704
Views
14
CrossRef citations to date
0
Altmetric
Review

Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: strengths and weaknesses for hazard identification and risk characterization

, , &
Pages 887-902 | Received 28 Oct 2020, Accepted 19 Feb 2021, Published online: 08 Mar 2021
 

ABSTRACT

Introduction

Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes is one of the most widely used cell-based models that resulted from the discovery of how non-embryonic stem cells can be differentiated into multiple cell types. In just one decade, iPSC-derived cardiomyocytes went from a research lab to widespread use in biomedical research and preclinical safety evaluation for drugs and other chemicals.

Areas covered

This manuscript reviews data on toxicology applications of human iPSC-derived cardiomyocytes. We detail the outcome of a systematic literature search on their use (i) in hazard assessment for cardiotoxicity liabilities, (ii) for risk characterization, (iii) as models for population variability, and (iv) in studies of personalized medicine and disease.

Expert opinion

iPSC-derived cardiomyocytes are useful to increase the accuracy, precision, and efficiency of cardiotoxicity hazard identification for both drugs and non-pharmaceuticals, with recent efforts beginning to demonstrate their utility for risk characterization. Notable limitations include the needs to improve the maturation of cells in culture, to better understand their potential use identifying structural cardiotoxicity, and for additional case studies involving population-wide and disease-specific risk characterization. Ultimately, the greatest future benefits are likely for non-pharmaceutical chemicals, filling a critical gap where no routine testing for cardiotoxicity is currently performed.

Article highlights

  • iPSC-derived cardiomyocytes are a well-accepted model for preclinical drug testing

  • These cells have been shown to be useful as disease models

  • Availability of cells from multiple individuals opens their use in personalized medicine

  • Population variability testing using cells from normal individuals is also possible

  • There is an opportunity to use these cells for testing of environmental chemicals

This box summarizes key points contained in the article.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Additional information

Funding

This work was funded, in part, by grants from the National Institutes of Health (P42 ES027704 and T32 ES026568) and a cooperative agreement with the United States Environmental Protection Agency (STAR RD83580201). The views expressed in this manuscript do not reflect those of the funding agencies. The use of specific commercial products in this work does not constitute endorsement by the authors or the funding agencies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 727.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.