Skip to main content

Advertisement

Log in

Oncogenic MYD88 mutations in lymphoma: novel insights and therapeutic possibilities

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Oncogenic MYD88 mutations, most notably the Leu 265 Pro (L265P) mutation, were recently identified as potential driver mutations in various B-cell non-Hodgkin Lymphomas (NHLs). The L265P mutation is now thought to be common to virtually all NHLs and occurs in between 4 and 90% of cases, depending on the entity. Since it is tumor-specific, the mutation, and the pathways it regulates, might serve as advantageous therapeutic targets for both conventional chemotherapeutic intervention, as well as immunotherapeutic strategies. Here, we review recent progress on elucidating the molecular and cellular processes affected by the L265P mutation of MYD88, describe a new in vivo model for MyD88 L265P-mediated oncogenesis, and summarize how these findings could be exploited therapeutically by specific targeting of signaling pathways. In addition, we summarize current and explore future possibilities for conceivable immunotherapeutic approaches, such as L265P-derived peptide vaccination, adoptive transfer of L265P-restricted T cells, and use of T-cell receptor-engineered T cells. With clinical trials regarding their efficacy rapidly expanding to NHLs, we also discuss potential combinations of immune checkpoint inhibitors with the described targeted chemotherapies of L265P signaling networks, and/or with the above immunological approaches as potential ways of targeting MYD88-mutated lymphomas in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BTK:

Bruton’s tyrosine kinase

CIB:

Checkpoint inhibitor blockade

CLL:

Chronic lymphocytic leukemia

DD:

Death domain

DLBCL:

Diffuse large B-cell lymphoma

GMP:

Good manufacturing practice

HEK:

Human embryonic kidney

HL:

Hodgkin lymphoma

HLA:

Human leukocyte antigen

IFN:

Interferon

IL:

Interleukin

IL-1R:

IL-1 receptor

iODN:

Inhibitory oligodeoxynucleotides

IRAK:

IL-1R-associated kinase

JAK:

Janus kinase

L265P:

Leu 265 Pro

MGUS:

Monoclonal gammopathy of undetermined significance

MHC:

Major histocompatibility complex

MyD88:

Myeloid differentiation 88

NF-κB:

Nuclear factor κ B

NHL:

Non-Hodgkin lymphoma

PCNSL:

Primary central nervous system lymphoma

PMBCL:

Primary mediastinal large B-cell lymphoma

PTIT:

Peptide-based T-cell-mediated immunotherapy

TAK1:

Transforming growth factor beta-activated kinase 1

TCR:

T-cell receptor

TIR:

Toll/Interleukin-1 (IL-1) receptor

TLR:

Toll-like receptor

WM:

Waldenström’s macroglobulinemia

WT:

Wild type

References

  1. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bekeredjian-Ding I, Jego G (2009) Toll-like receptors–sentries in the B-cell response. Immunology 128(3):311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ngo VN et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470(7332):115–119

    Article  CAS  PubMed  Google Scholar 

  4. Hunter Z et al (2013) The genomic landscape of Waldenstom’s Macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood

  5. Xu L et al (2013) MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 121(11):2051–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Landau DA et al (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152(4):714–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poulain S et al (2013) Genomic studies have identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk 13(2):202–204

    Article  CAS  PubMed  Google Scholar 

  8. Avbelj M et al (2014) Activation of lymphoma-associated MyD88 mutations via allostery-induced TIR-domain oligomerization. Blood 124(26):3896–3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grondona P et al (2018) NF-kappaB activation in lymphoid malignancies: genetics, signaling, and targeted therapy. Biomedicines 6(2)

  10. Juilland M et al (2016) CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B-cell lymphomas. Blood 127(14):1780–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilson WH et al (2015) Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med 21(8):922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kelly PN et al (2015) Selective interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy. J Exp Med 212(13):2189–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Puente XS et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475(7354):101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohnishi H et al (2009) Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Proc Natl Acad Sci USA 106(25):10260–10265

    Article  PubMed  PubMed Central  Google Scholar 

  15. Motshwene PG et al (2009) An oligomeric signalling platform formed by the toll-like receptor signal transducers MyD88 and IRAK4. J Biol Chem

  16. George J et al, Human T, Variants MYD88 (2011) S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. J Biol Chem 286(2):1341–1353

    Article  CAS  PubMed  Google Scholar 

  17. Fekonja O, Bencina M, Jerala R (2012) Toll/interleukin-1 receptor domain dimers as the platform for activation and enhanced inhibition of Toll-like receptor signaling. J Biol Chem 287(37):30993–31002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loiarro M et al (2005) Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-κB. J Biol Chem 280(16):15809–15814

    Article  CAS  PubMed  Google Scholar 

  19. Phelan JD et al (2018) A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature

  20. Mancek-Keber M et al (2018) Extracellular vesicle-mediated transfer of constitutively active MyD88(L265P) engages MyD88(wt) and activates signaling. Blood 131(15):1720–1729

    Article  CAS  PubMed  Google Scholar 

  21. Yang G et al (2013) A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood 122(7):1222–1232

    Article  CAS  PubMed  Google Scholar 

  22. Ansell SM et al (2014) Activation of TAK1 by MYD88 L265P drives malignant B-cell growth in non-Hodgkin lymphoma. Blood Cancer J 4:e183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pasqualucci L et al (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43(9):830–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vyncke L et al (2016) Reconstructing the TIR side of the myddosome: a paradigm for TIR–TIR interactions. Structure 24(3):437–447

    Article  CAS  PubMed  Google Scholar 

  25. Gray P et al (2006) MyD88 adapter-like (Mal) is phosphorylated by Bruton’s tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem 281(15):10489–10495

    Article  CAS  PubMed  Google Scholar 

  26. Lee JH et al (2017) Clinicopathologic significance of MYD88 L265P mutation in diffuse large B-cell lymphoma: a meta-analysis. Sci Rep 7(1):1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rovira J et al (2016) MYD88 L265P mutations, but no other variants, identify a subpopulation of DLBCL patients of activated B-cell origin, extranodal involvement, and poor outcome. Clin Cancer Res 22(11):2755–2764

    Article  CAS  PubMed  Google Scholar 

  28. Nogai H et al., I kappa B-zeta controls the constitutive NF-kappa B target gene network and survival of ABC DLBCL. Blood. 122(13): 2242–2250

  29. Guo X et al (2017) Molecular impact of selective NFKB1 and NFKB2 signaling on DLBCL phenotype. Oncogene 36(29):4224–4232

    Article  CAS  PubMed  Google Scholar 

  30. Shapiro-Shelef M et al (2003) Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19(4):607–620

    Article  CAS  PubMed  Google Scholar 

  31. Pasqualucci L et al (2006) Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 203(2):311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mandelbaum J et al (2010) BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 18(6):568–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim JA et al (2014) MYD88 L265P mutations are correlated with 6q deletion in Korean patients with Waldenstrom macroglobulinemia. Biomed Res Int 363540

  34. Rousseau S, Martel G (2016) Gain-of-function mutations in the toll-like receptor pathway: TPL2-mediated ERK1/ERK2 MAPK activation, a path to tumorigenesis in lymphoid neoplasms? Front Cell Dev Biol 4:50

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mondello P et al (2017) Panobinostat acts synergistically with ibrutinib in diffuse large B cell lymphoma cells with MyD88 L265 mutations. JCI Insight 2(6):e90196

    Article  PubMed  PubMed Central  Google Scholar 

  36. Scott JS et al (2017) Discovery and optimization of pyrrolopyrimidine inhibitors of interleukin-1 receptor associated kinase 4 (IRAK4) for the treatment of mutant MYD88(L265P) diffuse large B-cell lymphoma. J Med Chem 60(24):10071–10091

    Article  CAS  PubMed  Google Scholar 

  37. Rahal R et al (2014) Pharmacological and genomic profiling identifies NF-kappaB-targeted treatment strategies for mantle cell lymphoma. Nat Med 20(1):87–92

    Article  CAS  PubMed  Google Scholar 

  38. Nogai H, Dorken B, Lenz G (2011) Pathogenesis of non-Hodgkin’s lymphoma. J Clin Oncol 29(14):1803–1811

    Article  CAS  PubMed  Google Scholar 

  39. Wang JQ et al (2014) Consequences of the recurrent MYD88L265P somatic mutation for B cell tolerance. J Exp Med 211(3):413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knittel G et al (2016) B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice. Blood 127(22):2732–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Compagno M et al (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459(7247):717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wesche H et al (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7(6):837–847

    Article  CAS  PubMed  Google Scholar 

  43. Muzio M et al (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278(5343):1612–1615

    Article  CAS  PubMed  Google Scholar 

  44. He B et al (2010) The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat Immunol 11(9):836–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhan C et al (2016) Conformational dynamics of cancer-associated MyD88-TIR domain mutant L252P (L265P) allosterically tilts the landscape toward homo-dimerization. Protein Eng Des Sel 29(9):347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang JQ et al (2016) Inhibiting TLR9 and other UNC93B1-dependent TLRs paradoxically increases accumulation of MYD88L265P plasmablasts in vivo. Blood 128(12):1604–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhagat L et al (2014) Abstract 2570: IMO-8400, a selective antagonist of TLRs 7, 8 and 9, inhibits MYD88 L265P mutation-driven signaling and cell survival: a potential novel approach for treatment of B-cell lymphomas harboring MYD88 L265P mutation. Cancer Res (AACR Annual Meeting 2014 Proceedings). https://doi.org/10.1158/1538-7445.AM2014-2570

    Article  Google Scholar 

  48. Balak DM et al (2017) IMO-8400, a toll-like receptor 7, 8, and 9 antagonist, demonstrates clinical activity in a phase 2a, randomized, placebo-controlled trial in patients with moderate-to-severe plaque psoriasis. Clin Immunol 174:63–72

    Article  CAS  PubMed  Google Scholar 

  49. McGranahan N et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yadav M et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576

    Article  CAS  PubMed  Google Scholar 

  51. Rammensee HG (1995) Chemistry of peptides associated with MHC class I and class II molecules. Curr Opin Immunol 7(1):85–96

    Article  CAS  PubMed  Google Scholar 

  52. Singh-Jasuja H, Emmerich NP, Rammensee HG (2004) The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol Immunother: CII 53(3):187–195

    Article  CAS  PubMed  Google Scholar 

  53. Nelde A et al (2017) HLA class I-restricted MYD88 L265P-derived peptides as specific targets for lymphoma immunotherapy. Oncoimmunology 6(3):e1219825

    Article  CAS  PubMed  Google Scholar 

  54. Lundegaard C et al (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 36:W509–W12 (Web Server issue)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nielsen JS et al (2017) Mapping the human T cell repertoire to recurrent driver mutations in MYD88 and EZH2 in lymphoma. Oncoimmunology 6(7):e1321184

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rammensee HG, Singh-Jasuja H (2013) HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Rev Vaccines 12(10):1211–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ikeda H (2016) T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells. Int Immunol 28(7):349–353

    Article  CAS  PubMed  Google Scholar 

  59. Ansell SM (2017) Harnessing the power of the immune system in non-Hodgkin lymphoma: immunomodulators, checkpoint inhibitors, and beyond. Hematol Am Soc Hematol Educ Program 2017(1):618–621

    Google Scholar 

  60. Berghoff AS et al (2014) PD1 (CD279) and PD-L1 (CD274, B7H1) expression in primary central nervous system lymphomas (PCNSL). Clin Neuropathol 33(1):42–49

    Article  PubMed  Google Scholar 

  61. Goodman A, Patel SP, Kurzrock R (2017) PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol 14(4):203–220

    Article  CAS  PubMed  Google Scholar 

  62. Merryman RW et al (2017) Checkpoint blockade in Hodgkin and non-Hodgkin lymphoma. Blood Adv 1(26):2643–2654

    PubMed  PubMed Central  Google Scholar 

  63. Tanyi JL et al., Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med, 2018. 10(436)

    Article  PubMed  Google Scholar 

  64. Challa-Malladi M et al (2011) Combined genetic inactivation of beta2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20(6):728–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hans-Georg Rammensee, Stefan Stevanović, Juliane Walz and Annika Nelde for helpful discussions. Free clipart was from pngtree (human-body-structure_3520512, cartoon-syringe_1100816) or thenounproject (skull-and-crossbones/9626).

Funding

This work was supported by Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Center (SFB) 685 “Immunotherapy” (to Y. Cardona Gloria, A. Weber and O.-O. Wolz), the Federal State Baden-Württemberg Junior Professor Program (to A. Weber), the University of Tübingen and the Medical Faculty Tübingen (Fortüne Junior Grant to O.-O. Wolz) as well as by DAAD support (Özcan Çınar).

Author information

Authors and Affiliations

Authors

Contributions

All authors collected and analyzed data, A. Weber coordinated the study and drafted the manuscript, and all authors contributed toward and approved the final manuscript.

Corresponding authors

Correspondence to Alexander N. R. Weber or Olaf-Oliver Wolz.

Ethics declarations

Conflict of interest

OOW and AW are named inventors on a patent for the immunotherapeutic exploitation of L265P mutations. The authors declare that there are no other potential conflicts of interest.

Additional information

This Focussed Research Review is based on a presentation given at the 3rd Symposium on “Advances in Cancer Immunology and Immunotherapy”, held in Athens, Greece, November 2nd–4th, 2017. It is part of a Cancer Immunology, Immunotherapy series of papers from this conference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, A.N.R., Cardona Gloria, Y., Çınar, Ö. et al. Oncogenic MYD88 mutations in lymphoma: novel insights and therapeutic possibilities. Cancer Immunol Immunother 67, 1797–1807 (2018). https://doi.org/10.1007/s00262-018-2242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2242-9

Keywords

Navigation