Skip to main content

Advertisement

Log in

Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Pigs have anatomical, physiological and genomic characteristics that make them highly suitable for modeling human diseases. Genetically modified (GM) pig models of human diseases are critical for studying pathogenesis, treatment, and prevention. The emergence of nuclease-mediated genome editing technology has been successfully employed for engineering of the pig genome, which has revolutionize the creation of GM pig models with highly complex pathophysiologies and comorbidities. In this review, we summarize the progress of recently developed genome editing technologies, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9), which enable highly efficient and precise introduction of genome modifications into pigs, and tailored disease models that have been generated in various disciplines via genome editing technology. We also summarize the GM pig models that have been generated by conventional transgenic strategies. Additionally, perspectives regarding the application of GM pigs in biomedical research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • (2012) Breakthrough of the year. The runners-up. Science 338: 1525-1532

  • Al-Mashhadi RH, Sorensen CB, Kragh PM et al (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5:166ra161

    Article  CAS  Google Scholar 

  • American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Suppl 1):S67–S74

    Article  Google Scholar 

  • Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baguisi A, Behboodi E, Melican DT et al (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17:456–461

    Article  CAS  PubMed  Google Scholar 

  • Bao L, Chen H, Jong U et al (2014) Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. Sci China Life Sci 57:263–268

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Basnet NB, Ide K, Tahara H, Tanaka Y, Ohdan H (2010) Deficiency of N-glycolylneuraminic acid and Galalpha1-3Galbeta1-4GlcNAc epitopes in xenogeneic cells attenuates cytotoxicity of human natural antibodies. Xenotransplantation 17:440–448

    Article  PubMed  Google Scholar 

  • Bedell VM, Wang Y, Campbell JM et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beraldi R, Chan CH, Rogers CS et al (2015) A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. Hum Mol Genet 24:6473–6484

    Article  CAS  PubMed  Google Scholar 

  • Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  CAS  PubMed  Google Scholar 

  • Brown AJ, Fisher DA, Kouranova E et al (2013) Whole-rat conditional gene knockout via genome editing. Nat Methods 10:638–640

    Article  CAS  PubMed  Google Scholar 

  • Cabot RA, Kuhholzer B, Chan AW et al (2001) Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim Biotechnol 12:205–214

    Article  CAS  PubMed  Google Scholar 

  • Carlson DF, Fahrenkrug SC, Hackett PB (2012a) Targeting DNA With Fingers and TALENs. Mol Ther Nucleic Acids 1:e3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlson DF, Tan W, Lillico SG et al (2012b) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang K, Qian J, Jiang M et al (2002) Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnol 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang N, Sun C, Gao L et al (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Qian H, Starzl T et al (2005) Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 11:1295–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zheng Y, Kang Y et al (2015) Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet 24:3764–3774

    CAS  PubMed  Google Scholar 

  • Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cibelli JB, Stice SL, Golueke PJ et al (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Clark AJ, Bessos H, Bishop JO et al (1989) Expression of human anti-hemophilic factor IX in the milk of transgenic sheep. Bio/Technology 7:487–492

    Article  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D (2016) The role of genetically engineered pigs in xenotransplantation research. J Pathol 238:288–299

    Article  PubMed  Google Scholar 

  • Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK, Cathomen T (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 16:352–358

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Vaught TD, Boone J et al (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251–255

    Article  CAS  PubMed  Google Scholar 

  • Davis BT, Wang XJ, Rohret JA et al (2014) Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs. PLoS One 9:e93457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards AO, Miedziak A, Vrabec T, Verhoeven J, Acott TS, Weleber RG, Donoso LA (1999) Autosomal dominant Stargardt-like macular dystrophy: I. Clinical characterization, longitudinal follow-up, and evidence for a common ancestry in families linked to chromosome 6q14. Am J Ophthalmol 127:426–435

    Article  CAS  PubMed  Google Scholar 

  • Estrada JL, Martens G, Li P et al (2015) Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22:194–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao F, Shen XZ, Jiang F, Wu Y, Han C (2016) DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol 34:768–773

    Article  CAS  PubMed  Google Scholar 

  • Garrels W, Mates L, Holler S et al (2011) Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS One 6:e23573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon K, Lee E, Vitale JA, Smith AE, Westphal H, Hennighausen L (1992) Production of human tissue plasminogen activator in transgenic mouse milk. 1987. Biotechnology 24:425–428

    CAS  PubMed  Google Scholar 

  • Griffin MA, Restrepo MS, Abu-El-Haija M et al (2014) A novel gene delivery method transduces porcine pancreatic duct epithelial cells. Gene Ther 21:123–130

    Article  CAS  PubMed  Google Scholar 

  • Guilbault C, Saeed Z, Downey GP, Radzioch D (2007) Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 36:1–7

    Article  CAS  PubMed  Google Scholar 

  • Guo JJ, Stoltz DA, Zhu V, Volk KA, Segar JL, McCray PB Jr, Roghair RD (2014) Genotype-specific alterations in vascular smooth muscle cell function in cystic fibrosis piglets. J Cyst Fibros 13:251–259

    Article  CAS  PubMed  Google Scholar 

  • Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammer RE, Pursel VG, Rexroad CE Jr et al (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    Article  CAS  PubMed  Google Scholar 

  • Hao YH, Yong HY, Murphy CN et al (2006) Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Res 15:739–750

    Article  CAS  PubMed  Google Scholar 

  • Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauschild J, Petersen B, Santiago Y et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 108:12013–12017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey RD, Lillegard JB, Fisher JE et al (2011) Efficient production of Fah-null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer. Hepatology 54:1351–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey RD, Mao SA, Glorioso J et al (2014) Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease. Stem Cell Res 13:144–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann A, Kessler B, Ewerling S et al (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm IE, Alstrup AK, Luo Y (2016) Genetically modified pig models for neurodegenerative disorders. J Pathol 238:267–287

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Guo X, Fan N et al (2014) RAG1/2 knockout pigs with severe combined immunodeficiency. J Immunol 193:1496–1503

    Article  CAS  PubMed  Google Scholar 

  • Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110:13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Kang JT, Kwon DK, Park AR et al (2016) Production of alpha1, 3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology. J Vet Sci 17:89–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapourchali FR, Surendiran G, Chen L, Uitz E, Bahadori B, Moghadasian MH (2014) Animal models of atherosclerosis. World J Clin Cases 2:126–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kling J (2009) First US approval for a transgenic animal drug. Nat Biotechnol 27:302–304

    Article  CAS  PubMed  Google Scholar 

  • Kling J (2011) Fresh from the biologic pipeline—2010. Nat Biotechnol 29:197–200

    Article  CAS  PubMed  Google Scholar 

  • Klymiuk N, Mundhenk L, Kraehe K et al (2012) Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med (Berl) 90:597–608

    Article  CAS  Google Scholar 

  • Kolber-Simonds D, Lai L, Watt SR et al (2004) Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci USA 101:7335–7340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostic C, Lillico SG, Crippa SV et al (2013) Rapid cohort generation and analysis of disease spectrum of large animal model of cone dystrophy. PLoS One 8:e71363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft TW, Allen D, Petters RM, Hao Y, Peng YW, Wong F (2005) Altered light responses of single rod photoreceptors in transgenic pigs expressing P347L or P347S rhodopsin. Mol Vis 11:1246–1256

    CAS  PubMed  Google Scholar 

  • Kurome M, Ueda H, Tomii R, Naruse K, Nagashima H (2006) Production of transgenic-clone pigs by the combination of ICSI-mediated gene transfer with somatic cell nuclear transfer. Transgenic Res 15:229–240

    Article  CAS  PubMed  Google Scholar 

  • Kuwaki K, Tseng YL, Dor FJ et al (2005) Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11:29–31

    Article  CAS  PubMed  Google Scholar 

  • Lai L, Kolber-Simonds D, Park KW et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092

    Article  CAS  PubMed  Google Scholar 

  • Lavitrano M, Forni M, Varzi V et al (1997) Sperm-mediated gene transfer: production of pigs transgenic for a human regulator of complement activation. Transpl Proc 29:3508–3509

    Article  CAS  Google Scholar 

  • Lee HG, Lee HC, Kim SW et al (2009) Production of recombinant human von Willebrand factor in the milk of transgenic pigs. J Reprod Dev 55:484–490

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Kwon DN, Ezashi T et al (2014a) Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA 111:7260–7265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Lin YS, Tu CF, Yen CH (2014b) Recombinant human factor IX produced from transgenic porcine milk. Biomed Res Int 2014:315375

    PubMed  PubMed Central  Google Scholar 

  • Li G, Jiang P, Li Y et al (2009) Inhibition of porcine reproductive and respiratory syndrome virus replication by adenovirus-mediated RNA interference both in porcine alveolar macrophages and swine. Antivir Res 82:157–165

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li Q, Bao Y et al (2014) RNAi-based inhibition of porcine reproductive and respiratory syndrome virus replication in transgenic pigs. J Biotechnol 171:17–24

    Article  CAS  PubMed  Google Scholar 

  • Li P, Estrada JL, Burlak C et al (2015) Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 22:20–31

    Article  CAS  PubMed  Google Scholar 

  • Lillico SG, Proudfoot C, Carlson DF et al (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847

    Article  PubMed  Google Scholar 

  • Lisauskas SF, Cunha NB, Vianna GR et al (2008) Expression of functional recombinant human factor IX in milk of mice. Biotechnol Lett 30:2063–2069

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Chen Y, Niu Y et al (2014) TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu D, Liu S, Shang S et al (2015) Production of transgenic-cloned pigs expressing large quantities of recombinant human lysozyme in milk. PLoS One 10:e0123551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lutz AJ, Li P, Estrada JL et al (2013) Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20:27–35

    Article  PubMed  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Matsunari H, Nagashima H, Watanabe M et al (2013) Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci USA 110:4557–4562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    Article  CAS  PubMed  Google Scholar 

  • Moehle EA, Rock JM, Lee YL et al (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 104:3055–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    Article  CAS  PubMed  Google Scholar 

  • Moore FE, Reyon D, Sander JD et al (2012) Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS One 7:e37877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morcol T, Akers RM, Johnson JL et al (1994) The porcine mammary gland as a bioreactor for complex proteins. Ann N Y Acad Sci 721:218–233

    Article  CAS  PubMed  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  • Mussolino C, Cathomen T (2013) RNA guides genome engineering. Nat Biotechnol 31:208–209

    CAS  PubMed  Google Scholar 

  • Niu Y, Shen B, Cui Y et al (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843

    Article  CAS  PubMed  Google Scholar 

  • Notarangelo LD (2010) Primary immunodeficiencies. J Allergy Clin Immunol 125:S182–S194

    Article  PubMed  Google Scholar 

  • Nottle MB, Haskard KA, Verma PJ et al (2001) Effect of DNA concentration on transgenesis rates in mice and pigs. Transgenic Res 10:523–531

    Article  CAS  PubMed  Google Scholar 

  • Paleyanda RK, Velander WH, Lee TK et al (1997) Transgenic pigs produce functional human factor VIII in milk. Nat Biotechnol 15:971–975

    Article  CAS  PubMed  Google Scholar 

  • Petters RM, Alexander CA, Wells KD et al (1997) Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15:965–970

    Article  CAS  PubMed  Google Scholar 

  • Phelan JK, Bok D (2000) A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol Vis 6:116–124

    CAS  PubMed  Google Scholar 

  • Phelps CJ, Koike C, Vaught TD et al (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299:411–414

    Article  CAS  PubMed  Google Scholar 

  • Polejaeva IA, Chen SH, Vaught TD et al (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86–90

    Article  CAS  PubMed  Google Scholar 

  • Potash AE, Wallen TJ, Karp PH et al (2013) Adenoviral gene transfer corrects the ion transport defect in the sinus epithelia of a porcine CF model. Mol Ther 21:947–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radecke S, Radecke F, Cathomen T, Schwarz K (2010) Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Mol Ther 18:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsoondar J, Vaught T, Ball S et al (2009) Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 16:164–180

    Article  PubMed  Google Scholar 

  • Renner S, Fehlings C, Herbach N et al (2010) Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59:1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner S, Romisch-Margl W, Prehn C et al (2012) Changing metabolic signatures of amino acids and lipids during the prediabetic period in a pig model with impaired incretin function and reduced beta-cell mass. Diabetes 61:2166–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner S, Braun-Reichhart C, Blutke A et al (2013) Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes 62:1505–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reznikov LR, Dong Q, Chen JH et al (2013) CFTR-deficient pigs display peripheral nervous system defects at birth. Proc Natl Acad Sci USA 110:3083–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Rogers CS, Hao Y, Rokhlina T et al (2008a) Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118:1571–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers CS, Stoltz DA, Meyerholz DK et al (2008b) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross JW, Fernandez de Castro JP, Zhao J et al (2012) Generation of an inbred miniature pig model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 53:501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt C (2006) Belated approval of first recombinant protein from animal. Nat Biotechnol 24:877

    Article  CAS  PubMed  Google Scholar 

  • Shimatsu Y, Horii W, Nunoya T, Iwata A, Fan J, Ozawa M (2016) Production of human apolipoprotein(a) transgenic NIBS miniature pigs by somatic cell nuclear transfer. Exp Anim 65:37–43

    Article  CAS  PubMed  Google Scholar 

  • Simons JP, McClenaghan M, Clark AJ (1987) Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature 328:530–532

    Article  CAS  PubMed  Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28:3361–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer JR, Estrada JL, Collins EB et al (2011) Production of ELOVL4 transgenic pigs: a large animal model for Stargardt-like macular degeneration. Br J Ophthalmol 95:1749–1754

    Article  PubMed  Google Scholar 

  • Song KH, Kang YJ, Jin UH et al (2010) Cloning and functional characterization of pig CMP-N-acetylneuraminic acid hydroxylase for the synthesis of N-glycolylneuraminic acid as the xenoantigenic determinant in pig-human xenotransplantation. Biochem J 427:179–188

    Article  CAS  PubMed  Google Scholar 

  • Song J, Zhong J, Guo X et al (2013) Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res 23:1059–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soutar AK, Naoumova RP (2007) Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med 4:214–225

    Article  CAS  PubMed  Google Scholar 

  • Stoltz DA, Rokhlina T, Ernst SE et al (2013) Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest 123:2685–2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun N, Liang J, Abil Z, Zhao H (2012) Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol BioSyst 8:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Sung YH, Baek IJ, Kim DH et al (2013) Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31:23–24

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Iwamoto M, Saito Y et al (2012) Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10:753–758

    Article  CAS  PubMed  Google Scholar 

  • Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49:344–356

    Article  CAS  PubMed  Google Scholar 

  • Tesson L, Usal C, Menoret S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    Article  CAS  PubMed  Google Scholar 

  • Uddin B, Chen NP, Panic M, Schiebel E (2015) Genome editing through large insertion leads to the skipping of targeted exon. BMC Genom 16:1082

    Article  CAS  Google Scholar 

  • Umeyama K, Watanabe M, Saito H et al (2009) Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res 18:697–706

    Article  CAS  PubMed  Google Scholar 

  • Van Cott KE, Butler SP, Russell CG et al (1999) Transgenic pigs as bioreactors: a comparison of gamma-carboxylation of glutamic acid in recombinant human protein C and factor IX by the mammary gland. Genet Anal 15:155–160

    Article  PubMed  Google Scholar 

  • van der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12:479–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velander WH, Johnson JL, Page RL et al (1992a) High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc Natl Acad Sci USA 89:12003–12007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Velander WH, Page RL, Morcol T et al (1992b) Production of biologically active human protein C in the milk of transgenic mice. Ann N Y Acad Sci 665:391–403

    Article  CAS  PubMed  Google Scholar 

  • Vilahur G, Padro T, Badimon L (2011) Atherosclerosis and thrombosis: insights from large animal models. J Biomed Biotechnol 2011:907575

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    Article  CAS  PubMed  Google Scholar 

  • Wall RJ, Pursel VG, Shamay A, McKnight RA, Pittius CW, Hennighausen L (1991) High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc Natl Acad Sci USA 88:1696–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Exline CM, DeClercq JJ et al (2015a) Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33:1256–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhou J, Cao C et al (2015b) Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Sci Rep 5:13348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Du Y, Shen B et al (2015c) Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep 5:8256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Cao C, Huang J et al (2016) One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 6:20620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Nakano K, Matsunari H et al (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS One 8:e76478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wefers B, Meyer M, Ortiz O, Hrabe de Angelis M, Hansen J, Wurst W, Kuhn R (2013) Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc Natl Acad Sci USA 110:3782–3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J, Ouyang H, Wang Y et al (2012) Characterization of a hypertriglyceridemic transgenic miniature pig model expressing human apolipoprotein CIII. FEBS J 279:91–99

    Article  CAS  PubMed  Google Scholar 

  • Welsh MJ, Rogers CS, Stoltz DA, Meyerholz DK, Prather RS (2009) Development of a porcine model of cystic fibrosis. Trans Am Clin Climatol Assoc 120:149–162

    PubMed  PubMed Central  Google Scholar 

  • Wheeler DG, Joseph ME, Mahamud SD et al (2012) Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol 52:958–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitworth KM, Lee K, Benne JA et al (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whyte JJ, Samuel M, Mahan E et al (2011a) Vascular endothelium-specific overexpression of human catalase in cloned pigs. Transgenic Res 20:989–1001

    Article  CAS  PubMed  Google Scholar 

  • Whyte JJ, Zhao J, Wells KD et al (2011b) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Xu Z, Zou X et al (2013) Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Xin J, Yang H, Fan N et al (2013) Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 8:e84250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang D, Yang H, Li W et al (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21:979–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Guell M, Niu D et al (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21:1638–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL et al (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Jia R, Palange NJ et al (2015) Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One 10:e0120396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao J, Xu W, Ross JW et al (2015) Engineering protein processing of the mammary gland to produce abundant hemophilia B therapy in milk. Sci Rep 5:14176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wang L, Du Y et al (2016) Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Hum Mutat 37:110–118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National High Technology Research and Development Program of China (2012AA020602), the National Natural Science Foundation of China (31172281, 31272440), and the National Basic Research Program of China (2011CBA01005 and 2011CB944100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Huang, J. & Zhao, J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet 135, 1093–1105 (2016). https://doi.org/10.1007/s00439-016-1710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-016-1710-6

Keywords

Navigation