Skip to main content

Advertisement

Log in

Potential neoplastic evolution of Vero cells: in vivo and in vitro characterization

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Vero cell lines are extensively employed in viral vaccine manufacturing. Similarly to all established cells, mutations can occur during Vero cells in vitro amplification which can result in adverse features compromising their biological safety. To evaluate the potential neoplastic evolution of these cells, in vitro transformation test, gene expression analysis and karyotyping were compared among low- (127 and 139 passages) and high-passage (passage 194) cell lines, as well as transformed colonies (TCs). In vivo tumorigenicity was also tested to confirm preliminary in vitro data obtained for low passage lines and TCs. Moreover, Vero cells cultivated in foetal bovine serum-free medium and derived from TCs were analysed to investigate the influence of cultivation methods on tumorigenic evolution. Low-passage Vero developed TCs in soft agar, without showing any tumorigenic evolution when inoculated in the animal model. Karyotyping showed a hypo-diploid modal chromosome number and rearrangements with no difference among Vero cell line passages and TCs. These abnormalities were reported also in serum-free cultivated Vero. Gene expression revealed that high-passage Vero cells had several under-expressed and a few over-expressed genes compared to low-passage ones. Gene ontology revealed no significant enrichment of pathways related to oncogenic risk. These findings suggest that in vitro high passage, and not culture conditions, induces Vero transformation correlated to karyotype and gene expression alterations. These data, together with previous investigations reporting tumour induction in high-passage Vero cells, suggest the use of low-passage Vero cells or cell lines other than Vero to increase the safety of vaccine manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  Google Scholar 

  • Aubrit F, Perugi F, Léon A, Guéhenneux F, Champion-Arnaud P, Lahmar M, Schwamborn K (2015) Cell substrates for the production of viral vaccines. Vaccine 33:5905–5912

    Article  CAS  Google Scholar 

  • Barrett PN, Berezuk G, Fritsch S, Aichinger G, Hart MK, El-Amin W, Kistner O, Ehrlich HJ (2011) Efficacy, safety, and immunogenicity of a Vero-cell-culture-derived trivalent influenza vaccine: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 377:751–759

    Article  CAS  Google Scholar 

  • Barrett PN, Portsmouth D, Ehrlich HJ (2013) Vero cell culture-derived pandemic influenza vaccines: preclinical and clinical development. Expert Rev Vaccines 12:395–413

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  • Brown SW, Mehtali M (2010) The Avian EB66(R) cell line, application to vaccines, and therapeutic protein production. PDA J Pharm Sci Technol 64:419–425

    CAS  Google Scholar 

  • European Pharmacopoeia (2013) Cell substrates for the production of vaccines for human use, chapter 5.2.3, 8th edn

  • Chen T, Chen K (2009) Investigation and application progress of Vero cell serum-free culture. Int J Biol 1:41–47

    Google Scholar 

  • Chen A, Poh SL, Dietzsch C, Roethl E, Yan ML, Ng SK (2011) Serum-free microcarrier based production of replication deficient influenza vaccine candidate virus lacking NS1 using Vero cells. BMC Biotechnol 11:81. doi:10.1186/1472-6750-11-81

    Article  CAS  Google Scholar 

  • Contreras G, Bather R, Furesz J, Becker BC (1985) Activation of metastatic potential in African green monkey kidney cell lines by prolonged in vitro culture. In vitro Cell Dev Biol 21:649–652

    Article  CAS  Google Scholar 

  • Dequéant ML, Fagegaltier D, Hu Y, Spirohn K, Simcox A, Hannon GJ, Perrimon N (2015) Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization. Proc Natl Acad Sci USA. 112:12974–12979. Erratum. Proc Natl Acad Sci USA 112:E6408

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  Google Scholar 

  • Dotti S, Lombardo T, Villa R, Cacciamali A, Zanotti C, Andreani NA, Cinotti S, Ferrari M (2017) Transformation and tumorigenicity testing of simian cell lines and evaluation of Poliovirus replication. PlosOne 12:e0169391

    Article  Google Scholar 

  • Finaz C, Dubois MF, Cochet C, Vignal M, de Grouchy J (1976) Le caryotype du Chercopithèque (Cercopithecus Aethiops) marquage et nomenclature. Ann Genet 19:213–216

    CAS  Google Scholar 

  • Finelli P, Stanyon R, Plesker R, Ferguson-Smith MA, O’Brien PC, Wienberg J (1999) Reciprocal chromosome painting shows that the great difference in diploid number between human and African green monkey is mostly due to non-Robertsonian fissions. Mamm Genome 10:713–718

    Article  CAS  Google Scholar 

  • Frazatti-Gallina NM, Mourão-Fuches RM, Paoli RL, Silva ML, Miyaki C, Valentini EJ, Raw I, Higashi HG (2004) Vero-cell rabies vaccine produced using serum-free medium. Vaccine 23:511–517

    Article  CAS  Google Scholar 

  • Furesz J, Fanok A, Contreras G, Becker B (1989) Tumorigenicity testing of various cell substrates for production of biological. Dev Biol Stand 70:233–243

    CAS  Google Scholar 

  • Garcia-Mesa Y, Jay TR, Checkley MA, Luttge B, Dobrowolski C, Valadkhan S, Landreth GE, Karn J, Alvarez-Carbonell D (2016) Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J Neurovirol 23:47–66

    Article  Google Scholar 

  • Govorkova EA, Murti G, Meignier B, de Taisne C, Webster RG (1996) African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. J Virol 70:5519–5524

    CAS  Google Scholar 

  • Hoff H, Belletti B, Zhang H, Sell C (2004) The transformed phenotype. In: Giordano A, Romano G (eds) Book chapter in cell cycle control and dysregulation protocols: cyclins, cyclin-dependent kinases, and other factors. Humana Press, Totowa, pp 95–104

    Chapter  Google Scholar 

  • Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Corrada Bravo H, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12:115–121

    Article  CAS  Google Scholar 

  • Johnson JB, Noguchi PD, Browne WC, Petricciani JC (1981) Tumorigenicity of continuous monkey cell lines in in vivo and in vitro systems. Dev Biol Stand 50:27–35

    CAS  Google Scholar 

  • Levenbook IS, Petricciani JC, Elisberg BL (1984) Tumorigenicity of Vero cells. J Biol Stand 12:391–398

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  • Ma L, Nie L, Liu J, Zhang B, Song S, Sun M, Yang J, Yang Y, Fang X, Hu S, Zhao Y, Yu J (2012) An RNA-seq-based gene expression profiling of radiation-induced tumorigenic mammary epithelial cells. Genomics Proteomics Bioinformatics 10:326–335

    Article  CAS  Google Scholar 

  • Macpherson I, Montagnier L (1964) Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology 23:291–294

    Article  CAS  Google Scholar 

  • Manohar M, Orrison B, Peden K, Lewis AM Jr (2008) Assessing the tumorigenic phenotype of VERO cells in adult and new-born nude mice. Biologicals 36:65–72

    Article  CAS  Google Scholar 

  • Montagnon BJ (1989) Polio and rabies vaccines produced in continuous cell lines: a reality for Vero cell line. Dev Biol Stand 70:27–47

    CAS  Google Scholar 

  • Petricciani JC, Levenbook IS, Wierenga DE, Qi Y (1987) Early passage primate cell immortality is independent of tumorigenicity. In vitro Cell Dev Biol 23:523–526

    Article  CAS  Google Scholar 

  • Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, Vilo J (2016) g: Profiler—a web server for functional interpretation of gene lists (2016 update). Nucl Acids Res 44(W1):W83–89. doi:10.1093/nar/gkw199

    Article  CAS  Google Scholar 

  • Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375

    Article  CAS  Google Scholar 

  • Rhim JS, Schell K, Creasy B, Case W (1969) Biological characteristics and viral susceptibility of an African green monkey kidney cell line (Vero). Proc Soc Exp Biol Med 132:670–678

    Article  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  Google Scholar 

  • Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen and Co., Ltd, London

    Google Scholar 

  • Schuller E, Klingler A, Dubischar-Kastner K, Dewasthaly Müller S (2011) Safety profile of the Vero cell-derived Japanese encephalitis virus (JEV) vaccine IXIARO(®). Vaccine 29:8669–8676

    Article  CAS  Google Scholar 

  • Sheets R (2000) Food and Drug Administration History and characterization of the Vero cell line. A report prepared by CDR Rebecca Sheets, Ph. D., USPHS. CBER/OVRR/DVRPA/VVB for the Vaccines and Related Biological Products Advisory Committee Meeting to be held on May 12, 2000. http://www.fda.gov/ohrms/dockets/AC/00/backgrd/3616b1a.pdf

  • Swanson SK, Mento SJ, Weeks-Levy C, Brock BD, Kowal KJ, Wallace RE, Ritchey MB, Cano FR (1988) Characterization of Vero cells. J Biol Stand 16:311–320

    Article  CAS  Google Scholar 

  • Teferedegne B, Macauley J, Foseh G, Dragunsky E, Chumakov K, Murata H, Peden K, Lewis AM Jr (2014) MicroRNAs as potential biomarkers for Vero cell tumorigenicity. Vaccine 32:4799–4805

    Article  CAS  Google Scholar 

  • US FDA, CBER, Vaccines and related biological products advisory committee meeting, Wednesday 16 May 2001 http://www.fda.gov/ohrms/dockets/ac/00/backgrd/3616b1a.pdf

  • Van Steenis G, van Wezel AL (1981) Use of the ATG-treated new-born rat for in vivo tumorigenicity testing of cell substrates. Dev Biol Stand 50:37–46

    Google Scholar 

  • WHO Expert Committee on Biological Standardization (2013) Sixty-first report. WHO Technical Report Series, No. 978, 2013 Annex 3. Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks. http://www.who.int/biologicals/expert_committee/TRS_978_61st_report.pdf

  • Yasumura Y, Kawakita Y (1963) Study of SV40 in tissue culture. Nippon Rinsho 21:1201–1205

    Google Scholar 

  • Zhang DL, Liu SG, Yan LF, Li LJ, Huang GS, Fang FD, Xia GT, He XY, Gao BX, Bai XH, Wang W, Ding PG (2001) Carcinogenesis or tumorigenicity testing of animal cell lines for vaccine preparation by colony formation on soft agar and by agglutination under plant lectins. Cell Biol Int 25:997–1002

    Article  CAS  Google Scholar 

  • Zhang DL, Ji L, Li LJ, Huang GS (2004) Systematically experimental investigation on carcinogenesis or tumorigenicity of VERO cell lines of different karyotypes in nude mice in vivo used for viral vaccine manufacture. Acta Genet Sin 31:647–660

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Roberta Trainini, Dr. Chiara Tontini for technical assistance and Dr. Daniela Gelmetti and Dr. Lucia Gibelli for histological investigations. The study has been supported by a Grant from the Regione Lombardia (Project Reg. Lomb. Cell 2008) and a Grant from the Ministero della Salute (PRC2014009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Villa.

Additional information

N. A. Andreani and S. Renzi have contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Graphical representation of the experimental design and major results of the study. Dots in the in vitro section means positivity to the test. The red circle in the in vivo experiment means tumour formation after inoculum of the cell line in nude mice. (PDF 1603 kb)

Tab. S1

Log fold-change of DEGs in pairwise comparisons. the first column reports feature IDs obtained in the RNA-seq experiment. Columns 2, 3 and 4 show log fold-change values of each pairwise comparison. A positive value means higher expression in the first term of the comparison; on the contrary, a negative value means higher expression in the second term of the comparison. (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreani, N.A., Renzi, S., Piovani, G. et al. Potential neoplastic evolution of Vero cells: in vivo and in vitro characterization. Cytotechnology 69, 741–750 (2017). https://doi.org/10.1007/s10616-017-0082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0082-7

Keywords

Navigation