Skip to main content
Log in

Baculovirus-based expression of an insect viral protein in 12 different insect cell lines

  • Articles
  • Cellular Pathology/Virology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The ability of 12 unique lepidopteran insect cell lines, from Anticarsia gemmatalis, Heliothis virescens, Lymantria dispar (two lines), Mamestra brassica, Plutella xylostella, Spodoptera, frugigerda (two lines), and Trichoplusia ni (three lines) to support production of a recombinant polydnavirus (PDV) protein (GiPDV 1.1) expressed using the Bac-to-Bac baculovirus expression system was examined. Polydnavirus gene GiPDV 1.1 was cloned into the pFastBac baculovirus vector under the control of the polyhedron promoter, followed by generation of recombinant bacmid-GiPDV 1.1 by site-specific transposition. The ability of each insect cell line to support recombinant PDV gene expression was estimated using reverse transcriptase-polymerase chain reaction and Western blot. Each insect cell line infected with recombinant bacmid-GiPDV 1.1 and tested in this study was capable of supporting and producing recombinant protein. Teme course expression analysis showed that 72–96 h after transfection to be the optimal time for recombinant protein for each insect cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckage, N. E. Parasitoids and polynaviruses. Bioscience 48:305–311; 1998.

    Article  Google Scholar 

  • Beckage, N. E.; Tan, F. F.; Schleifer, K. W.; Lane, R. D.; Cherubin, L. L. Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworn, Manduca sexta. Arch. Insect Biochem. Physiol. 26:165–195; 1994.

    Article  CAS  Google Scholar 

  • Beckage, N. E.; Templeton, T. J.; Nielsen, B. D.; Cook, D. I.; Stoltz, D. B. Parasitism-induced hemolymph polypeptides in Manduca sexta (L.) larvae parasitized by the braconid wasp Cotesia congregata (Say). Insect. Biochem. 17:439–455; 1987.

    Article  CAS  Google Scholar 

  • Chen, Y. P.; Gundersen-Rindal, D. E. Morphological and genomic characterization of the polydnavirus associated with the parasitoid wasp Glyptapanteles indiensis (Hymenoptera: Braconidae). J. Gen. Virol. 84:2051–2060; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y. P.; Higgins, J. A.; Gundersen-Rindal, D. E. Quantitation of a Glyptapanteles indiensis polydnavirus gene expressed in parasitized host, Lymantria dispar, by real-timer quantitative RT-PCR. J. Virol. Methods 114:125–133; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Cui, L. W.; Soldevila, A. I.; Webb, B. A. Relationships, between polydnavirus gene expression and host range of the parasitoid wasp Campoletis sonorensis. J. Insect. Physiol. 46:1397–1407; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cui, L. W.; Webb, B. A. Promoter analysis of a cysteine-rich Campoletis sonorensis polydnavirus gene. J. Gen. Virol. 78:1807–1817; 1997.

    Google Scholar 

  • Davis, T. R.; Wickham, T. J.; McKenna, K. A.; Granados, R. R.; Shuler, M. L.; Wood, H. A. Comparative recombinant protein production of 8 insect cell lines. In Vitro Cell. Dev. Biol. 29A:388–390; 1993.

    CAS  Google Scholar 

  • Espagne, E.; Dupuy, C.; Huguet, E., et al. Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 306:286–289; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, R. H.; Adams, J. R. Nutrient factors influencing viral replication in serum-free insect cell line culture. In: Kurstak, E.; Maramorosch, K.; Dübendorfer, A., ed. Invertebrate systems in vitro. Amsterdam, The Netherlands: Elsevier; 1980:493–509.

    Google Scholar 

  • Gundersen-Rindal, D.; Lynn, D. E.; Dougherty, E. M. Transformation of lepidopteran and coleopteran insect cell lines by Glyptapanteles indiensis polydnavirus DNA. In Vitro Cell. Dev. Biol. 35A:111–114; 1999.

    Google Scholar 

  • Harwood, S. H.; Beckage, N. E. Purification and characterization of an early-expressed polydnavirus-induced protein from the hemolymph of Manduca sexta larvae parasitized by Cotesia congregata. Insect Biochem. Mol. Biol. 24:685–698; 1994.

    Article  CAS  Google Scholar 

  • Harwood, S. H.; Grovovsky, A. J.; Cowles, E. A.; Davis, J. W.; Beckage, N. E. An abundantly expressed hemolymph glycoprotein isolated from newly parasitized Manduca sexta larvae is a polydnavirus gene product. Virology 205:381–392; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hink, W. F. Established insect cell line from the cabbage looper, Trichoplusia ni. Nature 226:466–467; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Hink, W. F.; Strauss, E. Growth of the Trichoplusia ni (TN-368) cell line in suspension culture. In: Kurstak, E.; Maramorosch, K., ed. Invertebrate tissue culture, applications in medicine, biology, and agriculture. New York: Academic Press; 1976:297–300.

    Google Scholar 

  • Hink, W. F.; Thomsen, D. R.; Davidson, D. J.; Meyer, A. L.; Castellino, F. J. Expression of three recombinant proteins using baculorivus vectors in 23 insect cell lines. Biotechnol. Prog. 7:9–14; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomou, L.; Schneider, Y.-J.; Agathos, S. N. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62:1–20;2003.

    Article  PubMed  CAS  Google Scholar 

  • Lavine, M. D.; Beckage, N. E. Polydnaviruses: potent mediators of host insect immune dysfunction. Parasitol. Today 11:368–378;1995.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, P. O.; Lanzrein, B. Hormonal interactions between insect endoparasites and their host insects. In: Beckage, N. E.; Thompson, S. N.; Federici, B. A., ed. Parasites and pathogens of insects. San Diego, CA: Academic Press; 59–86. 1993.

    Google Scholar 

  • Li, X. S.; Webb, B. A. Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. J. Virol. 68:7482–7489; 1994.

    PubMed  CAS  Google Scholar 

  • Luckow, V. A. Cloning and expression of heterologous genes in insect cells with baculovirus vectors. In: Ho, C. S.; Prokop, A.; Bajpai, R. K., ed. Recombinant DNA technology and application. New York: McGraw-Hill; 99–152; 1991.

    Google Scholar 

  • Luckow, V. A.; Lee, S. C.; Barry, G. F.; Olins, P. O. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J. Virol. 67:4566–4579; 1993.

    PubMed  CAS  Google Scholar 

  • Lynn, D. E. Methods for maintaining insect cell cultures. J. Insect Sci. 2:7;2002.

    Google Scholar 

  • Lynn, D. E. Comparative susceptibilities of twelve insect cell lines to infection by three baculoviruses. J. Invertebr. Pathol. 82:129–131; 2003.

    Article  PubMed  Google Scholar 

  • Lynn, D. E.; Dougherty, E. M.; McClintock, J. T.; Loeb, M. Development of cell lines from various tissues of Lepidoptera. In: Kuroda, Y.; Kurstak, E.; Maramorosch, K., ed. Invertebrate and fish tissue culture. Tokyo: Japan Scientific Societies Press; 1988;239–242.

    Google Scholar 

  • Lynn, D. E., Miller, S. G.; Oberlander, H. Establishment of a cell line from lepidopteran wing imaginal discs: induction of newly synthesized proteins by 20-hydroxyecdysone. Proc. Natl. Acad. Sci. USA 79:2589–2893; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Lynn, D. E.; Shapiro, M. New cell lines from Heliothis virescens: characterization and susceptibility to baculoviruses. J. Invertebr. Pathol. 72:276–280; 1998.

    Article  PubMed  Google Scholar 

  • Miltenburger, H. G.; David, P.; Mahr, U.; Zipp, W. Establishment of lepidopteran cell lines and in vitro replication of insect-pathogenic viruses. I. Manestra brassicae cell lines and NPV replication. Z. Angew. Entomol. 82:306–323; 1977.

    Google Scholar 

  • Norton, W. N.; Vinson, S. B. Correlating the initiation of virus replication with a specific phase of an ichneumonid parasitois. Cell Tissue Res. 231:387–398; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Possee, R. D. Baculoviruses as expression vectors. Curr. Opin. Biotechnol. 8:569–572; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Qian, M.; Chen, S.; Li, X.; Zeng, S. Cloning and expression of human UDP-glucuronosyltransferase 1A4 in Bac-to-Bac system. Biochem. Biophys. Res. Commun. 319:386–392; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Rochford, R.; Dougherty, E. M.; Lynn, D. E. Establishment of a cell line from embryos of the cabbage looper Trichoplusia ni (L.). In Vitro 20:823–825; 1984.

    Article  Google Scholar 

  • Schmidt, O.; Theopold, U.; Strand, M. Innate immunity and its evasion and suppression by hymenopteran endoparasitois. Bioessays 23:344–351; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sieburth, P. J.; Maruniak, J. E. Growth characteristics of a continuous cell line from the velvetbean caterpillar, Anticarsa gemmatalis Hübner (Lepidoptera: Noctuidae). In Vitro Cell. Dev. Biol. 24A:195–198; 1988.

    Article  Google Scholar 

  • Soldevila, A. I.; Heuston, S.; Webb, B. A. Purification and analysis of a polydnavirus gen product expressed using a poly-histidine baculovirus vector. Insect Biochem. Mol. Biol. 27:201–211; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Stolz, D. B. The polydnavirus life cycle. In: Beckage, N. E.; Thompson, S. N.; Federici, B. A., ed. Parasites and pathogens of insects. San Diego, CA: Academic Press; 1993:167–197.

    Google Scholar 

  • Strand, M. R.; Pech, L. L. Immunological basis for compatibility in parasitoid-host relationships. Ann. Rev. Entomol. 40:31–56; 1995.

    Article  CAS  Google Scholar 

  • Summers, M. D.; Smith, G. E. A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agricultural Experiment Station Bull. B1555: 1–56; 1987.

    Google Scholar 

  • Theilmann, D. A.; Summers, M. D. Molecular analysis of Campoletis sonorensis virus DNA in the lepidopteran host Heliothis virescens. J. Gen. Virol. 67:1961–1969;1986.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn, J. L.; Goodwin, R. H.; Tompkins, G. J.; McCawley, P. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13:213–217; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Verma, R.; Boleti, E.; George, A. J. Antibody engineering: comparison of bacterial yeast, insect and mammalian expression systems. J. Immunol. Methods 216:165–181; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Webb, B. A. Polydnavirus biology, genome structure, and evolution. In: Miller, L. K.; Ball, L. A. ed. The insect viruses. New York: Plenum Publishing; 1998:105–139.

    Google Scholar 

  • Xu, D.; Stoltz D. Polydnavirus genome segment families in the ichneumonid parasitoid Hyposoter fugitivus. J. Virol. 67:1340–1349; 1993.

    PubMed  CAS  Google Scholar 

  • Yamanaka, A.; Hayakawa, Y.; Noda, H.; Nakashima, N.; Watanabe, H.. Characterization of polydnavirus-encoded mRNA in parasitized armyworm larvae. Insect Biochem. Mol. Biol. 26:529–536. 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y.P., Gundersen-Rindal, D.E. & Lynn, D.E. Baculovirus-based expression of an insect viral protein in 12 different insect cell lines. In Vitro Cell.Dev.Biol.-Animal 41, 43–49 (2005). https://doi.org/10.1290/0412081.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0412081.1

Key words

Navigation