Issue 3, 2023

Dietary full-fat rice bran prevents the risk of heart ferroptosis and imbalance of energy metabolism induced by prolonged cold stimulation

Abstract

The threat to human health from cold stimulation is increasing due to the frequent occurrence of temperature extremes. It is a challenge for people to resist the negative effects of prolonged cold stimulation on the heart. In this study, we created prolonged cold stimulation pig models to investigate the cardiac energy metabolism and injury during prolonged cold stimulation, and the molecular mechanisms by which dietary supplementation with full-fat rice bran reduces cardiac injury. The results showed that lesions in the morphological structure of the heart were detected under prolonged cold stimulation. At the same time, dystrophin was downregulated under the effect of prolonged cold stimulation. Cardiac fatty acid transport and utilization were promoted, and oxidative stress was increased under prolonged cold stimulation. It also increased MDA content and decreased T-AOC level in the heart, while promoting the mRNA expression of Nrf2 and NQO1, as well as the protein content of Nrf2 and HO-1. Prolonged cold stimulation induced mitochondrial lesions, mitochondrial fusion, and mitophagy in the heart. Prolonged cold stimulation promoted the mRNA expression of PTGS2, TLR4, MyD88, NLRP3, and IL-1β; and protein expression of PTGS2, NLRP3, and mature-IL-1β. GCH1 and FtH inhibited by prolonged cold stimulation caused the activation of heart ferroptosis. In addition, dietary supplementation with full-fat rice bran improved oxidative stress in the heart and inhibited mitophagy, ferroptosis, and pyroptosis. In conclusion, prolonged cold stimulation heightens the risk of cardiac ferroptosis and imbalance of energy metabolism, whereas dietary supplementation with full-fat rice bran mitigates the adverse effects of prolonged cold stimulation on the heart.

Graphical abstract: Dietary full-fat rice bran prevents the risk of heart ferroptosis and imbalance of energy metabolism induced by prolonged cold stimulation

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2022
Accepted
30 Dec 2022
First published
19 Jan 2023

Food Funct., 2023,14, 1530-1544

Dietary full-fat rice bran prevents the risk of heart ferroptosis and imbalance of energy metabolism induced by prolonged cold stimulation

G. Sun, W. Su, J. Bao, T. Teng, X. Song, J. Wang and B. Shi, Food Funct., 2023, 14, 1530 DOI: 10.1039/D2FO03673H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements