Skip to main content
Log in

Stable carbon and oxygen isotopes of four planktonic foraminiferal species from core-top sediments of the Indonesian throughflow region and their significance

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Horizontal and vertical distributions of δ 18O and δ 13C were investigated in shells of four planktonic foraminiferal species, Globigerinoides ruber, Globigerinoides sacculifer, Pulleniatina obliquiloculata and Neogloboquedrina dutertrei, from a total of 62 core-top sediment samples from the Indonesian throughflow region. Results were compared to modern hydrologic conditions in order to explore potential of proxies in reconstructing fluvial discharge and upper ocean water column characteristics in this region. Our results show that, in the Makassar Strait, both of depleted δ 18O and δ 13C of these four species were linked to freshwater input. In the Bali Sea, however, depleted δ 18O and δ 13C for these species may be due to different reasons. Depleted δ 18O was a result of freshwater input and as well influenced by along-shore currents while depleted δ 13C was more likely due to the Java-Sumatra upwelling. Comparison of shell δ 18O records and hydrographic data of World Ocean Atlas 2005 suggests that G. ruber and G. sacculifer calcify within the mixed-layer, respectively at 0–50 m and 20–75 m water depth, and P. obliquiloculata and N. dutertrei within the upper thermocline, both at 75–125 m water depth. N. dutertrei calcifies at slightly deeper water depth than P. obliquiloculata does. In general, δ 13C values of both G. ruber and G. sacculifer are larger than those of P. obliquiloculata and N. dutertrei at all sites, possibly related to depth habitats of these species and vertical distribution of nutrients in the Indonesian throughflow region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand P, Elderfield H, Conte M H. 2003. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18(2): 1050

    Article  Google Scholar 

  • Antonov J I, Locarnini R A, Boyer T P, et al. 2006. World Ocean Atlas 2005, Volume 2: Salinity. In: Levitus S, ed. NOAA Atlas NESDIS 62. Washington, DC: US Government Printing Office, 182

    Google Scholar 

  • Bemis B E, Spero H J, Bijma J, et al. 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography, 13(2): 150–160

    Article  Google Scholar 

  • Butzin M, Prange M, Lohmann G. 2005. Radiocarbon simulations for the glacial ocean: the effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth Planet Sci Lett, 235(1–2): 45–61

    Article  Google Scholar 

  • Cheng Xinrong, Huang Baoqi, Jian Zhimin, et al. 2005. Foraminiferal isotopic evidence for monsoonal activity in the South China Sea: a present-LGM comparison. Mar Micropaleontol, 54(1–2): 125–139

    Article  Google Scholar 

  • Clemens S C, Prell W L, Sun Youbin, et al. 2008. Southern Hemisphere forcing of Pliocene δ 18O and the evolution of Indo-Asian monsoons. Paleoceanography, 23(4): PA4210

    Article  Google Scholar 

  • Dang Haowen, Jian Zhimin, Bassinot F, et al. 2012. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool. Geophys Res Lett, 39(1): L01701

    Article  Google Scholar 

  • D’Arrigo R, Abram N, Ummenhofer C, et al. 2011. Reconstructed streamflow for Citarum River, Java, Indonesia: linkages to tropical climate dynamics. Climate Dyn, 36(3): 451–462

    Article  Google Scholar 

  • Fairbanks R G, Sverdlove M, Free R, et al. 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature, 298(5877): 841–844

    Article  Google Scholar 

  • Fairbanks R G, Mortlock R A, Chiu T C, et al. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat Sci Rev, 24(16–17): 1781–1796

    Article  Google Scholar 

  • Fan Weijia, Jian Zhimin, Bassinot F, et al. 2013. Holocene centennialscale changes of the Indonesian and South China Sea throughflows: evidences from the Makassar Strait. Glob Planet Change, 111: 111–117

    Article  Google Scholar 

  • Farmer E C, Kaplan A, de Menocal P B, et al. 2007. Corroborating ecological depth preferences of planktonic foraminifera in the tropical Atlantic with the stable oxygen isotope ratios of core top specimens. Paleoceanography, 22(3): PA3205

    Article  Google Scholar 

  • Field D B. 2004. Variability in vertical distributions of planktonic foraminifera in the California Current: relationships to vertical ocean structure. Paleoceanography, 19(2): PA2014

    Article  Google Scholar 

  • Garcia H E, Locarnini R A, Boyer T P, et al. 2006. World Ocean Atlas 2005, Volume 4: Nutrients (phosphate, nitrate, silicate). In: Levitus S, ed. NOAA Atlas NESDIS 64. Washington DC: US Government Printing Office, 396

    Google Scholar 

  • Gibbons F T. 2012. The centennial and millennial variability of the IndoPacific warm pool and the Indonesian throughflow [dissertation]. Massachusetts: Massachusetts Institute of Technology and Woods Hole Oceanographic Institute

    Book  Google Scholar 

  • Godfrey J S. 1996. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: a review. J Geophys Res, 101(C5): 12217–12237

    Article  Google Scholar 

  • Gordon A L. 1986. Interocean exchange of thermocline water. J Geophys Res, 91(C4): 5037–5046

    Article  Google Scholar 

  • Gordon A L. 2005. Oceanography of the Indonesian seas and their throughflow. Oceanography, 18(4): 14–27

    Article  Google Scholar 

  • Gordon A L, Susanto R D, Vranes K. 2003. Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature, 425(6960): 824–828

    Article  Google Scholar 

  • Ingram B L, Ingle J C, Conrad M E. 1996. A 2000 yr record of Sacramento-San Joaquin river inflow to San Francisco Bay estuary, California. Geology, 24(4): 331–334

    Article  Google Scholar 

  • Kuroyanagi A, Kawahata H. 2004. Vertical distribution of living planktonic foraminifera in the seas around Japan. Mar Micropaleontol, 53(1–2): 173–196

    Article  Google Scholar 

  • Linsley B K, Rosenthal Y, Oppo D W. 2010. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool. Nat Geosci, 3(8): 578–583

    Article  Google Scholar 

  • Locarnini R A, Mishonov A V, Antonov J I, et al. 2006. World Ocean Atlas 2005, Volume 1: Temperature. In: Levitus S, ed. NOAA Atlas NESDIS 61. Washington, DC: US Government Printing Office, 182

    Google Scholar 

  • McBride J L, Haylock M R, Nicholls N. 2003. Relationships between the Maritime Continent heat source and the El Niño-Southern Oscillation phenomenon. J Climate, 16(17): 2905–2914

    Article  Google Scholar 

  • Mohtadi M, Oppo D W, Steinke S, et al. 2011. Glacial to Holocene swings of the Australian-Indonesian monsoon. Nat Geosci, 4(8): 540–544

    Article  Google Scholar 

  • Mohtadi M, Steinke S, Groeneveld J, et al. 2009. Low-latitude control on seasonal and interannual changes in planktonic foraminiferal flux and shell geochemistry off south Java: a sediment trap study. Paleoceanography, 24(1): PA1201

    Article  Google Scholar 

  • Morimoto M, Abe O, Kayanne H, et al. 2002. Salinity records for the 1997–98 El Niño from Western Pacific corals. Geophys Res Lett, 29(11): 35–1–35–4

    Article  Google Scholar 

  • Mulitza S, Arz H, Mücke S K V, et al. 1999. The South Atlantic carbon isotope record of planktic foraminifera. In: Fischer G, Wefer G, eds. Use of Proxies in Paleoceanography: Examples from the South Atlantic. Berlin Heidelberg: Springer-Verlag, 427–445

    Chapter  Google Scholar 

  • Newton A, Thunell R, Stott L. 2011. Changes in the Indonesian throughflow during the past 2000 yr. Geology, 39(1): 63–66

    Article  Google Scholar 

  • Oppenheimer C. 2003. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Physl Geog, 27(2): 230–259

    Article  Google Scholar 

  • Oppo D W, Rosenthal Y, Linsley B K. 2009. 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature, 460 (7259): 1113–1116

    Article  Google Scholar 

  • Pastouret L, Chamley H, Delibrias G, et al. 1978. Late Quaternary climatic changes in western tropical Africa deduced from deepsea sedimentation off the Niger delta. Oceanol Acta, 1(2): 217–232

    Google Scholar 

  • Peeters F. 2000. The distribution and stable isotope composition of living planktic foraminifera in relation to seasonal changes in the Arabian Sea [dissertation]. Amsterdam: Free University of Amsterdam

    Google Scholar 

  • Pierre C. 1999. The oxygen and carbon isotope distribution in the Mediterranean water masses. Mar Geol, 153(1–4): 41–55

    Article  Google Scholar 

  • Potemra J T, Lukas R, Mitchum G T. 1997. Large-scale estimation of transport from the Pacific to the Indian Ocean. J Geophys Res, 102(C13): 27795–27812

    Article  Google Scholar 

  • Qu Tangdong, Du Yan, Strachan J, et al. 2005. Sea surface temperature and its variability in the Indonesian region. Oceanography, 18(4): 50–61

    Article  Google Scholar 

  • Qu Tangdong, Song Y T, Yamagata T. 2009. An introduction to the South China Sea throughflow: its dynamics, variability, and application for climate. Dyn Atmos Oceans, 47(1–3): 3–14

    Article  Google Scholar 

  • Ropelewski C F, Halpert M S. 1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Wea Rev, 115: 1606–1626

    Article  Google Scholar 

  • Rosenthal Y, Oppo D W, Linsley B K. 2003. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. Geophys Res Lett, 30(8): 1428

    Article  Google Scholar 

  • Sadekov A, Eggins S M, De Deckker P, et al. 2009. Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Pulleniatina obliquiloculata. Paleoceanography, 24(3): PA3201

    Article  Google Scholar 

  • Saji N H, Goswami B N, Vinayachandran P N, et al. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401(6751): 360–363

    Google Scholar 

  • Schleicher M, Grootes P M, Nadeau M J, et al. 1998. The carbonate 14C background and its components at the Leibniz AMS facility. Radiocarbon, 40(1): 85–93

    Article  Google Scholar 

  • Sprintall J, Wijffels S E, Molcard R, et al. 2009. Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006. J Geophys Res, 114(C7): C07001

    Article  Google Scholar 

  • Stothers R B. 1984. The great Tambora eruption in 1815 and its aftermath. Science, 297(4654): 1191–1198

    Article  Google Scholar 

  • Stott L, Timmerman A, Thunell R. 2007. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science, 318(5849): 435–438

    Article  Google Scholar 

  • Susanto R D, Gordon A L, Zheng Quanan. 2001. Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophy Res Lett, 28(8): 1599–1602

    Article  Google Scholar 

  • Visser K, Thunell R, Stott L. 2003. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature, 421(6919): 152–155

    Article  Google Scholar 

  • Wajsowicz R C, Gordon A L, Ffield A, et al. 2003. Estimating transport in Makassar Strait. Deep Sea Res II Top Stud Oceanogr, 50(12–13): 2163–2181

    Article  Google Scholar 

  • Wang Bin, Clemens S C, Liu Ping. 2003. Contrasting the Indian and east Asian monsoons: implications on geologic timescales. Mar Geol, 201(1–3): 5–21

    Article  Google Scholar 

  • Webster P J, Magaña V O, Palmer T N, et al. 1998. Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans, 103(C7): 14451–14510

    Article  Google Scholar 

  • Webster P J, Moore A M, Loschnigg J P, et al. 1999. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401(6751): 356–360

    Article  Google Scholar 

  • Wei Xing, Liao Xiaomei, Zhan Haigang, et al. 2012. Estimates of potential new production in the Java-Sumatra upwelling system. Chin J Oceanol Limnol, 30(6): 1063–1067

    Article  Google Scholar 

  • Xu Jian. 2014. Change of Indonesian throughflow outflow in response to East Asian Monsoon and ENSO activities since the last glacial. Sci China Earth Sci, 57(4): 791–801

    Article  Google Scholar 

  • Xu Jian, Holbourn A, Kuhnt W, et al. 2008. Centennial Changes in the thermocline structure of the Indonesian outflow during terminations I and II. Earth Planet Sci Lett, 273(1–2): 152–162

    Article  Google Scholar 

  • Xu Jian, Kuhnt W, Holbourn A, et al. 2006. Changes in the vertical profile of the Indonesian Throughflow during Termination II: evidence from the Timor Sea. Paleoceanography, 21(4): PA4202

    Article  Google Scholar 

  • Xu Jian, Kuhnt W, Holbourn A, et al. 2010. Indo-pacific warm pool variability during the Holocene and last glacial maximum. Paleoceanography, 25(4): PA4230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41176044; Shaanxi Provincial Technology Foundation for Selected Overseas Chinese Scholar under contract Shaan Renshe [2015] No. 1190.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zuraida, R., Xu, J. et al. Stable carbon and oxygen isotopes of four planktonic foraminiferal species from core-top sediments of the Indonesian throughflow region and their significance. Acta Oceanol. Sin. 35, 63–75 (2016). https://doi.org/10.1007/s13131-016-0890-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-016-0890-1

Key words

Navigation