Skip to main content
Log in

Fractionation of K-562 cells on the basis of their surface properties by partitioning in two-polymer aqueous-phase systems

  • Original Articles
  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

The K-562 cell line is a culture of human leukemia stem cells originally derived from a patient with chronic myelogenous leukemia in blast crisis. We have subjected such cells, in the log phase of growth, to countercurrent distribution in a charge-sensitive dextran-polyethylene glycol aqueous-phase system, a method that fractionates cells on the basis of subtle differences in their surface properties, and found that: (1) The cell population is heterogeneous since it is composed of cells with different partition ratios. (2) There is a correlation between increasing cell partition ratios and increasing cell electrophoretic mobilities. (3) Cells under different parts of the distribution curve have dissimilar ratios of cells in different parts of the cell cycle, a phenomenon that may, at least partially, be the basis for the subfractionation of these cells. There is a clear tendency for cells in G0+G1+early S to decrease and for those in late S+G2+M to increase with increasing partition ratios. (4) Sialic acid is a major surface charge component of the cells as evidenced by a dramatic drop in their partition ratios after treatment with neuraminidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walter, H. (1985), Surface Properties of Cells Reflected by Partitioning: Red Blood Cells as a Model, inPartitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology (Walter, H., Brooks, D. E., and Fisher, D., eds.), Academic, Orlando, FL, pp. 327–376.

    Google Scholar 

  2. Walter, H., and Fisher, D. (1985), Separation and Subfractionation of Selected Mammalian Cell Populations, inPartitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology (Walter, H., Brooks, D. E., and Fisher, D., eds.), Acdemic, Orlando FL, pp. 377–414.

    Google Scholar 

  3. Brooks, D. E., Sharp, K. A., and Fisher, D. (1985), Theoretical Aspects of Partitioning, inPartitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology (Walter, H., Brooks, D. E., and Fisher, D., eds.), Academic, Orland, FL, pp. 11–84.

    Google Scholar 

  4. Walter, H., and Johansson, G. (1986).Anal. Biochem. 155, 215.

    Article  PubMed  CAS  Google Scholar 

  5. Walter, H., Krob, E. J., AL-Romaihi, F. A., Johnson, D., and Lozzio, C. B., submitted for publication.

  6. Walter, H., and Krob, E. J. (1983).Cell Biophys. 5, 205 and 301.

    PubMed  CAS  Google Scholar 

  7. Walter, H., and Krob, E. J. (1984),Biochem. Biophys. Res. Commun. 120, 250.

    Article  PubMed  CAS  Google Scholar 

  8. Walter, H., and AL-Romaihi, F. A. (1987),Biochim. Biophys. Acta, in press.

  9. Tate, E. H., Wilder, M. E., Cram, L. S., and Wharton, W. (1983),Cytometry 4, 211.

    Article  PubMed  CAS  Google Scholar 

  10. Dean, P. N., and Jett, J. H. (1974),J. Cell Biol. 60, 523.

    Article  PubMed  CAS  Google Scholar 

  11. Albertsson, P.-Å. (1970),Sci. Tools 17, 53.

    Google Scholar 

  12. Walter, H. (1982), Separation and Subfractionation of Blood Cell Populations Based on Their Surface Properties by Partitioning in Two-Polymer Aqueous Phase Systems, inCell Separation: Methods and Selected Applications (Pretlow, T. G., and Pretlow, T. P. eds.), Academic, New York, NY, vol. 1, pp. 261–299.

    Google Scholar 

  13. Levy, E. M., Zanki, S., and Walter, H. (1981),Eur. J. Immunol. 11, 952.

    Article  PubMed  CAS  Google Scholar 

  14. Johansson, G. (1970),Biochim. Biophys. Acta 221, 387.

    PubMed  CAS  Google Scholar 

  15. Reitherman, R., Flanagan, S. D., and Barondes, S. H. (1973),Biochim. Biophys. Acta 297, 193.

    PubMed  CAS  Google Scholar 

  16. Walter, H., and Krob, E. J. (1975),Exp. Cell Res. 91, 6.

    Article  PubMed  CAS  Google Scholar 

  17. Stendahl, G., Dahlgren, C., and Hed, J. (1982),J. Gen. Physiol. 112, 217.

    CAS  Google Scholar 

  18. Pinaev, G., Hoorn, B., and Albertsson, P.-Å. (1976),Exp. Cell Res. 98, 127.

    Article  PubMed  CAS  Google Scholar 

  19. Brooks, D. E., Seaman, G. V. F., and Walter, H. (1971),Nature New Biol. 234, 61.

    Article  PubMed  CAS  Google Scholar 

  20. Walter, H., Tung, R., Jackson, L. J., and Seaman, G. V. F. (1972),Biochem. Biophys. Res. Commun. 48, 565.

    Article  PubMed  CAS  Google Scholar 

  21. Gray, J. W., Dean, P. N., and Mendelsohn, M. L. (1979), Quantitative Cell-Cycle Analysis, inFlow Cytometry and Sorting (Melamed, M. R., Mullaney, P. F., and Mendelsohn, M. L., eds.), John Wiley, New York, NY, pp. 383–407.

    Google Scholar 

  22. Brent, T. P., and Forrester, J. A. (1967),Nature 215, 92.

    Article  PubMed  CAS  Google Scholar 

  23. Gottschalk, A. (1960),The Chemistry and Biology of Sialic Acids, Cambridge University, England, p. 98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, H., Al-Romaihi, F.A., Krob, E.J. et al. Fractionation of K-562 cells on the basis of their surface properties by partitioning in two-polymer aqueous-phase systems. Cell Biophysics 10, 217–232 (1987). https://doi.org/10.1007/BF02797342

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02797342

Index Entries

Navigation