1887

Abstract

Influenza virus membrane fusion is induced by low pH, which triggers an irreversible conformational change in the viral haemagglutinin (HA). The result of this change is the extrusion of the HA fusion peptide, after which it may act in the fusion of virus and endosomal membranes. Here we describe electron microscopic observations on low pH-treated virus after negative staining or cryo-electron microscopy of virus in the frozen hydrated state. The results indicate a destabilization of the virus membrane at low pH that can be reversed by returning the pH to neutral.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-4-995
1992-04-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/4/JV0730040995.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-4-995&mimeType=html&fmt=ahah

References

  1. Adrian M., Dubochet J., Lepault J., McDowall A. W. 1984; Cryo-electron microscopy of viruses. Nature, London 308:32–37
    [Google Scholar]
  2. Booy F. P., Ruigrok R. W. H., van Bruggen E. F. J. 1985; Electron microscopy of influenza virus. A comparison of negatively stained and ice-embedded particles. Journal of Molecular Biology 184:667–676
    [Google Scholar]
  3. Cusack S., Ruigrok R. W. H., Krijgsman P. C. J., Mellema J. E. 1985; Structure and composition of influenza virus. A small angle neutron scattering study. Journal of Molecular Biology 186:565–582
    [Google Scholar]
  4. Doms R. W., Helenius A. 1986; Quarternary structure of the influenza virus hemagglutinin after acid treatment. Journal of Virology 60:833–839
    [Google Scholar]
  5. Dubochet J., Groom M., Mueller-Neuteboom S. 1982; The mounting of macromolecules for electron microscopy with particular reference to surface phenomena and the treatment of support films by glow discharge. Advances in Optical and Electron Microscopy 8:107–135
    [Google Scholar]
  6. Harter C., James P., Bachi T., Semenza G., Brunner J. 1989; Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the fusion peptide. Journal of Biological Chemistry 264:6459–6464
    [Google Scholar]
  7. Martin K., Helenius A. 1991; Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell 67:117–130
    [Google Scholar]
  8. Ruigrok R. W. H., Hewat E. A. 1992; Comparison of negatively stained and frozen hydrated samples of influenza viruses A and B and of vesicular stomatitis virus. Micron et microscopica acta (in press)
    [Google Scholar]
  9. Ruigrok R. W. H., Andree P. J., Hooft van Huysduynen R. A. M., Mellema J. E. 1984; Characterization of three highly purified influenza virus strains by electron microscopy. Journal of General Virology 65:799–802
    [Google Scholar]
  10. Ruigrok R. W. H., Wrigley N. G., Calder L. J., Cusack S., Wharton S. A., Brown E. B., Skehel J. J. 1986; Electron microscopy of the low pH structure of influenza virus haemagglutinin. EMBO Journal 5:41–49
    [Google Scholar]
  11. Skehel J. J., Schild G. C. 1971; The polypeptide composition of influenza A viruses. Virology 44:396–408
    [Google Scholar]
  12. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Waterfield M. D., White J. M., Wilson I. A., Wiley D. C. 1982; Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences, U.S.A 79:968–972
    [Google Scholar]
  13. Stegmann T., Hoekstra D., Scherphof G., Wilschut J. 1986; Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles. Journal of Biological Chemistry 261:10966–10969
    [Google Scholar]
  14. Stegmann T., Doms R. W., Helenius A. 1989; Protein mediated membrane fusion. Annual Review of Biophysics and Biophysical Chemistry 18:187–211
    [Google Scholar]
  15. White J., Kartenbeck J., Helenius A. 1982; Membrane fusion activity of influenza virus. EMBO Journal 1:217–222
    [Google Scholar]
  16. White J., Kielian M., Helenius A. 1983; Membrane fusion proteins of enveloped viruses. Quarterly Review of Biophysics 16:151–195
    [Google Scholar]
  17. Wiley D. C., Skehel J. J. 1987; The structure and function of the HA membrane glycoprotein of influenza virus. Annual Review of Biochemistry 56:365–394
    [Google Scholar]
  18. Wiley D. C., Wilson I. A., Skehel J. J. 1981; Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature, London 289:373–378
    [Google Scholar]
  19. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane protein of influenza virus at 3A resolution. Nature, London 289:366–373
    [Google Scholar]
  20. Yoshimura A., Kuroda K., Kawasaki K., Yamishina S., Maeda T., Ohnishi S.-I. 1982; Infectious cell entry mechanism of influenza virus. Journal of Virology 43:284–293
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-4-995
Loading
/content/journal/jgv/10.1099/0022-1317-73-4-995
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error