Skip to main content
Log in

Non-mammalian Animal Models Offer New Perspectives on the Treatment of TBI

  • Invited Commentary on Traumatic Brain Injury Rehabilitation
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Patients who have sustained a traumatic brain injury (TBI) exhibit clinical symptoms of widely varying types and severities. In contrast, because of cost, experimental flexibility, and animal welfare, preclinical rodent models of TBI are designed to exhibit relatively homogeneous symptoms. This disconnect may explain why drugs developed using rodent models have universally failed in clinical studies. We suggest that drug development for TBI could benefit from preclinical studies using non-mammalian animals, where cost, experimental flexibility, and animal welfare are less of an issue and variables that affect clinical symptoms, including genotype, age, and environmental factors, can be more extensively investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Maas AI, Roozenbeek B, Manley GT. Clinical trials in traumatic brain injury: past experience and current developments. Neurotherapeutics. 2010;7:115–26.

    PubMed  PubMed Central  Google Scholar 

  2. Shouten JW. Neuroprotection in traumatic brain injury: a complex struggle against the biology of nature. Curr Opin Crit Care. 2007;13:134–42.

    Google Scholar 

  3. Narayan RK, Michel ME, Ansell B, et al. Clinical trials in head injury. J Neurotrauma. 2002;19:503–57.

    PubMed  Google Scholar 

  4. Marklund N, Bakshi A, Castelbuono DJ, et al. Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr Pharm Des. 2006;12:1645–80.

    CAS  PubMed  Google Scholar 

  5. • Kabadi SV, Faden AI. Neuroprotective strategies for traumatic brain injury: Improving clinical translation. Int J Mol Sci. 2014;15:1216–36. This paper reviews strategies for improving clinical studies of candidate TBI treatments.

  6. Deutsch ER, Espinoza TR, Fahim A. Progesterone’s role in neuroprotection, a review of the evidence. Brain Res. 2013;1530:82–105.

    CAS  PubMed  Google Scholar 

  7. Wright DW, Kellerman AL, Hertzberg VS, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med. 2007;49:391–402.

    PubMed  Google Scholar 

  8. Xiao G, Wei J, Yan W, et al. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care. 2008;12:R61.

    PubMed  PubMed Central  Google Scholar 

  9. Wright DW, Yeatts SD, Silbergleit R, et al. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med. 2014;371:2457–66.

    PubMed  PubMed Central  Google Scholar 

  10. Skolnick BE, Maas AI, Narayan RK, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med. 2014;371:2467–76.

    PubMed  Google Scholar 

  11. •• Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14:128–42. This review provides a comprehensive description of mammalian models of TBI and rationales for using larger animals to study clinically relevant pathologies.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Connor WT, Smyth A, Gilchrist MD. Animal models of traumatic brain injury: a critical evaluation. Pharmacol Ther. 2011;130:106–13.

    PubMed  Google Scholar 

  13. Petraglia AL, Dashnaw ML, Turner RC, et al. Models of mild traumatic brain injury: translation of physiological and anatomic injury. Neurosurgery. 2014;75:S34–49.

    PubMed  Google Scholar 

  14. Morganti-Kossmann MC, Yan E, Bye N. Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory? Injury. 2010;41:S10–3.

    PubMed  Google Scholar 

  15. Swindle MM, Makin A, Herron AJ, et al. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49:344–55.

    CAS  PubMed  Google Scholar 

  16. Capitanio JP, Emborg ME. Contributions of non-human primates to neuroscience research. Lancet. 2008;371:1126–35.

    PubMed  Google Scholar 

  17. Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43.

    CAS  PubMed  Google Scholar 

  18. Pilitsis JG, Rengachary SS. Complications of head injury. Neurol Res. 2001;23:227–36.

    CAS  PubMed  Google Scholar 

  19. Zygun DA, Kortbeek JB, Fick GH, et al. Non-neurologic organ dysfunction in severe traumatic brain injury. Crit Care Med. 2005;33:654–60.

    PubMed  Google Scholar 

  20. Kemp CD, Johnson JC, Riordan WP, et al. How we die: the impact of nonneurologic organ dysfunction after severe traumatic brain injury. Am Surg. 2008;74:866–72.

    PubMed  Google Scholar 

  21. Masel B, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27:1529–40.

    PubMed  Google Scholar 

  22. Wang HC, Sun CF, Chen H, et al. Where are we in the modeling of traumatic brain injury? Models complicated by secondary brain insults. Brain Inj. 2014;28:1491–503.

    PubMed  Google Scholar 

  23. Kovacs SK, Leonessa F, Ling GS. Blast TBI models, neuropathology, and implications for seizure risk. Front Neurol. 2014;5:47.

    PubMed  PubMed Central  Google Scholar 

  24. Santoriello C, Zon L. Hooked! Modeling human disease in zebrafish. J Clin Invest. 2012;122:2337–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63:411–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Markaki M, Tavernarakis N. Modeling human diseases in Caenorhabditis elegans. Biotechnol J. 2010;5:1261–76.

    CAS  PubMed  Google Scholar 

  27. Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fortini ME, Skupski MP, Boguski MS, et al. A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol. 2000;150:23–30.

    PubMed Central  Google Scholar 

  29. Culetto E, Sattelle DB. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet. 2000;9:869–77.

    CAS  PubMed  Google Scholar 

  30. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8:353–67.

    CAS  PubMed  Google Scholar 

  31. Bellen HJ, Tong C, Tsuda H. 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci. 2010;11:514–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Silverman GA, Luke CJ, Bhatia SR, et al. Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans. Pediatr Res. 2009;65:10–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Giacomotto J, Ségalat L. High-throughput screening and small animal models, where are we? Br J Pharmacol. 2010;160:204–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Reichert H. Evolutionary conservation of mechanisms for neural regionalization, proliferation and interconnection in brain development. Biol Lett. 2009;5:112–6.

    PubMed  Google Scholar 

  35. Leyssen M, Ayaz D, Hebert SS, et al. Amyloid precursor protein promotes post-developmental neurite arborization in the Drosophila brain. EMBO J. 2005;24:2944–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hockey KS, Hubbard WB, Sajja VS. A new model for mild blast injury utilizing Drosophila melanogaster—biomed 2013. Biomed Sci Instrum. 2013;49:134–40.

    CAS  PubMed  Google Scholar 

  37. •• Katzenberger RJ, Loewen CA, Wassarman DR, et al. A Drosophila model of closed head traumatic brain injury. Proc Natl Acad Sci USA. 2013;110:E4152–9. This paper describes the development and characterization of a fly TBI model.

  38. Katzenberger RJ, Loewen CA, Bockstruck RT, et al. A method to inflict closed head traumatic brain injury in Drosophila. J Vis Exp. 2015;30:e52905.

    Google Scholar 

  39. • Katzenberger RJ, Chtarbanova S, Rimkus SA, et al. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. Elife. 2015;5:4. This paper describes the application of GWAS analysis in the fly model to uncover genes potentially associated with TBI pathologies.

  40. Günther M, Al Nimer F, Gahm C, et al. iNOS-mediated secondary inflammatory response differs between rat strains following experimental brain contusion. Acta Neurochir. 2012;154:689–97.

    PubMed  Google Scholar 

  41. Al Nimer F, Lindblom R, Ström M, et al. Strain influences on inflammatory pathway activation, cell infiltration, and complement cascade after traumatic brain injury in the rat. Brain Behav Immun. 2013;27:109–22.

    CAS  PubMed  Google Scholar 

  42. Reid WM, Rolfe A, Register D, et al. Strain-related differences after traumatic brain injury in rats. J Neurotrauma. 2010;27:1243–53.

    PubMed  PubMed Central  Google Scholar 

  43. Tan AA, Quigley A, Smith DC, et al. Strain differences in response to traumatic brain injury in Long-Evans compared to Sprague-Dawley rats. J Neurotrauma. 2009;26:539–48.

    PubMed  PubMed Central  Google Scholar 

  44. Fox GB, LeVasseur RA, Faden AI. Behavioral responses of C57BL/6, FVB/N, and 129/SvEMS mouse strains to traumatic brain injury: implications for gene targeting approaches to neurotrauma. J Neurotrauma. 1999;16:377–89.

    CAS  PubMed  Google Scholar 

  45. Dardiotis E, Fountas KN, Dardioti M, et al. Genetic association studies in patients with traumatic brain injury. Neurosurg Focus. 2010;28:E9.

    PubMed  Google Scholar 

  46. Failla MD, Kumar RG, Peitzman AB, et al. Variation in the BDNF gene interacts with age to predict mortality in a prospective, longitudinal cohort with severe TBI. Neurorehabil Neural Repair. 2015;29:234–46.

    PubMed  Google Scholar 

  47. Dalla Libera AL, Regner A, de Paoli J, et al. IL-6 polymorphism associated with fatal outcome in patients with severe traumatic brain injury. Brain Inj. 2011;25:365–9.

    PubMed  Google Scholar 

  48. Hoh NZ, Wagner AK, Alexander SA, et al. BCL2 genotypes: functional and neurobehavioral outcomes after severe traumatic brain injury. J Neurotrauma. 2010;27:1413–27.

    PubMed  PubMed Central  Google Scholar 

  49. Mackay TF, Richards S, Stone EA, et al. The Drosophila melanogaster genetic reference panel. Nature. 2012;482:173–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Katzenberger RJ, Ganetzky B, Wassarman DA. The gut reaction to traumatic brain injury. Fly. 2015;9:68–74.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank members of the Ganetzky and Wassarman labs for their contributions to studies of the fly TBI model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Wassarman.

Additional information

This article is part of the Topical Collection on Traumatic Brain Injury Rehabilitation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganetzky, B., Wassarman, D.A. Non-mammalian Animal Models Offer New Perspectives on the Treatment of TBI. Curr Phys Med Rehabil Rep 4, 1–4 (2016). https://doi.org/10.1007/s40141-016-0107-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-016-0107-8

Keywords

Navigation