Skip to main content
Log in

Extrinsic Primary Afferent Neurons Projecting to the Pylorus in the Domestic Pig—Localization and Neurochemical Characteristics

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The pig, as an omnivorous animal, seems to be especially valuable species in “gastrointestinal” experiments. The importance of the pylorus in the proper functioning of the digestive tract is widely accepted. Although it is commonly known that sensory innervation plays an important role in the regulation of gastric activity and gastrointestinal tissue resistance, there is complete lack of data on the extrinsic afferents projecting to the swine pylorus. The present experiment has been designed to discover the precise localization and neurochemical properties of the primary sensory neurons projecting to the porcine pylorus. Combined retrograde tracing technique and double immunocytochemistry were applied in five piglets. An additional RT-PCR reaction was used to confirm the presence of all investigated neurotransmitters in the studied ganglia. Traced neurons were localized within the bilateral nodose ganglia of the vagus and bilateral dorsal root ganglia spreading from Th4 to L1. Fast Blue-positive afferents expressed immunoreactivity to substance P, calcitonin gene-related peptide, neuronal isoform of nitric oxide synthase, and galanin. In the vagal and spinal ganglia, the percentages of traced neurons immunoreactive to these substances were 54.8, 10.7, 49.6, 7.4 % and 22.2, 75.5, 95.2 %, respectively, and the solitary perikarya were Gal immunoreactive. The presence of all substances studied in the ganglion tissue was confirmed by RT-PCR technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahlman H, Dahlstrom A (1983) Vagal mechanisms controlling serotonin release from the gastrointestinal tract and pyloric motor function. J Auton Nerv Syst 9:119–140

    Article  CAS  PubMed  Google Scholar 

  • Allescher HD, Daniel EE, Dent J, Fox JE (1989) Inhibitory function of VIP-PHI and galanin in canine pylorus. Am J Physiol 256:G789–G797

    CAS  PubMed  Google Scholar 

  • Allescher HD, Edwin MD, Daniel EE (1994) Role of NO in pyloric, antral and duodenal motility and its interaction with other inhibitory mediators. Dig Dis Sci Sup 39:73S–75S

    Article  CAS  Google Scholar 

  • Alm P, Uvelius B, Ekstrom J, Holmqvist B, Larsson B, Andersson KE (1995) Nitric oxide synthase-containing neurons in rat parasympathetic, sympathetic and sensory ganglia: A comparative study. Histochem J 27:819–831

    CAS  PubMed  Google Scholar 

  • Boeckxstaens GE, Pelckmans PA, Bult H, De Man JG, Herman AG, Van Maercke YM (1991) Evidence for nitric oxide as mediator of non-adrenergic non-cholinergic relaxations induced by ATP and GABA in the canine gut. Br J Pharmacol 102:434–438

    Article  CAS  PubMed  Google Scholar 

  • Carobi C, Candio F (1990) Vagal afferent innervation of the pylorus and the upper small intestine studied in the rat with the horseradish peroxidase technique. Experientia 46:48–50

    Article  CAS  PubMed  Google Scholar 

  • Carr PA, Nagy JI (1993) Emerging relationships between cytochemical properties and sensory modality transmission in primary sensory neurons. Brain Res Bull 30:209–219

    Article  CAS  PubMed  Google Scholar 

  • Chiocchetti R, Clavenzani P, Barazzoni AM et al (2003) Viscerotopic representation of the subdiaphragmatic tracts of the digestive apparatus within the vagus complex in the sheep. Brain Res 961:32–44

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Brookes S, Zagorodnyuk V (2004) How many kinds of visceral afferents? Gut 53:ii1–ii4

    PubMed  Google Scholar 

  • Cottrell DF, Greenhorn JG (1987) The vagal and spinal innervation of the gastro-duodenal junction of sheep. Q J Exp Physiol 72:513–524

    CAS  PubMed  Google Scholar 

  • Desai KM, Warner TD, Bishop AE, Polak JM, Vane JR (1994) Nitric oxide, and not vasoactive intestinal peptide, as the main neurotransmitter of vagally induced relaxation of the guinea pig stomach. Br J Pharmacol 113:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Domoto T, Teramoto M, Tanigawa K, Tamura K, Yasui Y (1995) Origins of nerve fibers containing nitric oxide synthase in the rat celiac-superior mesenteric ganglion. Cell Tissue Res 281:215–221

    CAS  PubMed  Google Scholar 

  • El OT, Mei N (1978) Innervation sensitive de la jonction gastroduodenale: donnes electrophysiologiques, histologiques et histochemiques recentes. Com Ren Sean Soc Biol Fil 172:283–288

    Google Scholar 

  • Elfvin LG, Lindh B (1982) A study of the extrinsic innervation of the guinea pig pylorus with the horseradish peroxidase tracing technique. J Comp Neurol 208:317–324

    Article  CAS  PubMed  Google Scholar 

  • Gibbins IL, Furness JB, Costa M, MacIntyre I, Hillyard CJ, Girgis S (1985) Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci Lett 57:125–130

    Article  CAS  PubMed  Google Scholar 

  • Green T, Dockray GJ (1987) Calcitonin gene-related peptide and substance P in afferents to the upper gastrointestinal tract in the rat. Neurosci Lett 76:151–156

    Article  CAS  PubMed  Google Scholar 

  • Green T, Dockray GJ (1988) Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse and guinea-pig. Neuroscience 25:181–193

    Article  CAS  PubMed  Google Scholar 

  • Grimes PA, Mokashi A, Stone RA, Lahiri S (1995) Nitric oxide synthase in autonomic innervation of the cat carotid body. J Auton Nerv Syst 54:80–86

    Article  CAS  PubMed  Google Scholar 

  • Grundy D, Gharib-Naseri MK, Hutson D (1993) Role of nitric oxide and vasoactive intestinal polypeptide in vagally mediated relaxation of the gastric corpus in the anaesthetized ferret. J Auton Nerv Syst 43:241–246

    Article  CAS  PubMed  Google Scholar 

  • Heym C, Braun B, Shuyi Y, Klimaschewski L, Colombo-Benkmann M (1995) Immunohistochemical correlation of human adrenal nerve fibres and thoracic dorsal root neurons with special reference to substance P. Histochem Cell Biol 104:233–243

    Article  CAS  PubMed  Google Scholar 

  • Holzer P (1998) Neural emergency system in the stomach. Gastroenterology 114:823–839

    Article  CAS  PubMed  Google Scholar 

  • Holzer P, Wachter C, Heinemann A, Jocic M, Lippe IT, Herbert MK (1995) Diverse interactions of calcitonin gene related peptide and nitric oxide in the gastric and cutaneous microcirculation. Can J Physiol Pharmacol 73:991–994

    Article  CAS  PubMed  Google Scholar 

  • Ishiguchi T, Takahashi T, Itoh H, Owyang C (2000) Nitrergic and purinergic regulation of the rat pylorus. Am J Physiol Gastrointest Liver Physiol 279:G740–G747

    CAS  PubMed  Google Scholar 

  • Kobbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351

    Article  CAS  PubMed  Google Scholar 

  • Kressel M, Berthoud H-R, Neuhuber WL (1994) Vagal innervation of the rat pylorus: an anterograde tracing study using carbocyanine dyes and laser scanning confocal microscopy. Cell Tissue Res 275:109–123

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht N, Burchert M, Respondek M, Muller KM, Peskar BM (1993) Role of calcitonin gene-related peptide and nitric oxide in the gastroprotective effect of capsaicin in the rat. Gastroenterology 104:1371–1380

    CAS  PubMed  Google Scholar 

  • Landry M, Aman K, Dostrovsky J et al (2003) Galanin expression in adult human dorsal root ganglion neurons: initial observations. Neuroscience 117:795–809

    Article  CAS  PubMed  Google Scholar 

  • Laplace JP, Cuber JC (1984) Total vagal deafferentation and gastric emptying in swine. Reprod Nutr Dev 24:655–670

    Article  CAS  PubMed  Google Scholar 

  • Lidberg P (1985) On the role of substance P and serotonin in the pyloric motor control. An experimental study in cat and rat. Acta Physiol Scand Suppl 538:1–69

    CAS  PubMed  Google Scholar 

  • Lidberg P, Dahlstrom A, Lundberg JM, Ahlman H (1983) Different modes of action of substance P in the motor control of the feline stomach and pylorus. Regul Pept 7:41–52

    Article  CAS  PubMed  Google Scholar 

  • Lindestrom LM, Ekblad E (2002) Origins and projections of nerve fibres in rat pyloric sphincter. Auton Neurosci 97:73–82

    Article  PubMed  Google Scholar 

  • Lindh B, Dalsgaard CJ, Elfvin LG, Hokfelt T, Cuello AC (1983) Evidence of substance P immunoreactive neurons in dorsal root ganglia and vagal ganglia projecting to the guinea pig pylorus. Brain Res 269:365–369

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Patacchini R, Meini S, Giuliani S (1993) Nitric oxide is the mediator of tachykinin NK3 receptor-induced relaxation in the circular muscle of the guinea-pig ileum. Eur J Pharmacol 240:45–50

    Article  CAS  PubMed  Google Scholar 

  • Meulemans AL, Eelen JG, Schuurkes JA (1995) NO mediates gastric relaxation after brief vagal stimulation in anesthetized dogs. Am J Physiol 269:G255–G261

    CAS  PubMed  Google Scholar 

  • Perry MJ, Lawson SN (1998) Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience 85:293–310

    Article  CAS  PubMed  Google Scholar 

  • Philippe C, Clerc N, Mazet B, Niel JP (1996) Immunochemical study of galanin in the cat digestive tract and autonomic ganglia. Peptides 17:1331–1335

    Article  CAS  PubMed  Google Scholar 

  • Philippe C, Cuber JC, Bosshard A, Rampin O, Laplace JP, Chayvialle JA (1990) Galanin in porcine vagal sensory nerves: immunohistochemical and immunochemical study. Peptides 11:989–993

    Article  CAS  PubMed  Google Scholar 

  • Ramkumar D, Schulze KS (2005) The pylorus. Neurogastroenterol Motil 17(Suppl 1):22–30

    Article  PubMed  Google Scholar 

  • Rattan S, Tamura W (1998) Role of galanin in the gastrointestinal sphincters. Ann N Y Acad Sci 863:143–155

    Article  CAS  PubMed  Google Scholar 

  • Scharoun SL, Barone FC, Wayner MJ, Jones SM (1984) Vagal and gastric connections to the central nervous system determined by the transport of horseradish peroxidase. Brain Res Bull 13:573–583

    Article  CAS  PubMed  Google Scholar 

  • Smits GJ, Lefebvre RA (1994) Tachykinin receptors involved in the contractile effect of the natural tachykinins in the rat gastric fundus. J Auton Pharmacol 14:383–392

    Article  CAS  PubMed  Google Scholar 

  • Su HC, Bishop AE, Power RF, Hamada Y, Polak JM (1987) Dual intrinsic and extrinsic origins of CGRP- and NPY-immunoreactive nerves of rat gut and pancreas. J Neurosci 7:2674–2687

    CAS  PubMed  Google Scholar 

  • Swindle MM (1984) Swine as replacements for dogs in the surgical teaching and research laboratory. Lab Anim Sci 34:383–385

    CAS  PubMed  Google Scholar 

  • Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49:344–356

    Article  CAS  PubMed  Google Scholar 

  • Swindle MM, Moody DC, Philips LD (1992) Swine as models in biomedical research. Iowa State University Press, Ames

    Google Scholar 

  • Swindle MM, Smith AC, Hepburn BJ (1988) Swine as models in experimental surgery. J Invest Surg 1:65–79

    Article  CAS  PubMed  Google Scholar 

  • Tarakci B, Vaillant C (1999) The location of extrinsic afferent and efferent neurons innervating the stomach and colon in rat. Tr J of Veterinary and Animal Sciences 23:153–158

    Google Scholar 

  • Vanderwinden JM, Mailleux P, Schiffmann SN, Vanderhaeghen JJ, De Laet MH (1992) Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N Engl J Med 327:511–515

    Article  CAS  PubMed  Google Scholar 

  • Villar MJ, Cortes R, Theodorsson E et al (1989) Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience 33:587–604

    Article  CAS  PubMed  Google Scholar 

  • Wiesenfeld-Hallin Z, Bartfai T, Hokfelt T (1992) Galanin in sensory neurons in the spinal cord. Front Neuroendocrinol 13:319–343

    CAS  PubMed  Google Scholar 

  • Wiesenfeld-Hallin Z, Xu XJ (1998) Galanin in somatosensory function. Ann N Y Acad Sci 863:383–389

    Article  CAS  PubMed  Google Scholar 

  • Xu XJ, Hokfelt T, Bartfai T, Wiesenfeld-Hallin Z (2000) Galanin and spinal nociceptive mechanisms: recent advances and therapeutic implications. Neuropeptides 34:137–147

    Article  CAS  PubMed  Google Scholar 

  • Zalecki M (2012) Localization and neurochemical characteristics of the extrinsic sympathetic neurons projecting to the pylorus in the domestic pig. J Chem Neuroanat 43:1–13

    Article  CAS  PubMed  Google Scholar 

  • Zalecki M, Podlasz P, Pidsudko Z, Wojtkiewicz J, Kaleczyc J (2012) Vagal projections to the pylorus in the domestic pig (Sus scrofa domestica). Auton Neurosci 171:21–27

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Verge V, Wiesenfeld-Hallin Z et al (1993) Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy. J Comp Neurol 335:563–575

    Article  CAS  PubMed  Google Scholar 

  • Zhu HC, Zhao J, Luo CY, Li QQ (2012) Gastrointestinal dysfunction in a Parkinson's disease rat model and the changes of dopaminergic, nitric oxidergic, and cholinergic neurotransmitters in myenteric plexus. J Mol Neurosci 47:15–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Zalecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalecki, M. Extrinsic Primary Afferent Neurons Projecting to the Pylorus in the Domestic Pig—Localization and Neurochemical Characteristics. J Mol Neurosci 52, 82–89 (2014). https://doi.org/10.1007/s12031-013-0116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0116-3

Keywords

Navigation