Abstract

In this paper we consider a two-group SIR epidemic model. We study the finale size of the epidemic for each subpopulation. The qualitative behavior of the infected classes at the earlier stage of the epidemic is described with respect to the basic reproduction number. Numerical simulations are also preformed to illustrate our results.

Keywords

  1. epidemic models
  2. final size
  3. two group
  4. crisscross transmission

MSC codes

  1. 92D25
  2. 92D30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. M. Anderson and R. M. May, Infective Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991.
2.
V. Andreasen, The final size of an epidemic and its relation to the basic reproduction number, Bull. Math. Biol., 73 (2011), pp. 2305--2321.
3.
J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, and J. Wu, A model for influenza with vaccination and antiviral treatment, Math. Biosci. Eng., 5 (2006), pp. 118--130.
4.
J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, and J. Wu, A final size relation for epidemic models, Math. Biosci. Eng., 4 (2007), pp. 159--175.
5.
N. T. J. Bailey, The Mathematical Theory of Epidemics, Charles Griffin, London, 1957.
6.
M. Bartlett, Stochastic Population Models in Ecology and Epidemiology, Methuen, London, 1960.
7.
D. Bernoulli, Essai d'une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l'inoculation pour la prévenir, Mém. Math. Phys. Acad. Roy. Sci., Paris, 1760 (1766), pp. 1--45.
8.
F. Brauer, Epidemic models with heterogeneous mixing and treatment, Bull. Math. Biol., 70 (2008), pp. 1869--1885.
9.
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2000.
10.
S. Busenberg and K. Cooke, Vertically Transmitted Diseases: Models and Dynamics, Lecture Notes in Biomath. 23, Springer-Verlag, Berlin, 1993.
11.
V. Capasso, Mathematical Structures of Epidemic Systems, Lecture Notes in Biomath. 97, Springer-Verlag, Heidelberg, 1993.
12.
Centers for Disease Control and Prevention (CDC), Severe acute respiratory syndrome--Singapore, 2003, MMWR Morbidity Mortality Weekly Rep., 52 (2003), pp. 405--411.
13.
D. J. Daley and J. Gani, Epidemic Modelling An Introduction, Cambridge Studies Math. Biol. 15, Cambridge University Press, Cambridge, 1999.
14.
E. M. C. D'Agata, M. Dupont-Rouzeyrol, P. Magal, D. Olivier, and S. Ruan, The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria, PLoS ONE, 3 (2008), pp. 1--9.
15.
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, Chichester, 2000.
16.
O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), pp. 365--382.
17.
K. Dietz and J. A. P. Heesterbeek, Daniel Bernoulli's epidemiological model revisited, Math. Biosci., 180 (2002), pp. 1--21.
18.
K. Dietz and J. A. P. Heesterbeek, Bernoulli was ahead of modern epidemiology, Nature, 408 (2000), pp. 513--514.
19.
H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), pp. 335--356.
20.
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), pp. 599--653.
21.
N. Hussaini, M. Winter, and A. B. Gumel, Qualitative assessment of the role of public health education program on HIV transmission dynamics, Math. Med. Biol., 28 (2011), pp. 245--270.
22.
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, R. Soc. Lond. Proc. Math. Phys. Eng. Sci. Ser. A, 115 (1927), pp. 700--721.
23.
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics: II, R. Soc. Lond. Proc. Math. Phys. Eng. Sci. Ser. A, 138 (1932), pp. 55--83.
24.
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics: III, R. Soc. Lond. Proc. Math. Phys. Eng. Sci. Ser. A, 141 (1933), pp. 94--112.
25.
M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, NJ, 2007.
26.
C. Koide and H. Seno, Sex ratio features of two-group SIR model for asymmetric transmission of heterosexual disease, Math. Comput. Model., 23 (1996), pp. 67--91.
27.
J. Ma and D. J. D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol., 68 (2006), pp. 679--702.
28.
P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), pp. 1058--1095.
29.
S. Mandal, R. R. Sarkar, and S. Sinha, Mathematical models of malaria - a review, Malaria J., 10 (2011), pp. 1--19.
30.
C. J. Mode and C. K. Sleeman, Stochastic Processes in Epidemiology. HIV/AIDS, Other Infectious Diseases and Computers, World Scientific, Singapore, 2000.
31.
H. Muench, Catalytic Models in Epidemiology, Harvard University Press, Cambridge, MA, 1959.
32.
Z. Mukandavire, A. B. Gumel, W. Garira, and J. M. Tchuenche, Mathematical analysis of a model for HIV-malaria co-infection, Math. Biosci. Eng., 6 (2009), pp. 333--362.
33.
J. D. Murray, Mathematical Biology, Springer, Berlin, 1993.
34.
L. Rass and J. Radcliffe, Spatial deterministic epidemics, Vol. 102, AMS, Providence, RI, 2003.
35.
L. I. W. Roeger, Z. Feng, and C. Castillo-Chavez, Modeling TB and HIV co-infections, Math. Biosci. Eng., 6 (2009), pp. 815--837.
36.
R. Ross and H. P. Hudson, An application of the theory of probabilities to the study of a priori pathometry: III, R. Soc. Lond. Proc. Math. Phys. Eng. Sci. Ser. A, 93 (1917), pp. 225--240.
37.
R. Ross and H. P. Hudson, An application of the theory of probabilities to the study of a priori pathometry: II, R. Soc. Lond. Proc. Math. Phys. Eng. Sci. Ser. A, 93 (1917), pp. 212--225.
38.
R. Ross, An application of the theory of probabilities to the study of a priori pathometry: I, R. Soc. Lond. Proc. Math. Phys. Eng. Sci. Ser. A, 92 (1916), pp. 204--230.
39.
R. A. Stein, Super-spreaders in infectious diseases, Int. J. Infect. Dis., 15 (2011), pp. e510--e513.
40.
H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, NJ, 2003.
41.
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), pp. 29--48.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 2042 - 2059
ISSN (online): 1095-712X

History

Submitted: 11 March 2016
Accepted: 14 June 2016
Published online: 19 October 2016

Keywords

  1. epidemic models
  2. final size
  3. two group
  4. crisscross transmission

MSC codes

  1. 92D25
  2. 92D30

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media