Skip to main content
Log in

Causal relationship from coffee consumption to diseases and mortality: a review of observational and Mendelian randomization studies including cardiometabolic diseases, cancer, gallstones and other diseases

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

High coffee consumption is associated with low risk of mortality and morbidity, but the causality remains unclear. This review aims to discuss findings from observational studies on coffee consumption in context of Mendelian randomization studies.

Methods

The PubMed database was searched for all Mendelian randomization studies on coffee consumption and corresponding observational studies.

Results

High coffee consumption is associated with low risk of all-cause and cardiovascular mortality in observational studies (HRs of 0.85–0.90 vs. no/low consumers), with no support of causality in Mendelian randomization studies. Moderate/high consumption is associated with low risk of cardiometabolic diseases, including ischemic heart disease (HRs of 0.85–0.90 vs. no/low consumption), stroke (HRs of approximately 0.80 vs. no/low consumption), type 2 diabetes (HRs of approximately 0.70 vs. no/low consumption) and obesity in observational studies, but not in Mendelian randomization studies. High consumption is associated with low risk of endometrial cancer and melanoma and high risk of lung cancer in observational studies, but with high risk of colorectal cancer in Mendelian randomization studies. In observational and Mendelian randomization studies, high coffee consumption is associated with low risk of gallstones (HRs of 0.55–0.70 for high vs. no/low self-reported and 0.81 (0.69–0.96) for highest vs. lowest genetic consumption).

Conclusion

High coffee consumption is associated with low risk of mortality, cardiometabolic diseases, some cancers and gallstones in observational studies, with no evidence to support causality from Mendelian randomization studies for most diseases except gallstones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Nordestgaard AT and Nordestgaard BG. Int J Epidemiol. 2016;45:1938–52

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Bjørngaard JH et al. Int J Epidemiol. 2017;46:1958–67

Similar content being viewed by others

Data availability

NA.

References

  1. Nordestgaard AT, Thomsen M, Nordestgaard BG (2015) Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: a Mendelian randomization study. Int J Epidemiol 44:551–565. https://doi.org/10.1093/ije/dyv083

    Article  PubMed  Google Scholar 

  2. Ding M, Satija A, Bhupathiraju SN, Hu Y, Sun Q, Han J, Lopez-Garcia E, Willett W, van Dam RM, Hu FB (2015) Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts. Circulation 132:2305–2315. https://doi.org/10.1161/CIRCULATIONAHA.115.017341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB (2014) Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 129:643–659. https://doi.org/10.1161/CIRCULATIONAHA.113.005925

    Article  CAS  PubMed  Google Scholar 

  4. Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB (2014) Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care 37:569–586. https://doi.org/10.2337/dc13-1203

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sulem P, Gudbjartsson DF, Geller F, Prokopenko I, Feenstra B, Aben KKH, Franke B, den Heijer M, Kovacs P, Stumvoll M, Mägi R, Yanek LR, Becker LC, Boyd HA, Stacey SN, Walters GB, Jonasdottir A, Thorleifsson G, Holm H, Gudjonsson SA, Rafnar T, Björnsdottir G, Becker DM, Melbye M, Kong A, Tönjes A, Thorgeirsson T, Thorsteinsdottir U, Kiemeney LA, Stefansson K (2011) Sequence variants at CYP1A1-CYP1A2 and AHR associate with coffee consumption. Hum Mol Genet 20:2071–2077. https://doi.org/10.1093/hmg/ddr086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amin N, Byrne E, Johnson J, Chenevix-Trench G, Walter S, Nolte IM, Vink JM, Rawal R, van Duijn CM et al (2012) Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol Psychiatry 17:1116–1129. https://doi.org/10.1038/mp.2011.101

    Article  CAS  PubMed  Google Scholar 

  7. Nordestgaard AT, Stender S, Nordestgaard BG, Tybjaerg-Hansen A (2020) Coffee intake protects against symptomatic gallstone disease in the general population: a Mendelian randomization study. J Intern Med 287:42–53. https://doi.org/10.1111/joim.12970

    Article  CAS  PubMed  Google Scholar 

  8. Nordestgaard AT, Nordestgaard BG (2016) Coffee intake, cardiovascular disease and all-cause mortality: observational and Mendelian randomization analyses in 95 000–223 000 individuals. Int J Epidemiol 45:1938–1952. https://doi.org/10.1093/ije/dyw325

    Article  PubMed  Google Scholar 

  9. Bjørngaard JH, Nordestgaard AT, Taylor AE, Treur JL, Gabrielsen ME, Munafò MR, Nordestgaard BG, Åsvold BO, Romundstad P, Smith GD (2017) Heavier smoking increases coffee consumption: findings from a Mendelian randomization analysis. Int J Epidemiol 46:1958–1967. https://doi.org/10.1093/ije/dyx147

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cornelis MC, Munafo MR (2018) Mendelian randomization studies of coffee and caffeine consumption. Nutrients. https://doi.org/10.3390/nu10101343

    Article  PubMed  PubMed Central  Google Scholar 

  11. Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J (2017) Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 359:j5024. https://doi.org/10.1136/bmj.j5024

    Article  PubMed  PubMed Central  Google Scholar 

  12. van Dam RM, Hu FB, Willett WC (2020) Coffee, caffeine, and health. N Engl J Med 383:369–378. https://doi.org/10.1056/NEJMra1816604

    Article  PubMed  Google Scholar 

  13. McMahon G, Taylor AE, Smith GD, Munafò MR (2014) Phenotype refinement strengthens the association of AHR and CYP1A1 genotype with caffeine consumption. PLoS ONE 9:e103448

    Article  PubMed  PubMed Central  Google Scholar 

  14. Faber MS, Jetter A, Fuhr U (2005) Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol 97:125–134. https://doi.org/10.1111/j.1742-7843.2005.pto_973160.x

    Article  CAS  PubMed  Google Scholar 

  15. Whitlock JPJ (1999) Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol 39:103–125. https://doi.org/10.1146/annurev.pharmtox.39.1.103

    Article  CAS  PubMed  Google Scholar 

  16. Josse AR, Da Costa LA, Campos H, El-Sohemy A (2012) Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption. Am J Clin Nutr 96:665–671. https://doi.org/10.3945/ajcn.112.038794

    Article  PubMed  Google Scholar 

  17. Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J, Artati A, Eap CB, Ehret G, Friedrich N, Ganna A, Guessous I, Homuth G, Lind L, Magnusson PK, Mangino M, Pedersen NL, Pietzner M, Suhre K, Völzke H, Bochud M, Spector TD, Grabe HJ, Ingelsson E (2016) Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum Mol Genet 25:5472–5482. https://doi.org/10.1093/hmg/ddw334

    Article  CAS  PubMed  Google Scholar 

  18. Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A, Paynter N, Monda KL, Amin N, Chasman DI et al (2015) Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry 20:647–656. https://doi.org/10.1038/mp.2014.107

    Article  CAS  PubMed  Google Scholar 

  19. Kim Y, Je Y, Giovannucci E (2019) Coffee consumption and all-cause and cause-specific mortality: a meta-analysis by potential modifiers. Eur J Epidemiol 34:731–752. https://doi.org/10.1007/s10654-019-00524-3

    Article  PubMed  Google Scholar 

  20. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R (2012) Association of coffee drinking with total and cause-specific mortality. N Engl J Med 366:1891–1904. https://doi.org/10.1056/NEJMoa1112010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malerba S, Turati F, Galeone C, Pelucchi C, Verga F, La Vecchia C, Tavani A (2013) A meta-analysis of prospective studies of coffee consumption and mortality for all causes, cancers and cardiovascular diseases. Eur J Epidemiol 28:527–539. https://doi.org/10.1007/s10654-013-9834-7

    Article  PubMed  Google Scholar 

  22. Grosso G, Micek A, Godos J, Sciacca S, Pajak A, Martínez-González MA, Giovannucci EL, Galvano F (2016) Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: a dose-response meta-analysis. Eur J Epidemiol 31:1191–1205. https://doi.org/10.1007/s10654-016-0202-2

    Article  CAS  PubMed  Google Scholar 

  23. Crippa A, Discacciati A, Larsson SC, Wolk A, Orsini N (2014) Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. Am J Epidemiol 180:763–775. https://doi.org/10.1093/aje/kwu194

    Article  PubMed  Google Scholar 

  24. Park S-Y, Freedman ND, Haiman CA, Le Marchand L, Wilkens LR, Setiawan VW (2017) Association of coffee consumption with total and cause-specific mortality among nonwhite populations. Ann Intern Med 167:228–235. https://doi.org/10.7326/M16-2472

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ong J-S, Law MH, An J, Han X, Gharahkhani P, Whiteman DC, Neale RE, MacGregor S (2019) Association between coffee consumption and overall risk of being diagnosed with or dying from cancer among > 300 000 UK Biobank participants in a large-scale Mendelian randomization study. Int J Epidemiol 48:1447–1456. https://doi.org/10.1093/ije/dyz144

    Article  PubMed  Google Scholar 

  26. Loftfield E, Cornelis MC, Caporaso N, Yu K, Sinha R, Freedman N (2018) Association of coffee drinking with mortality by genetic variation in caffeine metabolism: findings from the UK Biobank. JAMA Intern Med 178:1086–1097. https://doi.org/10.1001/jamainternmed.2018.2425

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mostofsky E, Rice MS, Levitan EB, Mittleman MA (2012) Habitual coffee consumption and risk of heart failure: a dose-response meta-analysis. Circ Heart Fail 5:401–405. https://doi.org/10.1161/CIRCHEARTFAILURE.112.967299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Larsson SC, Drca N, Jensen-Urstad M, Wolk A (2015) Coffee consumption is not associated with increased risk of atrial fibrillation: results from two prospective cohorts and a meta-analysis. BMC Med 13:207. https://doi.org/10.1186/s12916-015-0447-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bodar V, Chen J, Gaziano JM, Albert C, Djoussé L (2019) Coffee consumption and risk of atrial fibrillation in the physicians’ health study. J Am Heart Assoc 8:e011346. https://doi.org/10.1161/JAHA.118.011346

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cai L, Ma D, Zhang Y, Liu Z, Wang P (2012) The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 66:872–877. https://doi.org/10.1038/ejcn.2012.68

    Article  CAS  PubMed  Google Scholar 

  31. Grosso G, Micek A, Godos J, Pajak A, Sciacca S, Bes-Rastrollo M, Galvano F, Martinez-Gonzalez MA (2017) Long-term coffee consumption is associated with decreased incidence of new-onset hypertension: a dose-response meta-analysis. Nutrients. https://doi.org/10.3390/nu9080890

    Article  PubMed  PubMed Central  Google Scholar 

  32. D’Elia L, La Fata E, Galletti F, Scalfi L, Strazzullo P (2019) Coffee consumption and risk of hypertension: a dose-response meta-analysis of prospective studies. Eur J Nutr 58:271–280. https://doi.org/10.1007/s00394-017-1591-z

    Article  CAS  PubMed  Google Scholar 

  33. Peden JF, Hopewell JC, Saleheen D, Chambers JC, Hager J, Soranzo N, Collins R, Danesh J, Elliot P, Farrall M, Stirrups K, Zhang W, Hamsten A, Parish S, Lathrop M, Watkins H, Cl SS (2011) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 43:339–344. https://doi.org/10.1038/ng.782

    Article  CAS  Google Scholar 

  34. Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AFR, Samani NJ et al (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43:333–338. https://doi.org/10.1038/ng.784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou A, Hyppönen E (2019) Long-term coffee consumption, caffeine metabolism genetics, and risk of cardiovascular disease: a prospective analysis of up to 347,077 individuals and 8368 cases. Am J Clin Nutr 109:509–516. https://doi.org/10.1093/ajcn/nqy297

    Article  PubMed  Google Scholar 

  36. Qian Y, Ye D, Huang H, Wu DJH, Zhuang Y, Jiang X, Mao Y (2020) Coffee consumption and risk of stroke: a Mendelian randomization study. Ann Neurol 87:525–532. https://doi.org/10.1002/ana.25693

    Article  PubMed  Google Scholar 

  37. Kwok MK, Leung GM, Schooling CM (2016) Habitual coffee consumption and risk of type 2 diabetes, ischemic heart disease, depression and Alzheimer’s disease: a Mendelian randomization study. Sci Rep 6:36500. https://doi.org/10.1038/srep36500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan S, Larsson SC (2019) No association between coffee consumption and risk of atrial fibrillation: a Mendelian randomization study. Nutr Metab Cardiovasc Dis 29:1185–1188. https://doi.org/10.1016/j.numecd.2019.07.015

    Article  CAS  PubMed  Google Scholar 

  39. van Oort S, Beulens JWJ, van Ballegooijen AJ, Handoko ML, Larsson SC (2020) Modifiable lifestyle factors and heart failure: a Mendelian randomization study. Am Heart J 227:64–73. https://doi.org/10.1016/j.ahj.2020.06.007

    Article  CAS  PubMed  Google Scholar 

  40. Carlström M, Larsson SC (2018) Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr Rev 76:395–417. https://doi.org/10.1093/nutrit/nuy014

    Article  PubMed  Google Scholar 

  41. Huxley R, Lee CMY, Barzi F, Timmermeister L, Czernichow S, Perkovic V, Grobbee DE, Batty D, Woodward M (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 169:2053–2063. https://doi.org/10.1001/archinternmed.2009.439

    Article  PubMed  Google Scholar 

  42. Jiang X, Zhang D, Jiang W (2014) Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr 53:25–38. https://doi.org/10.1007/s00394-013-0603-x

    Article  CAS  PubMed  Google Scholar 

  43. Bellou V, Belbasis L, Tzoulaki I, Evangelou E (2018) Risk factors for type 2 diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PLoS ONE 13:e0194127. https://doi.org/10.1371/journal.pone.0194127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shang F, Li X, Jiang X (2016) Coffee consumption and risk of the metabolic syndrome: a meta-analysis. Diabetes Metab 42:80–87. https://doi.org/10.1016/j.diabet.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  45. Lee A, Lim W, Kim S, Khil H, Cheon E, An S, Hong S, Lee DH, Kang S-S, Oh H, Keum N, Hsieh C-C (2019) Coffee intake and obesity: a meta-analysis. Nutrients. https://doi.org/10.3390/nu11061274

    Article  PubMed  PubMed Central  Google Scholar 

  46. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segrè AV, Steinthorsdottir V, Strawbridge RJ, Khan H, McCarthy MI et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990. https://doi.org/10.1038/ng.2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nicolopoulos K, Mulugeta A, Zhou A, Hyppönen E (2020) Association between habitual coffee consumption and multiple disease outcomes: a Mendelian randomisation phenome-wide association study in the UK Biobank. Clin Nutr. https://doi.org/10.1016/j.clnu.2020.03.009

    Article  PubMed  Google Scholar 

  48. Alperet DJ, Rebello SA, Khoo EY-H, Tay Z, Seah SS-Y, Tai B-C, Tai E-S, Emady-Azar S, Chou CJ, Darimont C, van Dam RM (2020) The effect of coffee consumption on insulin sensitivity and other biological risk factors for type 2 diabetes: a randomized placebo-controlled trial. Am J Clin Nutr 111:448–458. https://doi.org/10.1093/ajcn/nqz306

    Article  PubMed  Google Scholar 

  49. Je Y, Giovannucci E (2012) Coffee consumption and risk of endometrial cancer: findings from a large up-to-date meta-analysis. Int J Cancer 131:1700–1710. https://doi.org/10.1002/ijc.27408

    Article  CAS  PubMed  Google Scholar 

  50. Yang TO, Crowe F, Cairns BJ, Reeves GK, Beral V (2015) Tea and coffee and risk of endometrial cancer: cohort study and meta-analysis. Am J Clin Nutr 101:570–578. https://doi.org/10.3945/ajcn.113.081836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lafranconi A, Micek A, Galvano F, Rossetti S, Del Pup L, Berretta M, Facchini G (2017) Coffee decreases the risk of endometrial cancer: a dose-response meta-analysis of prospective cohort studies. Nutrients. https://doi.org/10.3390/nu9111223

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lukic M, Guha N, Licaj I, van den Brandt PA, Stayner LT, Tavani A, Weiderpass E (2018) Coffee drinking and the risk of endometrial cancer: an updated meta-analysis of observational studies. Nutr Cancer 70:513–528. https://doi.org/10.1080/01635581.2018.1460681

    Article  CAS  PubMed  Google Scholar 

  53. Liu J, Shen B, Shi M, Cai J (2016) Higher caffeinated coffee intake is associated with reduced malignant melanoma risk: a meta-analysis study. PLoS ONE 11:e0147056. https://doi.org/10.1371/journal.pone.0147056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Micek A, Godos J, Lafranconi A, Marranzano M, Pajak A (2018) Caffeinated and decaffeinated coffee consumption and melanoma risk: a dose-response meta-analysis of prospective cohort studies. Int J Food Sci Nutr 69:417–426. https://doi.org/10.1080/09637486.2017.1373752

    Article  CAS  PubMed  Google Scholar 

  55. Xie Y, Qin J, Nan G, Huang S, Wang Z, Su Y (2016) Coffee consumption and the risk of lung cancer: an updated meta-analysis of epidemiological studies. Eur J Clin Nutr 70:199–206. https://doi.org/10.1038/ejcn.2015.96

    Article  CAS  PubMed  Google Scholar 

  56. Huang T, Guo Z, Zhang X, Zhang X, Liu H, Geng J, Yao X, Zheng J (2014) Coffee consumption and urologic cancer risk: a meta-analysis of cohort studies. Int Urol Nephrol 46:1481–1493. https://doi.org/10.1007/s11255-014-0699-9

    Article  CAS  PubMed  Google Scholar 

  57. Discacciati A, Orsini N, Wolk A (2014) Coffee consumption and risk of nonaggressive, aggressive and fatal prostate cancer—a dose-response meta-analysis. Ann Oncol 25:584–591. https://doi.org/10.1093/annonc/mdt420

    Article  CAS  PubMed  Google Scholar 

  58. Taylor AE, Martin RM, Geybels MS, Stanford JL, Shui I, Eeles R, Easton D, Kote-Jarai Z, Al Olama AA, Benlloch S, Muir K, Giles GG, Wiklund F, Gronberg H, Haiman CA, Schleutker J, Nordestgaard BG, Travis RC, Neal D, Pashayan N, Khaw K-T, Blot W, Thibodeau S, Maier C, Kibel AS, Cybulski C, Cannon-Albright L, Brenner H, Park J, Kaneva R, Batra J, Teixeira MR, Pandha H, Donovan J, Munafò MR (2017) Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis. Int J cancer 140:322–328. https://doi.org/10.1002/ijc.30462

    Article  CAS  PubMed  Google Scholar 

  59. Liu H, Hu G-H, Wang X-C, Huang T-B, Xu L, Lai P, Guo Z-F, Xu Y-F (2015) Coffee consumption and prostate cancer risk: a meta-analysis of cohort studies. Nutr Cancer 67:392–400. https://doi.org/10.1080/01635581.2015.1004727

    Article  CAS  PubMed  Google Scholar 

  60. Xia J, Chen J, Xue J-X, Yang J, Wang Z-J (2017) An up-to-date meta-analysis of coffee consumption and risk of prostate cancer. Urol J 14:4079–4088

    PubMed  Google Scholar 

  61. Leitzmann MF, Willett WC, Rimm EB, Stampfer MJ, Spiegelman D, Colditz GA, Giovannucci E (1999) A prospective study of coffee consumption and the risk of symptomatic gallstone disease in men. JAMA 281:2106–2112. https://doi.org/10.1001/jama.281.22.2106

    Article  CAS  PubMed  Google Scholar 

  62. Leitzmann MF, Stampfer MJ, Willett WC, Spiegelman D, Colditz GA, Giovannucci EL (2002) Coffee intake is associated with lower risk of symptomatic gallstone disease in women. Gastroenterology 123:1823–1830. https://doi.org/10.1053/gast.2002.37054

    Article  PubMed  Google Scholar 

  63. Nordenvall C, Oskarsson V, Wolk A (2015) Inverse association between coffee consumption and risk of cholecystectomy in women but not in men. Clin Gastroenterol Hepatol 13:1096-1102.e1. https://doi.org/10.1016/j.cgh.2014.09.029

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y-P, Li W-Q, Sun Y-L, Zhu R-T, Wang W-J (2015) Systematic review with meta-analysis: coffee consumption and the risk of gallstone disease. Aliment Pharmacol Ther 42:637–648. https://doi.org/10.1111/apt.13328

    Article  PubMed  Google Scholar 

  65. Zhang Y, Yang T, Zeng C, Wei J, Li H, Xiong Y-L, Yang Y, Ding X, Lei G (2016) Is coffee consumption associated with a lower risk of hyperuricaemia or gout? A systematic review and meta-analysis. BMJ Open 6:e009809. https://doi.org/10.1136/bmjopen-2015-009809

    Article  PubMed  PubMed Central  Google Scholar 

  66. Park KY, Kim HJ, Ahn HS, Kim SH, Park EJ, Yim S-Y, Jun J-B (2016) Effects of coffee consumption on serum uric acid: systematic review and meta-analysis. Semin Arthritis Rheum 45:580–586. https://doi.org/10.1016/j.semarthrit.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  67. Choi HK, Curhan G (2010) Coffee consumption and risk of incident gout in women: the Nurses’ Health Study. Am J Clin Nutr 92:922–927. https://doi.org/10.3945/ajcn.2010.29565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Choi HK, Willett W, Curhan G (2007) Coffee consumption and risk of incident gout in men: a prospective study. Arthritis Rheum 56:2049–2055. https://doi.org/10.1002/art.22712

    Article  CAS  PubMed  Google Scholar 

  69. Kiyohara C, Washio M, Horiuchi T, Asami T, Ide S, Atsumi T, Kobashi G, Takahashi H, Tada Y (2014) Modifying effect of N-acetyltransferase 2 genotype on the association between systemic lupus erythematosus and consumption of alcohol and caffeine-rich beverages. Arthritis Care Res (Hoboken) 66:1048–1056. https://doi.org/10.1002/acr.22282

    Article  CAS  Google Scholar 

  70. Hutton J, Fatima T, Major TJ, Topless R, Stamp LK, Merriman TR, Dalbeth N (2018) Mediation analysis to understand genetic relationships between habitual coffee intake and gout. Arthritis Res Ther 20:135. https://doi.org/10.1186/s13075-018-1629-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bae S-C, Lee YH (2018) Coffee consumption and the risk of rheumatoid arthritis and systemic lupus erythematosus: a Mendelian randomization study. Clin Rheumatol 37:2875–2879. https://doi.org/10.1007/s10067-018-4278-9

    Article  PubMed  Google Scholar 

  72. Lamichhane D, Collins C, Constantinescu F, Walitt B, Pettinger M, Parks C, Howard BV (2019) Coffee and tea consumption in relation to risk of rheumatoid arthritis in the women’s health initiative observational cohort. J Clin Rheumatol 25:127–132. https://doi.org/10.1097/RHU.0000000000000788

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lee YH, Bae S-C, Song GG (2014) Coffee or tea consumption and the risk of rheumatoid arthritis: a meta-analysis. Clin Rheumatol 33:1575–1583. https://doi.org/10.1007/s10067-014-2631-1

    Article  PubMed  Google Scholar 

  74. Lee YH (2018) Investigating the possible causal association of coffee consumption with osteoarthritis risk using a Mendelian randomization analysis. Clin Rheumatol 37:3133–3139. https://doi.org/10.1007/s10067-018-4252-6

    Article  PubMed  Google Scholar 

  75. Larsson SC, Traylor M, Malik R, Dichgans M, Burgess S, Markus HS (2017) Modifiable pathways in Alzheimer’s disease: Mendelian randomisation analysis. BMJ 359:j5375. https://doi.org/10.1136/bmj.j5375

    Article  PubMed  PubMed Central  Google Scholar 

  76. Larsson SC, Orsini N (2018) Coffee consumption and risk of dementia and Alzheimer’s disease: a dose-response meta-analysis of prospective studies. Nutrients. https://doi.org/10.3390/nu10101501

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu Q-P, Wu Y-F, Cheng H-Y, Xia T, Ding H, Wang H, Wang Z-M, Xu Y (2016) Habitual coffee consumption and risk of cognitive decline/dementia: a systematic review and meta-analysis of prospective cohort studies. Nutrition 32:628–636. https://doi.org/10.1016/j.nut.2015.11.015

    Article  PubMed  Google Scholar 

  78. Wu L, Sun D, He Y (2017) Coffee intake and the incident risk of cognitive disorders: a dose-response meta-analysis of nine prospective cohort studies. Clin Nutr 36:730–736. https://doi.org/10.1016/j.clnu.2016.05.015

    Article  PubMed  Google Scholar 

  79. Wijarnpreecha K, Thongprayoon C, Thamcharoen N, Panjawatanan P, Cheungpasitporn W (2017) Association of coffee consumption and chronic kidney disease: a meta-analysis. Int J Clin Pract. https://doi.org/10.1111/ijcp.12919

    Article  PubMed  Google Scholar 

  80. Kennedy OJ, Pirastu N, Poole R, Fallowfield JA, Hayes PC, Grzeszkowiak EJ, Taal MW, Wilson JF, Parkes J, Roderick PJ (2020) Coffee consumption and kidney function: a Mendelian randomization study. Am J Kidney Dis 75:753–761. https://doi.org/10.1053/j.ajkd.2019.08.025

    Article  CAS  PubMed  Google Scholar 

  81. Ware JJ, Tanner J-A, Taylor AE, Bin Z, Haycock P, Bowden J, Rogers PJ, Smith GD, Tyndale RF, Munafò MR (2017) Does coffee consumption impact on heaviness of smoking? Addiction 112:1842–1853. https://doi.org/10.1111/add.13888

    Article  PubMed  PubMed Central  Google Scholar 

  82. Verweij KJH, Treur JL, Vink JM (2018) Investigating causal associations between use of nicotine, alcohol, caffeine and cannabis: a two-sample bidirectional Mendelian randomization study. Addiction 113:1333–1338. https://doi.org/10.1111/add.14154

    Article  PubMed  Google Scholar 

  83. Treur JL, Taylor AE, Ware JJ, Nivard MG, Neale MC, McMahon G, Hottenga J-J, Baselmans BML, Boomsma DI, Munafò MR, Vink JM (2017) Smoking and caffeine consumption: a genetic analysis of their association. Addict Biol 22:1090–1102. https://doi.org/10.1111/adb.12391

    Article  CAS  PubMed  Google Scholar 

  84. Furberg H, Kim Y, Dackor J, Boerwinkle E, Franceschini N, Ardissino D, Bernardinelli L, Mannucci PL, Sullivan PF et al (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447. https://doi.org/10.1038/ng.571

    Article  CAS  Google Scholar 

  85. Munafò MR, Timofeeva MN, Morris RW, Prieto-Merino D, Sattar N, Brennan P, Johnstone EC, Relton C, Johnson PCD, Walther D, Whincup PH, Casas JP, Uhl GR, Vineis P, Padmanabhan S, Jefferis BJ, Amuzu A, Riboli E, Upton MN, Aveyard P, Ebrahim S, Hingorani AD, Watt G, Palmer TM, Timpson NJ, Smith GD (2012) Association between genetic variants on chromosome 15q25 locus and objective measures of tobacco exposure. J Natl Cancer Inst 104:740–748. https://doi.org/10.1093/jnci/djs191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ware JJ, van den Bree MBM, Munafò MR (2011) Association of the CHRNA5-A3-B4 gene cluster with heaviness of smoking: a meta-analysis. Nicotine Tob Res 13:1167–1175. https://doi.org/10.1093/ntr/ntr118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PAF, Breslau N, Johnson EO, Hatsukami D, Pomerleau O, Swan GE, Goate AM, Rutter J, Bertelsen S, Fox L, Fugman D, Martin NG, Montgomery GW, Wang JC, Ballinger DG, Rice JP, Bierut LJ (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16:36–49. https://doi.org/10.1093/hmg/ddl438

    Article  CAS  PubMed  Google Scholar 

  88. Chang L-H, Ong J-S, An J, Verweij KJH, Vink JM, Pasman J, Liu M, MacGregor S, Cornelis MC, Martin NG, Derks EM (2020) Investigating the genetic and causal relationship between initiation or use of alcohol, caffeine, cannabis and nicotine. Drug Alcohol Depend 210:107966. https://doi.org/10.1016/j.drugalcdep.2020.107966

    Article  CAS  PubMed  Google Scholar 

  89. Ludwig IA, Clifford MN, Lean MEJ, Ashihara H, Crozier A (2014) Coffee: biochemistry and potential impact on health. Food Funct 5:1695–1717. https://doi.org/10.1039/c4fo00042k

    Article  CAS  PubMed  Google Scholar 

  90. Gloess AN, Schönbächler B, Klopprogge B, D’Ambrosio L, Chatelain K, Bongartz A, Strittmatter A, Rast M, Yeretzian C (2013) Comparison of nine common coffee extraction methods: instrumental and sensory analysis. Eur Food Res Technol 236:607–627. https://doi.org/10.1007/s00217-013-1917-x

    Article  CAS  Google Scholar 

  91. McCusker RR, Goldberger BA, Cone EJ (2003) Caffeine content of specialty coffees. J Anal Toxicol 27:520–522. https://doi.org/10.1093/jat/27.7.520

    Article  CAS  PubMed  Google Scholar 

  92. Frary CD, Johnson RK, Wang MQ (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 105:110–113. https://doi.org/10.1016/j.jada.2004.10.027

    Article  PubMed  Google Scholar 

  93. Moura-Nunes N, Perrone D, Farah A, Donangelo CM (2009) The increase in human plasma antioxidant capacity after acute coffee intake is not associated with endogenous non-enzymatic antioxidant components. Int J Food Sci Nutr 60(Suppl 6):173–181. https://doi.org/10.1080/09637480903158893

    Article  CAS  PubMed  Google Scholar 

  94. Corrêa TAF, Monteiro MP, Mendes TMN, de Oliveira DM, Rogero MM, Benites CI, de Matos Vinagre CGC, Mioto BM, Tarasoutchi D, Tuda VL, César LAM, da Silva Torres EAF (2012) Medium light and medium roast paper-filtered coffee increased antioxidant capacity in healthy volunteers: results of a randomized trial. Plant Foods Hum Nutr 67:277–282. https://doi.org/10.1007/s11130-012-0297-x

    Article  CAS  PubMed  Google Scholar 

  95. Esposito F, Morisco F, Verde V, Ritieni A, Alezio A, Caporaso N, Fogliano V (2003) Moderate coffee consumption increases plasma glutathione but not homocysteine in healthy subjects. Aliment Pharmacol Ther 17:595–601. https://doi.org/10.1046/j.1365-2036.2003.01429.x

    Article  CAS  PubMed  Google Scholar 

  96. Svilaas A, Sakhi AK, Andersen LF, Svilaas T, Ström EC, Jacobs DR Jr, Ose L, Blomhoff R (2004) Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. J Nutr 134:562–567. https://doi.org/10.1093/jn/134.3.562

    Article  CAS  PubMed  Google Scholar 

  97. Kamiyama M, Moon J-K, Jang HW, Shibamoto T (2015) Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee. J Agric Food Chem 63:1996–2005. https://doi.org/10.1021/jf5060563

    Article  CAS  PubMed  Google Scholar 

  98. Natella F, Nardini M, Belelli F, Pignatelli P, Di Santo S, Ghiselli A, Violi F, Scaccini C (2008) Effect of coffee drinking on platelets: inhibition of aggregation and phenols incorporation. Br J Nutr 100:1276–1282. https://doi.org/10.1017/S0007114508981459

    Article  CAS  PubMed  Google Scholar 

  99. Urgert R, Katan MB (1997) The cholesterol-raising factor from coffee beans. Annu Rev Nutr 17:305–324. https://doi.org/10.1146/annurev.nutr.17.1.305

    Article  CAS  PubMed  Google Scholar 

  100. Mesas AE, Leon-Muñoz LM, Rodriguez-Artalejo F, Lopez-Garcia E (2011) The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis. Am J Clin Nutr 94:1113–1126. https://doi.org/10.3945/ajcn.111.016667

    Article  CAS  PubMed  Google Scholar 

  101. van Dam RM (2006) Coffee and type 2 diabetes: from beans to beta-cells. Nutr Metab Cardiovasc Dis 16:69–77. https://doi.org/10.1016/j.numecd.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  102. Kempf K, Herder C, Erlund I, Kolb H, Martin S, Carstensen M, Koenig W, Sundvall J, Bidel S, Kuha S, Tuomilehto J (2010) Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 91:950–957. https://doi.org/10.3945/ajcn.2009.28548

    Article  CAS  PubMed  Google Scholar 

  103. Ong KW, Hsu A, Tan BKH (2013) Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol 85:1341–1351. https://doi.org/10.1016/j.bcp.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  104. Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24:816–823. https://doi.org/10.1161/01.ATV.0000122852.22604.78

    Article  CAS  PubMed  Google Scholar 

  105. Greenberg JA, Boozer CN, Geliebter A (2006) Coffee, diabetes, and weight control. Am J Clin Nutr 84:682–693. https://doi.org/10.1093/ajcn/84.4.682

    Article  CAS  PubMed  Google Scholar 

  106. Douglas BR, Jansen JB, Tham RT, Lamers CB (1990) Coffee stimulation of cholecystokinin release and gallbladder contraction in humans. Am J Clin Nutr 52:553–556. https://doi.org/10.1093/ajcn/52.3.553

    Article  CAS  PubMed  Google Scholar 

  107. Holstege A, Kurz M, Weinbeck M, Gerok W (1993) Excretion of caffeine and its primary degradation products into bile. J Hepatol 17:67–73. https://doi.org/10.1016/s0168-8278(05)80523-9

    Article  CAS  PubMed  Google Scholar 

  108. Lillemoe KD, Magnuson TH, High RC, Peoples GE, Pitt HA (1989) Caffeine prevents cholesterol gallstone formation. Surgery 106:400–407

    CAS  PubMed  Google Scholar 

  109. Ricketts M-L, Boekschoten MV, Kreeft AJ, Hooiveld GJEJ, Moen CJA, Müller M, Frants RR, Kasanmoentalib S, Post SM, Princen HMG, Porter JG, Katan MB, Hofker MH, Moore DD (2007) The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Mol Endocrinol 21:1603–1616. https://doi.org/10.1210/me.2007-0133

    Article  CAS  PubMed  Google Scholar 

  110. Boekschoten MV, Hofman MK, Buytenhek R, Schouten EG, Princen HMG, Katan MB (2005) Coffee oil consumption increases plasma levels of 7alpha-hydroxy-4-cholesten-3-one in humans. J Nutr 135:785–789. https://doi.org/10.1093/jn/135.4.785

    Article  CAS  PubMed  Google Scholar 

  111. Qayyum F, Lauridsen BK, Frikke-Schmidt R, Kofoed KF, Nordestgaard BG, Tybjærg-Hansen A (2018) Genetic variants in CYP7A1 and risk of myocardial infarction and symptomatic gallstone disease. Eur Heart J 39:2106–2116. https://doi.org/10.1093/eurheartj/ehy068

    Article  CAS  PubMed  Google Scholar 

  112. Kalthoff S, Ehmer U, Freiberg N, Manns MP, Strassburg CP (2010) Coffee induces expression of glucuronosyltransferases by the aryl hydrocarbon receptor and Nrf2 in liver and stomach. Gastroenterology 139(1699–710):1710.e1–2. https://doi.org/10.1053/j.gastro.2010.06.048

    Article  CAS  Google Scholar 

  113. Stender S, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A (2013) Extreme bilirubin levels as a causal risk factor for symptomatic gallstone disease. JAMA Intern Med 173:1222–1228. https://doi.org/10.1001/jamainternmed.2013.6465

    Article  CAS  PubMed  Google Scholar 

  114. Vítek L, Carey MC (2012) New pathophysiological concepts underlying pathogenesis of pigment gallstones. Clin Res Hepatol Gastroenterol 36:122–129. https://doi.org/10.1016/j.clinre.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  115. Hukkanen J, Jacob P 3rd, Peng M, Dempsey D, Benowitz NL (2011) Effect of nicotine on cytochrome P450 1A2 activity. Br J Clin Pharmacol 72:836–838. https://doi.org/10.1111/j.1365-2125.2011.04023.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Benowitz NL, Peng M, Jacob P 3rd (2003) Effects of cigarette smoking and carbon monoxide on chlorzoxazone and caffeine metabolism. Clin Pharmacol Ther 74:468–474. https://doi.org/10.1016/j.clpt.2003.07.001

    Article  CAS  PubMed  Google Scholar 

  117. Plowchalk DR, Yeo KR (2012) Prediction of drug clearance in a smoking population: modeling the impact of variable cigarette consumption on the induction of CYP1A2. Eur J Clin Pharmacol 68:951–960. https://doi.org/10.1007/s00228-011-1189-y

    Article  CAS  PubMed  Google Scholar 

  118. Swanson JA, Lee JW, Hopp JW (1994) Caffeine and nicotine: a review of their joint use and possible interactive effects in tobacco withdrawal. Addict Behav 19:229–256. https://doi.org/10.1016/0306-4603(94)90027-2

    Article  CAS  PubMed  Google Scholar 

  119. Benn M, Nordestgaard BG (2018) From genome-wide association studies to Mendelian randomization: novel opportunities for understanding cardiovascular disease causality, pathogenesis, prevention, and treatment. Cardiovasc Res 114:1192–1208. https://doi.org/10.1093/cvr/cvy045

    Article  CAS  PubMed  Google Scholar 

  120. Bowden J, Smith GD, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525. https://doi.org/10.1093/ije/dyv080

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hartwig FP, Davies NM, Hemani G, Smith GD (2016) Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol 45:1717–1726

    Article  PubMed  Google Scholar 

  122. Smith GD, Ebrahim S (2003) “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32:1–22. https://doi.org/10.1093/ije/dyg070

    Article  PubMed  Google Scholar 

  123. Galarraga V, Boffetta P (2016) Coffee drinking and risk of lung cancer—a meta-analysis. Cancer Epidemiol Biomarkers Prev 25:951–957. https://doi.org/10.1158/1055-9965.EPI-15-0727

    Article  CAS  PubMed  Google Scholar 

  124. Wijarnpreecha K, Thongprayoon C, Ungprasert P (2017) Coffee consumption and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 29:e8-12. https://doi.org/10.1097/MEG.0000000000000776

    Article  CAS  PubMed  Google Scholar 

  125. Liu F, Wang X, Wu G, Chen L, Hu P, Ren H, Hu H (2015) Coffee consumption decreases risks for hepatic fibrosis and cirrhosis: a meta-analysis. PLoS ONE 10:e0142457. https://doi.org/10.1371/journal.pone.0142457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bravi F, Tavani A, Bosetti C, Boffetta P, La Vecchia C (2017) Coffee and the risk of hepatocellular carcinoma and chronic liver disease: a systematic review and meta-analysis of prospective studies. Eur J Cancer Prev 26:368–377. https://doi.org/10.1097/CEJ.0000000000000252

    Article  CAS  PubMed  Google Scholar 

  127. Lafranconi A, Micek A, De Paoli P, Bimonte S, Rossi P, Quagliariello V, Berretta M (2018) Coffee intake decreases risk of postmenopausal breast cancer: a dose-response meta-analysis on prospective cohort studies. Nutrients. https://doi.org/10.3390/nu10020112

    Article  PubMed  PubMed Central  Google Scholar 

  128. Li XJ, Ren ZJ, Qin JW, Zhao JH, Tang JH, Ji MH, Wu JZ (2013) Coffee consumption and risk of breast cancer: an up-to-date meta-analysis. PLoS ONE 8:e52681. https://doi.org/10.1371/journal.pone.0052681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jiang W, Wu Y, Jiang X (2013) Coffee and caffeine intake and breast cancer risk: an updated dose-response meta-analysis of 37 published studies. Gynecol Oncol 129:620–629. https://doi.org/10.1016/j.ygyno.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  130. Gan Y, Wu J, Zhang S, Li L, Cao S, Mkandawire N, Ji K, Herath C, Gao C, Xu H, Zhou Y, Song X, Chen S, Chen Y, Yang T, Li J, Qiao Y, Hu S, Yin X, Lu Z (2017) Association of coffee consumption with risk of colorectal cancer: a meta-analysis of prospective cohort studies. Oncotarget 8:18699–18711. https://doi.org/10.18632/oncotarget.8627

    Article  PubMed  Google Scholar 

  131. Mirtavoos-Mahyari H, Salehipour P, Parohan M, Sadeghi A (2019) Effects of coffee, black tea and green tea consumption on the risk of non-Hodgkin’s lymphoma: a systematic review and dose-response meta-analysis of observational studies. Nutr Cancer 71:887–897. https://doi.org/10.1080/01635581.2019.1595055

    Article  PubMed  Google Scholar 

  132. Braem MGM, Onland-Moret NC, Schouten LJ, Tjønneland A, Hansen L, Dahm CC, Overvad K, Lukanova A, Dossus L, Floegel A, Boeing H, Clavel-Chapelon F, Chabbert-Buffet N, Fagherazzi G, Trichopoulou A, Benetou V, Goufa I, Pala V, Galasso R, Mattiello A, Sacerdote C, Palli D, Tumino R, Gram IT, Lund E, Gavrilyuk O, Sánchez M-J, Quirós R, Gonzales CA, Dorronsoro M, Castaño JMH, Gurrea AB, Idahl A, Ohlson N, Lundin E, Jirstrom K, Wirfalt E, Allen NE, Tsilidis KK, Kaw K-T, Bueno-de-Mesquita HB, Dik VK, Rinaldi S, Fedirko V, Norat T, Riboli E, Kaaks R, Peeters PHM (2012) Coffee and tea consumption and the risk of ovarian cancer: a prospective cohort study and updated meta-analysis. Am J Clin Nutr 95:1172–1181. https://doi.org/10.3945/ajcn.111.026393

    Article  CAS  PubMed  Google Scholar 

  133. Shafiei F, Salari-Moghaddam A, Milajerdi A, Larijani B, Esmaillzadeh A (2019) Coffee and caffeine intake and risk of ovarian cancer: a systematic review and meta-analysis. Int J Gynecol Cancer 29:579–584. https://doi.org/10.1136/ijgc-2018-000102

    Article  PubMed  Google Scholar 

  134. Salari-Moghaddam A, Milajerdi A, Surkan PJ, Larijani B, Esmaillzadeh A (2019) Caffeine, type of coffee, and risk of ovarian cancer: a dose-response meta-analysis of prospective studies. J Clin Endocrinol Metab 104:5349–5359. https://doi.org/10.1210/jc.2019-00637

    Article  PubMed  Google Scholar 

  135. Ong J-S, Hwang L-D, Cuellar-Partida G, Martin NG, Chenevix-Trench G, Quinn MCJ, Cornelis MC, Gharahkhani P, Webb PM, MacGregor S (2018) Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study. Int J Epidemiol 47:450–459. https://doi.org/10.1093/ije/dyx236

    Article  PubMed  Google Scholar 

  136. O’Keefe JH, Bhatti SK, Patil HR, DiNicolantonio JJ, Lucan SC, Lavie CJ (2013) Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J Am Coll Cardiol 62:1043–1051. https://doi.org/10.1016/j.jacc.2013.06.035

    Article  PubMed  Google Scholar 

  137. Lee DR, Lee J, Rota M, Lee J, Ahn HS, Park SM, Shin D (2014) Coffee consumption and risk of fractures: a systematic review and dose-response meta-analysis. Bone 63:20–28. https://doi.org/10.1016/j.bone.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  138. Nordestgaard AT, Nordestgaard BG (2016) Coffee intake, cardiovascular disease and allcause mortality: observational and Mendelian randomization analyses in 95 000–223 000 individuals. Int J Epidemiol 45:1938–1952. https://doi.org/10.1093/ije/dyw325

    Article  PubMed  Google Scholar 

  139. Li S, Dai Z, Wu Q (2015) Effect of coffee intake on hip fracture: a meta-analysis of prospective cohort studies. Nutr J 14:38. https://doi.org/10.1186/s12937-015-0025-0

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sheng J, Qu X, Zhang X, Zhai Z, Li H, Liu X, Li H, Liu G, Zhu Z, Hao Y, Qin A, Dai K (2014) Coffee, tea, and the risk of hip fracture: a meta-analysis. Osteoporos Int 25:141–150. https://doi.org/10.1007/s00198-013-2563-7

    Article  CAS  PubMed  Google Scholar 

  141. Yuan S, Michaëlsson K, Wan Z, Larsson SC (2019) Associations of smoking and alcohol and coffee intake with fracture and bone mineral density: a Mendelian randomization study. Calcif Tissue Int 105:582–588. https://doi.org/10.1007/s00223-019-00606-0

    Article  CAS  PubMed  Google Scholar 

  142. Nie J-Y, Zhao Q (2017) Beverage consumption and risk of ulcerative colitis: systematic review and meta-analysis of epidemiological studies. Medicine (Baltimore) 96:e9070. https://doi.org/10.1097/MD.0000000000009070

    Article  Google Scholar 

  143. Georgiou AN, Ntritsos G, Papadimitriou N, Dimou N, Evangelou E (2020) Cigarette smoking, coffee consumption, alcohol intake, and risk of Crohn’s disease and ulcerative colitis: a Mendelian randomization study. Inflamm Bowel Dis. https://doi.org/10.1093/ibd/izaa152

    Article  Google Scholar 

  144. Yang Y, Xiang L, He J (2019) Beverage intake and risk of Crohn disease: a meta-analysis of 16 epidemiological studies. Medicine (Baltimore) 98:e15795. https://doi.org/10.1097/MD.0000000000015795

    Article  Google Scholar 

Download references

Acknowledgements

I thank Børge G. Nordestgaard and Stig E. Bojesen for their support and criticism.

Funding

The study was supported by Herlev and Gentofte Hospital and the Beckett Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ask T. Nordestgaard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

NA.

Consent to participate

NA.

Consent for publication

NA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordestgaard, A.T. Causal relationship from coffee consumption to diseases and mortality: a review of observational and Mendelian randomization studies including cardiometabolic diseases, cancer, gallstones and other diseases. Eur J Nutr 61, 573–587 (2022). https://doi.org/10.1007/s00394-021-02650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02650-9

Keywords

Navigation