness for Future Pandemics. Springer, Singapore. https://doi.org/10.1007/978-981-99-3201-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3201-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3200-9

  • Online ISBN: 978-981-99-3201-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics