Skip to main content
Log in

Phylogeny of the Madagascan endemic family Didiereaceae

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

A molecular phylogeny of the Didiereaceae was produced through parsimony analysis of chloroplastrpl16 intron andtrnL-trnF andtrnT-trnL intergenic spacer sequences of all eleven species of the Didiereaceae and several outgroup taxa from the Portulacaceae. Results indicated that: 1) the Didiereaceae were embedded within the Portulacaceae, withCalyptrotheca as the sister group of the family; 2) present generic limits were supported; 3)Alluaudiopsis was the most basal lineage; 4) at least two separate episodes of polyploidization within the genusAlluaudia had occurred, and 5) unusually low amounts of variation were present in rapidly evolving noncoding plastid sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behnke H.-D. (1969) Über Siebröhren-Plastiden und Plastidenfilamente der Caryophyllales. Untersuchungen zum Feinbau und zur Verbreitung eines weiteren spezifischen Plastidentyps. Planta 89: 275–283.

    Google Scholar 

  • Behnke H.-D. (1976) Ultrastructure of sieve-element plastids in Caryophyllales (Centrospermae), evidence for the delimitation and classification of the order. Plant Syst. Evol. 126: 31–54.

    Google Scholar 

  • Behnke H.-D. (1978) Elektronenoptische Untersuchungen am Phloem sukkulenter Centrospermen (incl. Didiereaceen). Bot. Jahrb. Syst. 99: 341–352.

    Google Scholar 

  • Behnke H.-D., Mabry T. J., Eifert I. J., Pop L. (1975) P-type sieve element plastids and betalains in Portulacaceae (includingCeraria, Portulacaria, Talinella). Can. J. Bot. 53: 2103–2109.

    Google Scholar 

  • Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.

    Google Scholar 

  • Donoghue M. J., Olmstead R. G., Smith F. J., Palmer J. D. (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann. Missouri Bot. Gard. 79: 333–345.

    Google Scholar 

  • Downie S. R., Palmer J. D. (1994) A chloroplast DNA phylogeny of the Caryophyllales based on structural and inverted repeat restriction site variation. Syst. Bot. 19: 236–252.

    Google Scholar 

  • Downie S. R., Palmer J. D., Katz-Downie D. S., Cho K.-J. (1997) Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNAORF2280 homolog sequences. Amer. J. Bot. 84: 253–273.

    Google Scholar 

  • Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Hershkovitz M. A. (1993) Revised circumscriptions and subgeneric taxonomies ofCalandrinia andMontiopsis (Portulacaceae) with notes on phylogeny of the portulacaceous alliance. Ann. Missouri Bot. Gard. 80: 333–365.

    Google Scholar 

  • Hershkovitz M. A., Zimmer E. A. (1997) On the evolutionary origins of the cacti. Taxon 46: 217–232.

    Google Scholar 

  • Jensen U. (1965) Serologische Untersuchungen zur Frage der systematischen Einordnung der Didiereaceae. Bot. Jahrb. 84: 233–253.

    Google Scholar 

  • Jordan W. C., Courtney M. W., Neigel J. E. (1996) Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). Amer. J. Bot. 83: 430–439.

    Google Scholar 

  • Kelchner S. A., Clark L. G. (1997) Molecular evolution and phylogenetic utility of the chloroplastrpl16 intron inChusquea and the Bambusoideae (Poaceae). Mol. Phyl. Evol. 8: 385–397.

    Google Scholar 

  • Kelchner S. A., Wendel J. F. (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr. Genet. 30: 259–262.

    Google Scholar 

  • Kubitzki K. (1993) Didiereaceae. In: Kubitzki K., Rohwer J. G., Bittrich V. (eds.) The families and genera of flowering plants. Springer, Berlin, pp. 292–295.

    Google Scholar 

  • Nyananyo B. L. (1986) The systematic position of the genusCalyptrotheca Gilg (Portulacaceae). Feddes Repert. 97: 767–769.

    Google Scholar 

  • Nowicke J. W. (1975) Pollen morphology in the order Centrospermae. Grana 15: 51–77.

    Google Scholar 

  • Rabesa Z. A. (1982a) Definition de deux sections du genreAlluaudia (Didiereaceae). Taxon 31: 736–737.

    Google Scholar 

  • Rabesa Z. A. (1982b) Recherches chimiosystématiques sur les flavonoides des Didiéréacées. Trop. u. Subtr. Pflanz. 37: 339–358.

    Google Scholar 

  • Rauh W., Dittmar K. (1970) Weitere Untersuchungen an Didiereaceen. 3. Teil. Vergleichend anatomische Untersuchungen an den Sprossachsen und den Dornen der Didiereaceen. Sitz. Heidelb. Akad. Wiss. 1969/70 (4): 163–246.

    Google Scholar 

  • Rauh W., Reznik H. (1961) Zur Frage der systematischen Stellung der Didiereaceen. Bot. Jahrb. 81: 94–105.

    Google Scholar 

  • Rauh W., Schölch H. F. (1965) Weitere Untersuchungen an Didiereaceen. 2. Teil. Inflorescenz-, blüetenmorphologische und embryologische Untersuchungen mit Ausblick auf die systematische Stellung der Didiereaceen. Sitz. Heidelb. Akad. Wiss. 1965(3): 221–434.

    Google Scholar 

  • Raven P. H., Axelrod D. L. (1974) Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard. 61: 539–673.

    Google Scholar 

  • Rettig J. H., Wilson H. D., Manhart J. R. (1992) Phylogeny of the Caryophyllales — gene sequence data. Taxon 41: 201–209.

    Google Scholar 

  • Rodman J. E., Oliver M. K., Nakamura R. R., McClammer J. U. Jr., Bledsoe A. H. (1984) A taxonomic analysis and revised classification of Centrospermae. Syst. Bot. 9: 297–323.

    Google Scholar 

  • Rowley G. (1992) Didiereaceae: Cacti of the Old World. Kew: British Cactus and Succulent Society.

    Google Scholar 

  • Rychlik W. (1992) OLIGO. Plymouth MN: National Biosciences Inc.

    Google Scholar 

  • Schill R., Rauh W., Wieland H. P. (1974) Die Chromosomenzahlen der einzelnen Arten. Trop. u. Subtrop. Pflanz. 11: 1–14.

    Google Scholar 

  • Straka H. (1975) Palynologie et différentiation systématique d'une famille endémique de Madagascar: les Didieréacées. Boissiera 24: 245–248.

    Google Scholar 

  • Swofford D. L. (1993) PAUP: Phylogenetic analysis using parsimony, version 3.1.1. Washington, DC: Smithsonian Institution.

    Google Scholar 

  • Swofford D. L. (1999) PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0.0b2. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Taberlet P., Gielly L., Pautou G., Bouvet J. (1991) Universal primers for amplification of three noncoding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1109.

    Google Scholar 

  • Thorne R. F. (1976) A phylogenetic classification of the angiosperms. Evol. Biol. 9: 35–106.

    Google Scholar 

  • Thorne R. F. (1978) Plate tectonics and angiosperm distribution. Notes Roy. Bot. Gard. Edinburgh 36: 297–315.

    Google Scholar 

  • Wallace R. S., Cota J. H. (1996) An intron loss in the choroplast generpoC1 supports a monophyletic origin for the subfamily Cactoideae of the Cactaceae. Curr. Genet. 29: 275–281.

    Google Scholar 

  • Wu C.-I., Li W.-H. (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82: 1741–1745.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Applequist, W.L., Wallace, R.S. Phylogeny of the Madagascan endemic family Didiereaceae. Pl Syst Evol 221, 157–166 (2000). https://doi.org/10.1007/BF01089291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01089291

Key words

Navigation