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(IES)
publishes
practice
guides
in
education
to	bring	
the	best	available	evidence	and	expertise	to	bear	on	current	challenges	in	education.	Authors	of	
practice	guides	combine	their	expertise	with	the	findings	of	rigorous	research,	when	available,	to	
develop	specific	recommendations	for	addressing	these	challenges.	The	authors	rate	the	strength	
of	the	research	evidence	supporting	each	of	their	recommendations.	See	Appendix	A	for	a	full	
description	of	practice	guides.	

The	goal	of	this	practice	guide	is	to	offer	educators	specific	evidence-based	recommendations	that	
address	the	challenge	of	improving	students’	understanding	of	fraction	concepts	in	kindergarten	
through	8th	grade.	The	guide	provides	practical,	clear	information	on	critical	topics	related	to	the	
teaching	of	fractions	and	is	based	on	the	best	available	evidence	as	judged	by	the	authors.	

Practice	guides	published	by	IES	are	offered	on	our	website	at	whatworks.ed.gov/publications/	
practiceguides.	Practice	guides	published	to	date	are	shown	in	the	following	table.	
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Recommendation
1.

Build on students’ informal understanding of sharing and proportionality to develop initial fraction concepts. 
• Use	equal-sharing	activities	to	introduce	the	concept	of	fractions.	Use	sharing	activities	that	involve	

dividing	sets	of	objects	as	well	as	single	whole	objects.	

• Extend	equal-sharing	activities	to	develop	students’	understanding	of	ordering	and	equivalence	
of	fractions.	

• Build	on	students’	informal	understanding	to	develop	more	advanced	understanding	of	proportional	
reasoning	concepts.	Begin	with	activities	that	involve	similar	proportions,	and	progress	to	activities	
that	involve	ordering	different	proportions.	

Recommendation
2.

Help students recognize that fractions are numbers and that they expand the number system beyond whole 
numbers. Use number lines as a central representational tool in teaching this and other fraction concepts 
from the early grades onward. 
• Use	measurement	activities	and	number	lines	to	help	students	understand	that	fractions	are	numbers,	

with	all	the	properties	that	numbers	share.	

• Provide	opportunities	for	students	to	locate	and	compare	fractions	on	number	lines.	

• Use	number	lines	to	improve	students’	understanding	of	fraction	equivalence,	fraction	density	(the	con-
cept	that	there	are	an	infinite	number	of	fractions	between	any	two	fractions),	and	negative	fractions.	

• Help	students	understand	that	fractions	can	be	represented	as	common	fractions,	decimals,	and	per-
centages,	and	develop	students’	ability	to	translate	among	these	forms.	

Recommendation
3.

Help students understand why procedures for computations with fractions make sense. 
• Use	area	models,	number	lines,	and	other	visual	representations	to	improve	students’	understanding	

of	formal	computational	procedures.	

• Provide	opportunities	for	students	to	use	estimation	to	predict	or	judge	the	reasonableness	of	
answers	to	problems	involving	computation	with	fractions.	

• Address	common	misconceptions	regarding	computational	procedures	with	fractions.	

• Present	real-world	contexts	with	plausible	numbers	for	problems	that	involve	computing	with	fractions.	

Recommendation
4.

Develop students’ conceptual understanding of strategies for solving ratio, rate, and proportion problems 
before exposing them to cross­multiplication as a procedure to use to solve such problems. 
• Develop	students’	understanding	of	proportional	relations	before	teaching	computational	procedures	

that	are	conceptually	difficult	to	understand	(e.g.,	cross-multiplication).	Build	on	students’	developing	
strategies	for	solving	ratio,	rate,	and	proportion	problems.	

• Encourage	students	to	use	visual	representations	to	solve	ratio,	rate,	and	proportion	problems.	

• Provide	opportunities	for	students	to	use	and	discuss	alternative	strategies	for	solving	ratio,	rate,	
and	proportion	problems.	

Recommendation
5.

Professional development programs should place a high priority on improving teachers’ understanding 
of fractions and of how to teach them. 
• Build	teachers’	depth	of	understanding	of	fractions	and	computational	procedures	involving	fractions.	

• Prepare	teachers	to	use	varied	pictorial	and	concrete	representations	of	fractions	and	fraction	operations.	

• Develop	teachers’	ability	to	assess	students’	understandings	and	misunderstandings	of	fractions.	
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This	section	provides	information	about	the	role	of	evidence	in	Institute	of	Education	Sciences’	
(IES)	What	Works	Clearinghouse	(WWC)	practice	guides.	It	describes	how	practice	guide	panels	

determine	the	level	of	evidence	for	each	recommendation	and	explains	the	criteria	for	each	of	the	
three	levels	of	evidence	(strong	evidence,	moderate	evidence,	and	minimal	evidence).	

The	level	of	evidence	assigned	to	each	recom-
mendation	in	this	practice	guide	represents	
the	panel’s	judgment	of	the	quality	of	the	
existing	research	to	support	a	claim	that	
when	these	practices	were	implemented	in	
past	research,	positive	effects	were	observed	
on	student	outcomes.	After	careful	review	of	
the	studies	supporting	each	recommendation,	
panelists	determine	the	level	of	evidence	for	
each	recommendation	using	the	criteria	in	
Table	1	and	the	evidence	heuristic	depicted	
in	Appendix	E.	The	panel	first	considers	the	
relevance	of	individual	studies	to	the	recom-
mendation,	and	then	discusses	the	entire	
evidence	base,	taking	into	consideration:	

•		 the	number	of	studies	

•		 the	quality	of	the	studies	

•		 whether	the	studies	represent	the	range	
of	participants	and	settings	on	which	the	
recommendation	is	focused	

•		 whether	findings	from	the	studies	can	be	
attributed	to	the	recommended	practice	

•		 whether	findings	in	the	studies	are	consis-
tently	positive	

A	rating	of	strong evidence	refers	to	consis-
tent	evidence	that	the	recommended	strate-
gies,	programs,	or	practices	improve	student	
outcomes	for	a	wide	population	of	students.	
In	other	words,	there	is	strong	causal	and	
generalizable	evidence.	

A	rating	of	moderate evidence refers	either	
to	evidence	from	studies	that	allow	strong	

causal	conclusions	but	cannot	be	generalized	
with	assurance	to	the	population	on	which	a	
recommendation	is	focused	(perhaps	because	
the	findings	have	not	been	widely	replicated)	
or	to	evidence	from	studies	that	are	gener-
alizable	but	have	some	causal	ambiguity.	It	
also	might	be	that	the	studies	that	exist	do	
not	specifically	examine	the	outcomes	of	
interest	in	the	practice	guide	although	they	
may	be	related.	

A	rating	of	minimal evidence suggests	that	
the	panel	cannot	point	to	a	body	of	research	
that	demonstrates	the	practice’s	positive	
effect	on	student	achievement.	In	some	cases,	
this	simply	means	that	the	recommended	
practices	would	be	difficult	to	study	in	a	rigor-
ous,	experimental	fashion;1	in	other	cases,	it	
means	that	researchers	have	not	yet	studied	
this	practice,	or	that	there	is	weak	or	con-
flicting	evidence	of	effectiveness.	A	minimal	
evidence	rating	does	not	indicate	that	the	
recommendation	is	any	less	important	than	
other	recommendations	with	a	strong	evi-
dence	or	moderate	evidence	rating.	

Following	WWC	guidelines,	improved	outcomes	
are	indicated	by	either	a	positive	statistically	
significant	effect	or	a	positive	substantively	
important	effect	size.2	The	WWC	defines	
substantively	important,	or	large,	effects	on	
outcomes	to	be	those	with	effect	sizes	greater	
than	0.25	standard	deviations.	In	this	guide,	
the	panel	discusses	substantively	important	
findings	as	ones	that	contribute	to	the	evidence	
of	practices’	effectiveness,	even	when	those	
effects	are	not	statistically	significant.	

(	3	)	
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Table
1.
Institute
of
Education
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levels
of
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for
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guides


Strong
Evidence


A	rating	of	strong evidence	means	high-quality	causal	research	links	this	practice	with	positive	results	in	
schools	and	classrooms.	The	research	rules	out	other	causes	of	the	positive	results,	and	the	schools	and	class-
rooms	are	similar	to	those	targeted	by	this	guide.	Strong	evidence	is	demonstrated	when	an	evidence	base	has	
the	following	properties:	

•		 High	internal	validity:	the	evidence	base	consists	of	high-quality	causal	designs	that	meet	WWC	standards	
with	or	without	reservations.3	

•	 High	external	validity:	the	evidence	base	consists	of	a	variety	of	studies	with	high	internal	validity	that	repre-
sent	the	population	on	which	the	recommendation	is	focused.4	

•		 Consistent	positive	effects	on	relevant	outcomes	without	contradictory	evidence	(i.e.,	no	statistically	signifi-
cant	negative	effects)	in	studies	with	high	internal	validity.	

•		 Direct	relevance	to	scope	(i.e.,	ecological	validity),	including	relevant	context	(e.g.,	classroom	vs.	laboratory),	
sample	(e.g.,	age	and	characteristics),	and	outcomes	evaluated.	

•		 Direct	test	of	the	recommendation	in	the	studies	or	the	recommendation	is	a	major	component	of	the	inter-
ventions	evaluated	in	the	studies.	

•		 The	panel	has	a	high	degree	of	confidence	that	this	practice	is	effective.	

•		 In	the	particular	case	of	recommendations	on	assessments,	the	evidence	base	meets	The Standards for 
Educational and Psychological Testing (American	Educational	Research	Association,	American	Psychological	
Association,	and	National	Council	on	Measurement	in	Education,	1999). 

Moderate
Evidence


A	rating	of	moderate evidence	means	high-quality	causal	research	links	this	practice	with	positive	results	in	
schools	and	classrooms.	However,	the	research	may	not	adequately	rule	out	other	causes	of	the	positive	results,	
or	the	schools	and	classrooms	are	not	similar	to	those	targeted	by	this	guide.	Moderate	evidence	is	demonstrated	
when	an	evidence	base	has	the	following	properties:	

•		 High	internal	validity	but	moderate	external	validity	(i.e.,	studies	that	support	strong	causal	conclusions,	but	
generalization	is	uncertain)	OR	studies	with	high	external	validity	but	moderate	internal	validity	(i.e.,	studies	
that	support	the	generality	of	a	relation,	but	the	causality	is	uncertain).	

•		The	research	may	include	studies	meeting	WWC	standards	with	or	without	reservations	with	small	sample	
sizes	and/or	other	conditions	of	implementation	or	analysis	that	limit	generalizability.	

•		The	research	may	include	studies	that	support	the	generality	of	a	relation	but	do	not	meet	WWC	stan-
dards;5	however,	they	have	no	major	flaws	related	to	internal	validity	other	than	lack	of	demonstrated	
equivalence	at	pretest	for	quasi-experimental	design	studies	(QEDs).	QEDs	without	equivalence	must	
include	a	pretest	covariate	as	a	statistical	control	for	selection	bias.	These	studies	must	be	accompanied	
by	at	least	one	relevant	study	meeting	WWC	standards	with	or	without	reservations.	

•		 A	preponderance	of	positive	effects	on	relevant	outcomes.	Contradictory	evidence	(i.e.,	statistically	signifi-
cant	negative	effects)	must	be	discussed	by	the	panel	and	considered	with	regard	to	relevance	to	the	scope	
of	the	guide	and	intensity	of	the	recommendation	as	a	component	of	the	intervention	evaluated.	If	outcomes	
are	out	of	the	scope	of	the	guide,	this	also	must	be	discussed.	

•		 The	panel	determined	that	the	research	does	not	rise	to	the	level	of	strong	evidence	but	is	more	compelling	
than	a	minimal	level	of	evidence.	

•		 In	the	particular	case	of	recommendations	on	assessments,	there	must	be	evidence	of	reliability	that	meets	
The Standards for Educational and Psychological Testing,	but	evidence	of	validity	may	be	from	samples	not	
adequately	representative	of	the	population	on	which	the	recommendation	is	focused.	

(continued)	
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practice
guides
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Minimal
Evidence


A	rating	of	minimal evidence	means	the	panel	concluded	the	recommended	practice	should	be	adopted;	how-
ever,	the	panel	cannot	point	to	a	body	of	causal	research	that	demonstrates	the	recommendation’s	positive	
effect	and	that	rises	to	the	level	of	moderate	or	strong	evidence.	

In	terms	of	the	levels	of	evidence	indicated	
in	Table	1,	the	panel	relied	on	WWC	evidence	
standards	to	assess	the	quality	of	evidence	
supporting	educational	programs	and	
practices.	WWC	evaluates	evidence	for	the	
causal	validity	of	instructional	programs	
and	practices	according	to	WWC	standards.	

Information	about	these	standards	is	available	
at	http://ies.ed.gov/ncee/wwc/pdf/wwc_pro-
cedures_v2_standards_handbook.pdf.	Eligible	
studies	that	meet	WWC	evidence	standards	
or	meet	evidence	standards	with	reservations	
are	indicated	by	bold
text	in	the	endnotes	
and	references	pages.	
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Introduction
to
the
Developing
Effective
Fractions
Instruction

for
Kindergarten
Through
8th
Grade
Practice
Guide


This	section	provides	an	overview	of	the	importance	of	developing	effective	fractions	instruc-
tion	for	kindergarten	through	8th	grade	and	explains	key	parameters	considered	by	the	panel	

in	developing	the	practice	guide.	It	also	summarizes	the	recommendations	for	readers	and	con-
cludes	with	a	discussion	of	the	research	supporting	the	practice	guide.	

U.S.	students’	mathematics	skills	have	fallen	
short	for	many	years,	with	the	ramifications	of	
this	inadequate	knowledge	widely	recognized.	

The	1983	report	A Nation at Risk related	
America’s	safety	and	prosperity	to	its	
mathematical	competence	and	warned	that	
American	students’	mathematical	knowledge	
was	insufficient	to	meet	the	challenges	of	
the	modern	world.	More	than	25	years	later,	
U.S.	students’	mathematical	achievement	
continues	to	lag	far	behind	that	of	students	in	
East	Asia	and	much	of	Europe.6	Only	a	small	
percentage	of	U.S.	students	possess	the	math-
ematics	knowledge	needed	to	pursue	careers	
in	science,	technology,	engineering,	or	math-
ematics	(STEM)	fields.7	Many	high	school	
graduates	lack	the	mathematical	competence	
for	a	wide	range	of	well-paying	jobs	in	today’s	
economy.8	Moreover,	large	gaps	in	mathemat-
ics	knowledge	exist	among	students	from	dif-
ferent	socioeconomic	backgrounds	and	racial	
and	ethnic	groups	within	the	United	States.9	

These	disparities	hurt	the	national	economy	
and	also	limit	tens	of	millions	of	Americans’	
occupational	and	financial	opportunities.10	

Poor	understanding	of	fractions	is	a	critical	
aspect	of	this	inadequate	mathematics	knowl-
edge.	Knowledge	of	fractions	differs	even	
more	between	students	in	the	United	States	
and	students	in	East	Asia	than	does	knowl-
edge	of	whole	numbers.11	This	learning	gap	is	
especially	problematic	because	understanding	
fractions	is	essential	for	algebra	and	other	
more	advanced	areas	of	mathematics.12	

Teachers	are	aware	of	students’	difficulty	
in	learning	about	fractions	and	often	are	
frustrated	by	it.	In	a	recent	national	poll,	
Algebra	I	teachers	rated	their	students	as	

having	“very	poor	preparation	in	rational	
numbers	and	operations	involving	fractions	
and	decimals.”13	The	algebra	teachers	ranked	
poor	understanding	of	fractions	as	one	of	the	
two	most	important	weaknesses	in	students’	
preparation	for	their	course.	

Many	examples	illustrate	American	students’	
weak	understanding	of	fractions.	On	the	2004	
National	Assessment	of	Educational	Progress	
(NAEP),	50%	of	8th-graders	could	not	order	
three	fractions	from	least	to	greatest.14	 The	
problem	is	not	limited	to	rational	numbers	
written	in	common	fraction	notation.	On	the	
2004	NAEP,	fewer	than	30%	of	17-year-olds	
correctly	translated	0.029	as	29/1000.15	 The	
same	difficulty	is	apparent	in	one-on-one	
testing	of	students	in	controlled	experimental	
settings:	when	asked	which	of	two	decimals,	
0.274	and	0.83,	is	greater,	most	5th-	and	6th-
graders	choose	0.274.16	

These	examples	and	others	led	the	authors	
of	this	guide	to	conclude	the	following:	

A	high	percentage	of	U.S.	students	lack	
conceptual	understanding	of	fractions,	
even	after	studying	fractions	for	several	
years;	this,	in	turn,	limits	students’	ability	
to	solve	problems	with	fractions	and	to	
learn	and	apply	computational	procedures	
involving	fractions.	

The	lack	of	conceptual	understanding	has	
several	facets,	including	

•	 Not	viewing	fractions	as	numbers	at	all,	but	
rather	as	meaningless	symbols	that	need	to	
be	manipulated	in	arbitrary	ways	to	produce	
answers	that	satisfy	a	teacher.	
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•		 Focusing	on	numerators	and	denominators	
as	separate	numbers	rather	than	thinking	of	
the	fraction	as	a	single	number.	Errors	such	
as	believing	that	3/8	>	3/5	arise	from	compar-
ing	the	two	denominators	and	ignoring	the	
essential	relation	between	each	fraction’s	
numerator	and	its	denominator.	

•	 Confusing	properties	of	fractions	with	
those	of	whole	numbers.	This	is	evident	
in	many	high	school	students’	claim	that	
just	as	there	is	no	whole	number	between	
5	and	6,	there	is	no	number	of	any	type	
between	5/7	and	6/7.17

This	practice	guide	presents	five	recommen-
dations	intended	to	help	educators	improve	
students’	understanding	of,	and	problem-
solving	success	with,	fractions.	Recommen-
dations	progress	from	proposals	for	how	to	
build	rudimentary	understanding	of	fractions	
in	young	children;	to	ideas	for	helping	older	
children	understand	the	meaning	of	fractions	
and	computations	that	involve	fractions;	to	
proposals	intended	to	help	students	apply	
their	understanding	of	fractions	to	solve	prob-
lems	involving	ratios,	rates,	and	proportions.	
Improving	students’	learning	about	fractions	
will	require	teachers’	mastery	of	the	subject	
and	their	ability	to	help	students	master	
it;	therefore,	a	recommendation	regarding	
teacher	education	also	is	included.	

Recommendations	in	the	practice	guide	were	
developed	by	a	panel	of	eight	researchers	and	
practitioners	who	have	expertise	in	different	
aspects	of	the	topic.	Panelists	include	a	math-
ematician	active	in	issues	related	to	math-
ematics	teacher	education;	three	mathematics	
educators,	one	of	whom	has	been	president	
of	the	National	Council	of	Teachers	of	Math-
ematics;	two	psychologists	whose	research	
focuses	on	how	children	learn	mathemat-
ics;	and	two	practitioners	who	have	taught	
mathematics	in	elementary	and	middle	school	
classrooms	and	supervised	other	elementary	
and	middle	school	mathematics	teachers.	
Panel	members	worked	collaboratively	to	
develop	recommendations	based	on	the	best	
available	research	evidence	and	on	their	

combined	experience	and	expertise	regarding	
mathematics	teaching	and	learning.	

Scope
of
the
practice
guide


Writing	this	guide	required	decisions	regard-
ing	the	intended	audience,	which	grade	levels	
to	examine,	which	skills	and	knowledge	to	
consider,	and	which	terms	to	use	in	describ-
ing	the	research	and	recommendations.	The	
panel	consistently	chose	to	make	the	guide	
as	inclusive	as	possible.	

Audience
and
grade
level.
The	intended	
audience	is	elementary	and	middle	school	
teachers,	mathematics	supervisors,	teacher	
leaders,	specialists,	coaches,	principals,	par-
ents,	teacher	educators,	and	others	interested	
in	improving	students’	mathematics	learning.	
Grade	levels	emphasized	are	kindergarten	
through	8th	grade;	almost	all	instruction	in	
fractions	takes	place	within	this	period,	and	
this	is	the	population	studied	in	most	of	the	
available	research.	The	guide	focuses	not	
only	on	computation	with	fractions,	but	also	
on	skills	that	reflect	understanding	of	frac-
tions,	such	as	estimating	fractions’	positions	
on	number	lines	and	comparing	the	sizes	of	
fractions,	because	lack	of	such	understanding	
underlies	many	of	the	other	difficulties	stu-
dents	have	with	fractions.	

Content.
This	document	uses	the	term	
fractions	rather	than	rational numbers.	The	
term	fractions	refers	to	the	full	range	of	ways	
of	expressing	rational	numbers,	including	
decimals,	percentages,	and	negative	fractions.	
The	panel	makes	recommendations	on	this	
full	range	of	rational	numbers	because	students’	
understanding	of	them	is	critical	to	their	use	
of	fractions	in	context.	

The	guide’s	inclusiveness	is	further	
evident	in	its	emphasis	on	the	need	for	
students	to	be	able	to	perform	computa-
tional	operations	with	fractions;	to	under-
stand	these	computational	operations;	
and	to	understand,	more	broadly,	what	
fractions	represent.	
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To	help	students	understand	the	full	range	
of	fractions,	the	panel	suggests	educators	
effectively	convey	the	following:	

•		 Common	fractions,	decimals,	and	percents	
are	equivalent	ways	of	expressing	the	
same	number	(42/100	=	0.42	=	42%).	

•		 Whole	numbers	are	a	subset	of	rational	
numbers.	

•		 Any	fraction	can	be	expressed	in	an	
infinite	number	of	equivalent	ways	
(3/4	=	6/8	=	9/12	=	0.75	=	75%,	and	so	on).	

Both	the	strengths	students	bring	to	the	task	
of	learning	about	fractions	and	the	chal-
lenges	that	often	make	learning	difficult	are	
covered	in	this	guide.	Children	enter	school	
with	a	rudimentary	understanding	of	shar-
ing	and	proportionality,	concepts	on	which	
teachers	can	build	to	produce	more	advanced	
understandings	of	fractions.18	The	scope	of	
the	guide	includes	describing	these	early	
developing	concepts	and	how	more	advanced	
understanding	can	be	built	on	them.	The	
guide	also	describes	common	misconceptions	
about	fractions	that	interfere	with	students’	
learning—for	example,	the	misconception	
that	multiplying	two	numbers	must	result	in	
a	larger	number—and	how	such	misconcep-
tions	can	be	overcome.	

Finally,	the	guide	addresses	not	only	the	need	
to	improve	students’	understanding	of	frac-
tions,	but	also	the	need	to	improve	teachers’	
understanding	of	them.	Far	too	many	U.S.	
teachers	can	apply	standard	computational	
algorithms	to	solve	problems	involving	frac-
tions	but	do	not	know	why	those	algorithms	
work	or	how	to	evaluate	and	explain	why	
alternative	procedures	that	their	students	
generate	are	correct	or	incorrect.19	 Similarly,	
many	teachers	can	explain	part-whole	inter-
pretations	of	fractions	but	not	other	essential	
interpretations,	such	as	considering	fractions	
as	measures	of	quantities	that	offer	precision	
beyond	that	offered	by	whole	numbers	or	
viewing	fractions	as	quotients.	

U.S.	teachers’	understanding	of	fractions	lags	
far	behind	that	of	teachers	in	nations	that	
produce	better	student	learning	of	fractions,	
such	as	Japan	and	China.20	Although	some	
of	the	information	in	this	guide	is	aimed	at	
deepening	teachers’	understanding	of	frac-
tions,	professional	development	activities	that	
improve	teachers’	understanding	of	fractions	
and	computational	procedures	that	involve	
fractions	also	seem	essential.	

Summary
of
the
recommendations


This	practice	guide	includes	five	recommen-
dations	for	improving	students’	learning	of	
fractions.	The	first	recommendation	is	aimed	
at	building	the	foundational	knowledge	of	
young	students,	the	next	three	target	older	
students	as	they	advance	through	their	
elementary	and	middle	school	years,	and	the	
final	recommendation	focuses	on	increasing	
teachers’	ability	to	help	students	understand	
fractions.	Although
the
recommendations

vary
in
their
particulars,
all
five
reflect

the
perspective
that
conceptual
under­
standing
of
fractions
is
essential	for	stu-
dents	to	learn	about	the	topic,	to	remember	
what	they	learned,	and	to	apply	this	knowl-
edge	to	solve	problems	involving	fractions.	
Educators	may	profitably	adopt	some	of	the	
recommendations	without	adopting	all	of	
them,	but	we	believe	that	the	greatest	benefit	
will	come	from	adopting	all	of	the	recommen-
dations	that	are	relevant	to	their	classes.	

•		 Recommendation
1	is	to	build	on	stu-
dents’	informal	understanding	of	sharing	
and	proportionality	to	develop	initial	
fraction	concepts.	Learning	is	often	most	
effective	when	it	builds	on	existing	knowl-
edge,	and	fractions	are	no	exception.	By	
the	time	children	begin	school,	most	have	
developed	a	basic	understanding	of	shar-
ing	that	allows	them	to	divide	a	region	or	
set	of	objects	equally	among	two	or	more	
people.	These	sharing	activities	can	be	
used	to	illustrate	concepts	such	as	halves,	
thirds,	and	fourths,	as	well	as	more	gen-
eral	concepts	relevant	to	fractions,	such	
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as	that	increasing	the	number	of	people	
among	whom	an	object	is	divided	results	
in	a	smaller	fraction	of	the	object	for	each	
person.	Similarly,	early	understanding	
of	proportions	can	help	kindergartners	
compare,	for	example,	how	one-third	
of	the	areas	of	a	square,	rectangle,	and	
circle	differ.	

•		Recommendation
2	is	to	ensure	that	
students	know	that	fractions	are	numbers	
that	expand	the	number	system	beyond	
whole	numbers,	and	to	use	number	lines	
as	a	key	representational	tool	to	convey	
this	and	other	fraction	concepts	from	the	
early	grades	onward.	Although	it	seems	
obvious	to	most	adults	that	fractions	are	
numbers,	many	students	in	middle	school	
and	beyond	cannot	identify	which	of	two	
fractions	is	greater,	indicating	that	they	
have	cursory	knowledge	at	best.	Number	
lines	are	particularly	advantageous	for	
assessing	knowledge	of	fractions	and	for	
teaching	students	about	them.	They	pro-
vide	a	common	tool	for	representing	the	
sizes	of	common	fractions,	decimals,	and	
percents;	positive	and	negative	fractions;	
fractions	that	are	less	than	one	and	greater	
than	one;	and	equivalent	and	nonequiva-
lent	fractions.	Number	lines	also	are	a	
natural	way	of	introducing	students	to	the	
idea	of	fractions	as	measures	of	quantity,	
an	important	idea	that	needs	to	be	given	
greater	emphasis	in	many	U.S.	classrooms.	

•		 Recommendation
3	is	to	help	students	
understand	why	procedures	for	computa-
tions	with	fractions	make	sense.	Many	
U.S.	students,	and	even	teachers,	cannot	
explain	why	common	denominators	are	
necessary	to	add	and	subtract	fractions	
but	not	to	multiply	and	divide	them.	Few	
can	explain	the	“invert	and	multiply	rule,”	
or	why	dividing	by	a	fraction	can	result	in	
a	quotient	larger	than	the	number	being	
divided.	Students	sometimes	learn	com-
putational	procedures	by	rote,	but	they	
also	often	quickly	forget	or	become	con-
fused	by	these	routines;	this	is	what	tends	

to	happen	with	fractions	algorithms.	For-
getting	and	confusing	algorithms	occur	
less	often	when	students	understand	how	
and	why	computational	procedures	yield	
correct	answers.	

•		Recommendation
4
involves	focusing	
on	problems	involving	ratios,	rates,	and	
proportions.	These	applications	of	fraction	
concepts	often	prove	difficult	for	students.	
Illustrating	how	diagrams	and	other	visual	
representations	can	be	used	to	solve	ratio,	
rate,	and	proportion	problems	and	teach-
ing	students	to	use	them	are	important	for	
learning	algebra.	Also	useful	is	providing	
instruction	on	how	to	translate	state-
ments	in	word	problems	into	mathemati-
cal	expressions	involving	ratio,	rate,	and	
proportion.	These	topics	include	ways	in	
which	students	are	likely	to	use	fractions	
throughout	their	lives;	it	is	important	
for	them	to	understand	the	connection	
between	these	applied	uses	of	fractions	
and	the	concepts	and	procedures	involving	
fractions	that	they	learn	in	the	classroom.	

•		 Recommendation
5
urges	teacher	
education	and	professional	development	
programs	to	emphasize	how	to	improve	
students’	understanding	of	fractions	and	
to	ensure	that	teachers	have	sufficient	
understanding	of	fractions	to	achieve	this	
goal.	Far	too	many	teachers	have	difficulty	
explaining	interpretations	of	fractions	
other	than	the	part-whole	interpreta-
tion,	which	is	useful	in	some	contexts	
but	not	others.	Although	many	teachers	
can	describe	conventional	algorithms	for	
solving	fractions	problems,	few	can	jus-
tify	them,	explain	why	they	yield	correct	
answers,	or	explain	why	some	nonstan-
dard	procedures	that	students	generate	
yield	correct	answers	despite	not	looking	
like	a	conventional	algorithm.	Greater	
understanding	of	fractions,	knowledge	of	
students’	conceptions	and	misconceptions	
about	fractions,	and	effective	practices	for	
teaching	fractions	are	critically	important	
for	improving	classroom	instruction.	
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Use
of
research


The	recommendations	in	this	practice	guide	
are	based	on	numerous	types	of	evidence,	
including	national	and	international	assess-
ments	of	students’	mathematical	knowledge,	
a	survey	of	teachers’	views	of	the	greatest	
problems	in	their	students’	preparation	for	
learning	algebra,	mathematicians’	analyses	
of	key	concepts	for	understanding	fractions,	
descriptive	studies	of	successful	and	unsuc-
cessful	fractions	learners,	and	controlled	
experimental	evaluations	of	interventions	
designed	to	improve	learning	of	fractions.	

The	research	base	for	the	guide	was	identi-
fied	through	a	comprehensive	search	for	
studies	over	the	past	20	years	that	evalu-
ated	teaching	and	learning	about	fractions.	
This	search	was	done	for	a	large	number	of	
keywords	related	to	fractions	teaching	and	
learning	that	were	suggested	by	the	panel	
members;	the	results	were	supplemented	by	
specific	studies	known	to	panel	members	that	
were	not	identified	by	the	database	search,	
including	earlier	works.	The	process	yielded	
more	than	3,000	citations.	Of	these,	132	met	
the	WWC	criteria	for	review,	and	33	met	the	
causal	validity	standards	of	the	WWC.	

In	some	cases,	recommendations	are	based	
on	such	rigorous	research.	But	when	research	
was	rare	or	did	not	meet	WWC	standards,	the	

recommendations	reflect	what	this	guide’s	
panel	believes	are	best	practices,	based	on	
instructional	approaches	having	been	suc-
cessfully	implemented	in	case	studies	or	in	
curricula	that	have	not	been	rigorously	evalu-
ated.	The	panel	could	not	fulfill	its	wish	to	
base	all	recommendations	on	studies	that	
met	WWC	standards,	in	large	part	because	far	
less	research	is	available	on	fractions	than	on	
development	of	skills	and	concepts	regarding	
whole	numbers.	For	example,	the	2nd Hand­
book of Research on Mathematics Teaching 
and Learning (National	Council	of	Teachers	of	
Mathematics,	2007)	includes	109	citations	of	
research	published	in	2000	or	later	on	whole	
numbers	but	only	nine	citations	of	research	
on	fractions	published	over	the	same	period.	
High-quality	studies	testing	the	effective-
ness	of	specific	instructional	techniques	with	
fractions	were	especially	scarce.	A	greater	
amount	of	high-quality	research	on	fractions	
is	clearly	needed,	especially	studies	that	
compare	the	effectiveness	of	alternative	ways	
of	teaching	children	about	fractions.	

Table	2	shows	each	recommendation	and	the	
strength	of	the	evidence	that	supports	it	as	
determined	by	the	panel.	Following	the	rec-
ommendations	and	suggestions	for	carrying	
out	the	recommendations,	Appendix	D	pres-
ents	more	information	on	the	research	evi-
dence	that	supports	each	recommendation.	

(	10	)	



Introduction
continued 

Table
2.
Recommendations
and
corresponding
levels
of
evidence


Levels of Evidence 

Recommendation 
Minimal 
Evidence 

Moderate 
Evidence 

Strong 
Evidence 

1.	 Build	on	students’	informal	understanding	of	sharing	and	
proportionality	to	develop	initial	fraction	concepts.	



2.	 Help	students	recognize	that	fractions	are	numbers	and	that	
they	expand	the	number	system	beyond	whole	numbers.	Use	
number	lines	as	a	central	representational	tool	in	teaching	this	
and	other	fraction	concepts	from	the	early	grades	onward.	



3.	 Help	students	understand	why	procedures	for	computations	
with	fractions	make	sense.	



4.	 Develop	students’	conceptual	understanding	of	strategies	for	
solving	ratio,	rate,	and	proportion	problems	before	exposing	
them	to	cross-multiplication	as	a	procedure	to	use	to	solve	
such	problems.	



5.	 Professional	development	programs	should	place	a	high	
priority	on	improving	teachers’	understanding	of	fractions	
and	of	how	to	teach	them.	



(	11	)	



Recommendation
1


Build
on
students’
informal
understanding
of
sharing

and
proportionality
to
develop
initial
fraction
concepts.

Students come to kindergarten with a rudimentary understanding of basic fraction concepts. 
They can share a set of objects equally among a group of people (i.e., equal sharing)21 and 
identify equivalent proportions of common shapes (i.e., proportional reasoning).22	

By using this early knowledge to introduce fractions, teachers allow students to build on what 
they already know. This facilitates connections between students’ intuitive knowledge and 
formal fraction concepts. The panel recommends using sharing activities to develop students’ 
understanding of ordering and equivalence relations among fractions. 

Sharing activities can introduce children to several of the basic interpretations of fractions 
discussed in the introduction. Sharing can be presented in terms of division—such as by 
partitioning 12 candies into four equally numerous groups. Sharing also can be presented in 
terms of ratios; for example, if three cakes are shared by two children, the ratio of the number 
of cakes to the number of children is 3:2. 

Although fractions are typically introduced by 1st or 2nd grade, both the sharing and the 
proportional reasoning activities described in this recommendation can begin as early as 
preschool or kindergarten. 

Summary
of
evidence:
Minimal
Evidence


This	recommendation	is	based	on	studies	
showing	that	students	have	an	early	under-
standing	of	sharing	and	proportionality,23	

and	on	studies	of	instruction	that	use	sharing	
scenarios	to	teach	fraction	concepts.24	How-
ever,	none	of	the	studies	that	used	sharing	
scenarios	to	teach	fraction	concepts	met	WWC	
standards.	Despite	the	limited	evidence,	the	

(	12	)	



Recommendation
1
continued 

panel	believes	that	students’	informal	knowl-
edge	of	sharing	and	proportionality	provides	
a	foundation	for	introducing	and	teaching	
fraction	concepts.	

Equal
sharing.	Children	have	an	early	under-
standing	of	how	to	create	equal	shares.	By	
age	4,	children	can	distribute	equal	numbers	
of	equal-size	objects	among	a	small	number	
of	recipients,	and	the	ability	to	equally	share	
improves	with	age.25	Sharing	a	set	of	discrete	
objects	(e.g.,	12	grapes	shared	among	three	
children)	tends	to	be	easier	for	young	children	
than	sharing	a	single	object	(e.g.,	a	candy	
bar),	but	by	age	5	or	6,	children	are	reason-
ably	skilled	at	both.26	

Case	studies	show	how	an	early	understand-
ing	of	sharing	could	be	used	to	teach	frac-
tions	to	elementary	students.27	In	two	studies,	
teachers	posed	story	problems	with	sharing	
scenarios	to	teach	fraction	concepts	such	as	
equivalence	and	ordering,	as	well	as	fraction	
computation.	The	studies	reported	positive	
effects	on	fraction	knowledge,	but	they	do	
not	provide	rigorous	evidence	on	the	impact	
of	instruction	based	on	sharing	activities.	

Proportional
relations.	The	panel	believes	
that	instructional	practices	can	build	on	
young	children’s	rudimentary	knowledge	of	
proportionality	to	teach	fraction	concepts.	
This	early	understanding	of	proportionality	
has	been	demonstrated	in	different	ways.	By	
age	6,	children	can	match	equivalent	propor-
tions	represented	by	different	geometric	
figures	and	by	everyday	objects	of	different	
shapes.28	One-half	is	an	important	landmark	
in	comparing	proportions;	children	more	
often	succeed	on	comparisons	in	which	one	
proportion	is	more	than	half	and	the	other	is	
less	than	half,	than	on	comparisons	in	which	
both	proportions	are	more	than	half	or	both	
are	less	than	half	(e.g.,	comparing	1/3	to	3/5 
is	easier	than	comparing	2/3	to	4/5).29	In	addi-
tion,	children	can	complete	analogies	based	
on	proportional	relations—for	example,	half	
circle	is	to	half	rectangle	as	quarter	circle	is	to	
quarter	rectangle.30	

Although	there	is	evidence	that	describes	
young	children’s	knowledge	of	proportionality,	
no	rigorous	studies	that	met	WWC	standards	
have	examined	whether	this	early-developing	
knowledge	can	be	used	to	improve	teaching	
of	fraction	concepts.	

How
to
carry
out
the
recommendation


1.	 Use	equal-sharing	activities	to	introduce	the	concept	of	fractions.	Use	sharing	activi-
ties	that	involve	dividing	sets	of	objects	as	well	as	single	whole	objects.	

The	panel	recommends	that	teachers	offer	a	
progression	of	sharing	activities	that	builds	
on	students’	existing	strategies	for	dividing	
objects.	Teachers	should	begin	with	activities	
that	involve	equally	sharing	a	set	of	objects	
among	a	group	of	recipients	and	progress	to	
sharing	scenarios	that	require	partitioning	an	
object	or	set	of	objects	into	fractional	parts.	
In	addition,	early	activities	should	build	on	
students’	halving	strategy	(dividing	something	
into	two	equal	sets	or	parts)	before	having	
students	partition	objects	among	larger	num-
bers	of	recipients.	Students	should	be	encour-
aged	to	use	counters	(e.g.,	beans,	tokens),	
create	drawings,	or	rely	on	other	representa-
tions	to	solve	these	sharing	problems;	then	

teachers	can	introduce	formal	fraction	names	
(e.g.,	one­third,	one­fourth,	thirds,	quarters)	
and	have	children	label	their	drawings	to	
name	the	shared	parts	of	an	object	(e.g.,	1/3 or	
1/8	of	a	pizza).	For	optimal	success,	children	
should	engage	in	a	variety	of	such	labeling	
activities,	not	just	one	or	two.	

Sharing
a
set
of
objects.
Teachers	should	
initially	have	students	solve	problems	that	
involve	two	or	more	people	sharing	a	set	of	
objects	(see	Figure	1).	The	problems	should	
include	sets	of	objects	that	can	be	evenly	
divided	among	sharers,	so	there	are	no	
remaining	objects	that	need	to	be	partitioned	
into	fractional	pieces.	

(	13	)	
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In	these	early	sharing	problems,	teachers	
should	describe	the	number	of	items	and	the	
number	of	recipients	sharing	those	items,	
and	students	should	determine	how	many	
items	each	person	receives.31	Teachers	might	
then	pose	the	same	problem	with	increasing	
numbers	of	recipients.32	It	is	important	to	
emphasize	that	these	problems	require	shar-
ing	a	set	of	objects	equally,	so	that	students	
focus	on	giving	each	person	the	same	num-
ber	of	objects.	

Partitioning
a
single
object.	Next,	teach-
ers	should	pose	sharing	problems	that	result	
in	students	dividing	one	or	more	objects	into	
equal	parts.	The	focus	of	these	problems	
shifts	from	asking	students	how many things	
each	person	should	get	to	asking	students	
how much	of	an	object	each	person	should	
get.	For	example,	when	one	cookie	is	shared	
between	two	children,	students	have	to	think	

about	how	much	of	the	cookie	each	child	
should	receive.	

Teachers	can	begin	with	problems	that	
involve	multiple	people	sharing	a	single	
object	(e.g.,	four	people	sharing	an	apple)	and	
progress	to	problems	with	multiple	people	
sharing	a	set	of	objects	that	must	be	divided	
into	smaller	parts	to	share	equally	(e.g.,	three	
people	sharing	four	apples).	Problems	that	
involve	sharing	one	object	result	in	shares	
that	are	unit fractions	(e.g.,	1/3,	1/4,	1/9),	whereas	
scenarios	with	multiple	people	and	objects	
often	result	in	non­unit fractions	(e.g.,	3/4).33	

This	distinction	between	unit	and	non-unit	
fractions	is	important,	because	when	frac-
tions	are	reduced	to	lowest	terms,	non-unit	
fractions	are	composed	of	unit	fractions	
(e.g.,	3/4	=	1/4	+	1/4	+	1/4),	but	the	opposite	is	
not	the	case.	Sharing	situations	that	result	in	
unit	fractions	provide	a	useful	starting	point	

Figure
1.
Sharing
a
set
of
objects
evenly
among
recipients
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Problem


Three	children	want	to	share	12	cookies	so	that	each	child	receives	the	same	number	of	cookies.	How	
many	cookies	should	each	child	get?	

Examples
of
Solution
Strategies


Students	can	solve	this	problem	by	drawing	three	figures	to	represent	the	children	and	then	drawing	cook-
ies	by	each	figure,	giving	one	cookie	to	the	first	child,	one	to	the	second,	and	one	to	the	third,	continu-
ing	until	they	have	distributed	12	cookies	to	the	three	children,	and	then	counting	the	number	of	cookies	
distributed	to	each	child.	Other	students	may	solve	the	problem	by	simply	dealing	the	cookies	into	three	
piles,	as	if	they	were	dealing	cards.	



Recommendation 1 continuedRecommendation 1Recommendation 1Recommendation 1Recommendation 1 continuedcontinuedRecommendation
1
continued 

Figure
2.
Partitioning
both
multiple
and
single
objects


Problem


Two	children	want	to	share	five	apples	that	are	the	same	size	so	that	both	have	the	same	amount	to	eat.	
Draw	a	picture	to	show	what	each	child	should	receive.	

Examples
of
Solution
Strategies


Students	might	solve	this	problem	by	drawing	five	
circles	to	represent	the	five	apples	and	two	figures	
to	represent	the	two	children.	Students	then	might	
draw	lines	connecting	each	child	to	two	apples.	
Finally,	they	might	draw	a	line	partitioning	the	final	
apple	into	two	approximately	equal	parts	and	draw	
a	line	from	each	part	to	the	two	children.	Alterna-
tively,	as	in	the	picture	to	the	right,	children	might	
draw	a	large	circle	representing	each	child,	two	
apples	within	each	circle,	and	a	fifth	apple	strad-
dling	the	circles	representing	the	two	children.	In	
yet	another	possibility,	children	might	divide	each	
apple	into	two	parts	and	then	connect	five	half	
apples	to	the	representation	of	each	figure.	

for	introducing	fraction	names,	especially	
because	some	children	think	that	all	fractional	
parts	are	called	one-half.34	

The	panel	also	suggests	starting	with	prob-
lems	that	involve	sharing	among	two,	four,	
or	eight	people	(i.e.,	powers	of	two).35	This	
allows	students	to	create	equal	parts	by	
using	a	halving	strategy—dividing	an	object	
in	half,	dividing	the	resulting	halves	in	half,	
and	so	on,	until	there	are	enough	pieces	to	
share	(see	Figure	2).36	Eventually,	students	
should	solve	sharing	problems	for	which	they	

cannot	use	a	halving	strategy.	Partitioning	
a	brownie	into	thirds,	for	example,	requires	
that	students	anticipate	how	to	slice	the	
brownie	so	that	it	results	in	three	equal	parts.	
Students	may	be	tempted	to	use	repeated	
halving	for	all	sharing	problems,	but	teachers	
should	help	students	develop	other	strate-
gies	for	partitioning	an	object.	One	approach	
is	to	have	students	place	wooden	sticks	on	
concrete	shapes,	with	the	sticks	representing	
the	slices	or	cuts	that	a	student	would	make	
to	partition	the	object.37	

2.	 Extend	equal-sharing	activities	to	develop	students’	understanding	of	ordering	and	
equivalence	of	fractions.	

Teachers	can	extend	the	types	of	sharing	
activities	described	in	the	previous	step	to	
develop	students’	understanding	of	ordering	
and	identifying	equivalent	fractions.	The	over-
all	approach	remains	the	same:	teachers	pose	
story	problems	that	involve	a	group	of	people	

sharing	objects,	and	students	create	drawings	
or	other	representations	to	solve	the	prob-
lems.	However,	teachers	use	scenarios	that	
require	fraction	comparisons or	identification	
of	equivalent	fractions	and	focus	on	different	
aspects	of	students’	solutions.	

(	15	)	
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Sharing	activities	can	be	used	to	help	students	
understand	the	relative	size	of	fractions.	
Teachers	can	present	sharing	scenarios	with	an	
increasing	number	of	recipients	and	have	stu-
dents	compare	the	relative	size	of	each	result-
ing	share.	For	example,	students	can	compare	
the	size	of	pieces	that	result	when	sharing	a	
candy	bar	equally	among	three,	four,	five,	or	
six	children.38	Teachers	should	encourage	stu-
dents	to	notice	that	as	the	number	of	people	
sharing	the	objects	increases,	the	size	of	each	
person’s	share	decreases;	they	should	then	link	
this	idea	to	formal	fraction	names	and	encour-
age	students	to	compare	the	fractional	pieces	
using	fraction	names	(e.g.,	1/3	of	an	object	is	
greater	than	1/4	of	it).	

When	using	sharing	scenarios	to	discuss	
equivalent	fractions,	teachers	should	consider	
two	approaches,	both	of	which	should	be	used	
with	scenarios	in	which	the	number	of	sharers	
and	the	number	of	pieces	to	be	shared	have	
one	or	more	common	factors	(e.g.,	four	pizzas	
shared	among	eight	children):	

•		Partition	objects	into	larger	or	smaller	
pieces.
One	way	to	understand	equivalent	
shares	is	to	discuss	alternative	ways	to	parti-
tion	and	receive	the	same	shares.39	Students	
can	think	about	how	to	solve	a	sharing	sce-
nario	using	different	partitions	to	produce	
equal	shares.	Such	partitioning	may	require	
trial	and	error	on	the	part	of	students	to	

identify	which	groupings	result	in	equal	
shares.	Students	might	combine	smaller	
pieces	to	make	bigger	ones	or	partition	big-
ger	ones	into	smaller	pieces.	For	example,	to	
solve	the	problem	of	eight	children	sharing	
four	pizzas,	students	might	partition	all	four	
pizzas	into	eighths	and	then	give	each	child	
four	pieces	of	size	1/8.	Alternatively,	students	
could	divide	each	pizza	into	fourths	and	
give	each	person	2/4,	or	divide	each	pizza	
into	halves	and	distribute	1/2	to	each	child.	
Students	should	understand	that	although	
there	are	different	ways	to	partition	the	
pizza,	each	partitioning	method	results	in	
equivalent	shares.	

•		Partition	the	number	of	sharers	and	
the
number
of
items.	Another	way	to	help	
students	understand	equivalence	is	to	parti-
tion	the	number	of	sharers	and	objects.40	

For	example,	if	students	arrive	at	4/8	for	the	
problem	in	the	previous	paragraph,	the	
teacher	could	ask	how	the	problem	would	
change	if	the	group	split	into	two	tables	and	
at	each	table	four	children	shared	two	piz-
zas.	Students	can	compare	the	new	solution	
of	2/4	to	their	original	solution	of	4/8 to	show	
that	the	two	amounts	are	equivalent	(see	
Figure	3).	To	drive	home	the	point,	the	eight	
children	could	then	sit	at	four	tables,	with	
two	children	at	each	table	sharing	a	single	
pizza—and	reaching	the	more	familiar	
concept	of	1/2.	

Figure
3.
Student
work
for
sharing
four
pizzas
among
eight
children
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Another	way	to	teach	equivalent	fractions	with	
sharing	scenarios	is	to	pose	a	missing-value	
problem	in	which	children	determine	the	num-
ber	of	objects	needed	to	create	an	equivalent	
share.	For	example,	if	six	children	share	eight	
oranges	at	one	table,	how	many	oranges	are	
needed	at	a	table	of	three	children	to	ensure	
each	child	receives	the	same	amount?41	The	
problem	could	be	extended	to	tables	with	12	
children,	24	children,	or	9	children.	To	solve	
these	problems,	students	might	identify	how	
much	one	child	receives	in	the	first	scenario	
and	apply	that	to	the	second	scenario.	Alter-
natively,	they	could	use	the	strategy	described	
above	and	partition	the	six	children	and	eight	
oranges	at	the	original	table	into	two	tables,	so	
that	the	number	of	children	and	oranges	at	the	

first	new	table	equal	the	number	of	children	
and	oranges	at	the	second	new	table.	

Here	is	another	example	that	allows	students	
to	explore	the	concept	of	equal	partitioning:	
if	24	children	are	going	out	for	sandwiches,	
and	16	sandwiches	have	been	ordered,	what	
are	the	different	ways	the	children	could	sit	
at	tables	and	divide	the	sandwiches	so	they	
would	all	receive	the	same	amount?	Options	
might	include	having	one	big	table	of	24	chil-
dren	and	16	sandwiches,	having	four	tables	
of	six	children	and	four	sandwiches	at	each,	
eight	tables	of	three	children	and	two	sand-
wiches	at	each,	and	so	on.	

3.		Build	on	students’	informal	understanding	to	develop	more	advanced	understanding	
of	proportional-reasoning	concepts.	Begin	with	activities	that	involve	similar	propor-
tions,	and	progress	to	activities	that	involve	ordering	different	proportions.	

Early	instruction	can	build	on	students’	infor-
mal	understanding	to	develop	basic	concepts	
related	to	proportional	reasoning.	Teachers	
should	initially	pose	problems	that	encour-
age	students	to	think	about	the	proportional	
relations	between	pairs	of	objects,	without	
necessarily	specifying	exact	quantities.	For	
example,	teachers	could	use	the	story	of	
Goldilocks and the Three Bears to	discuss	how	
the	big	bear	needs	a	big	chair,	the	medium-
sized	bear	needs	a	medium-sized	chair,	and	
the	small	bear	needs	a	small	chair.42	

The	following	list	provides	examples	of	dif-
ferent	relations	relevant	to	early	proportional	
reasoning	that	can	be	explored	with	students:	

• Proportional	relations.	Teachers	can	dis-
cuss	stories	or	scenarios	that	present	basic	
proportional	relations	that	are	not	quanti-
fied.	For	example,	a	class	could	discuss	the	
number	of	students	it	would	take	to	balance	
a	seesaw	with	one,	two,	or	three	adults	on	
one	end.	Creating	more	and	less	saturated	
liquid	mixtures	with	lemonade	mix	or	food	

coloring	can	facilitate	discussions	compar-
ing	the	strength	or	concentration	of	differ-
ent	mixtures.	

• Covariation.	Teachers	should	discuss	
problems	that	involve	one	quantity	
increasing	as	another	quantity	increases.	
Examples	could	include	the	relation	
between	height	and	clothing	size	or	
between	foot	length	and	shoe	size.43	

• Patterns.	Simple	repeating	patterns	can	
be	useful	for	discussing	the	concept	of	
ratio.	For	example,	students	could	com-
plete	a	pattern	such	as	blue	star,	blue	
star,	red	square,	blue	star,	blue	star,	red	
square,	blue	star,	blue	star,	red	square,	
and	so	on.44	Teachers	can	then	discuss	
how	many	blue	stars	there	are	for	every	
red	square,	have	students	arrange	the	
stars	and	squares	to	show	what	gets	
repeated,	have	students	change	the	pat-
tern	to	a	different	ratio	(e.g.,	three	blue	
stars	to	one	red	square),	or	have	students	
extend	the	pattern.45	
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Potential
roadblocks
and
solutions


Roadblock
1.1. Students are unable to draw 
equal­size parts. 

Suggested
Approach.	Let	students	know	
that	it	is	acceptable	to	draw	parts	that	are	not	
exactly	equal,	as	long	as	they	remember	that	
the	parts	should	be	considered	equal.	

Roadblock
1.2.
Students do not share all of 
the items (non­exhaustive sharing) or do not 
create equal shares. 

Suggested
Approach.
Although	children	
have	an	intuitive	understanding	of	sharing	
situations,	they	sometimes	make	mistakes	
in	their	attempts	to	solve	sharing	problems.	
Students	may	not	share	all	of	the	items,	espe-
cially	if	a	sharing	scenario	requires	partition-
ing	an	object.	Teachers	should	help	students	
understand	that	sharing	scenarios	require	
sharing	all	of	the	objects—possibly	even	
noting	that	each	child	wants	to	receive	as	
much	as	he	or	she	possibly	can,	so	no	objects	
should	remain	unaccounted	for.	

Students	also	might	not	create	equal	shares	
because	they	do	not	understand	that	deal-
ing	out	equal-size	objects	results	in	an	
equal	amount	for	each	person.46	In	this	
case,	teachers	can	discuss	how	dealing	out	
objects	ensures	that	each	person	receives	an	
equal	amount	and	can	encourage	students	
to	verify	that	they	divided	the	items	equally.	

Equal	sharing	is	important	because	it	lays	a	
foundation	for	later	understanding	of	equiv-
alent	fractions	and	equivalent	magnitude	
differences	(e.g.,	understanding	that	the	dif-
ference	between	0	and	1/2	is	the	same	as	the	
difference	between	1	and	11/2 or	between	73	
and	731/2).	

Roadblock
1.3. When creating equal shares, 
students do not distinguish between the num­
ber of things shared and the quantity shared. 

Suggested
Approach.
Younger	students	
in	particular	may	confuse	equal	numbers	
of	shares	with	equal	amounts	shared.47	For	
example,	if	students	are	asked	to	provide	
equal	amounts	of	food	from	a	plate	with	both	
big	and	small	pieces,	a	child	might	give	out	
equal	numbers	of	pieces	of	food	rather	than	
equal	amounts.	This	misunderstanding	may	
stem	from	limited	experience	with	situations	
in	which	entities	of	different	sizes	are	dealt	
out	or	shared.	

One	way	to	address	this	misconception	is	to	
use	color	cues	to	help	students	distinguish	
between	the	quantity	being	shared	and	the	
number	of	items	being	shared.48	For	example,	
in	a	scenario	in	which	both	of	two	identical	
toy	dogs	are	said	to	be	hungry,	children	could	
be	asked	whether	the	dogs	would	have	the	
same	amount	to	eat	if	one	dog	received	five	
large	red	pieces	of	pretend	food	and	the	other	
dog	five	small	green	pieces	of	pretend	food.	
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Help
students
recognize
that
fractions
are
numbers

and
that
they
expand
the
number
system
beyond
whole

numbers.
Use
number
lines
as
a
central
representational

tool
in
teaching
this
and
other
fraction
concepts
from

the
early
grades
onward.

Early fractions instruction generally focuses on the idea that fractions represent parts of 
a whole (e.g., one­third as the relation of one part to a whole that has three equal parts). 
Although the part­whole interpretation of fractions is important, too often instruction does 
not convey another simple but critical idea: fractions are numbers with magnitudes (values) 
that can be either ordered or considered equivalent. 

Many common misconceptions—such as that two fractions should be added by adding the 
numerators and then adding the denominators—stem from not understanding that fractions are 
numbers with magnitudes. Not understanding this can even lead to confusion regarding whether 
fractions are numbers. For example, many students believe that four­thirds is not a number, 
advancing explanations such as, “You cannot have four parts of an object that is divided into three 
parts.”49 Further, many students do not understand that fractions provide a unit of measure that 
allows more precise measurement than whole numbers; these students fail to realize that an infinite 
range of numbers exists between successive whole numbers or between any two fractions.50 Reliance 
on part­whole instruction alone also leaves unclear how fractions are related to whole numbers. 
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An effective way to develop students’ understanding of fractions as numbers with magnitudes 
is to use number lines. Number lines can clearly illustrate the magnitude of fractions; the 
relation between whole numbers and fractions; and the relations among fractions, decimals, 
and percents. They also provide a starting point for building students’ number sense with 
fractions and provide a way to represent negative fractions visually, which can otherwise be 
a challenging task. All of these types of understanding are crucial for learning algebra and 
other more advanced areas of mathematics. 

Summary
of
evidence:
Moderate
Evidence


Evidence	for	this	recommendation	primarily	
comes	from	studies	demonstrating	the	useful-
ness	of	number	lines	for	developing	number	
sense	with	whole	numbers.	These	studies	
used	number	line	representations	to	teach	
preschool	and	early	elementary	students	
about	the	magnitudes	of	whole	numbers.51	An	
additional	study	showed	how	number	lines	can	
be	used	to	teach	decimals	successfully.52	All	of	
these	studies	met	WWC	evidence	standards.	
Moreover,	accuracy	in	locating	whole	numbers	
on	number	lines	is	related	to	mathematical	
achievement	among	students	in	kindergarten	
through	4th	grade,	and	accuracy	in	locating	
decimals	on	number	lines	is	related	to	class-
room	mathematics	grades	among	5th-	and	
6th-graders.53	The	panel	believes	that	given	
the	applicability	of	number	lines	to	fractions	as	
well	as	whole	numbers,	these	findings	indicate	
that	number	lines	can	improve	learning	of	frac-
tions	in	elementary	and	middle	school.	

Number
lines
with
whole
numbers.

Playing	a	linear	board	game	with	whole	
numbers	for	about	one	hour	(four	15-minute	
sessions	over	a	two-week	period)	improved	
understanding	of	numerical	magnitudes	by	
preschoolers	from	low-income	backgrounds.54	

The	game	involved	moving	a	marker	one	
or	two	spaces	at	a	time	across	a	horizontal	
board	that	had	the	numbers	1	to	10	listed	
in	order	from	left	to	right	in	consecutive	
squares.	Two	additional	studies	showed	
the	value	of	other	number	line	procedures	
for	improving	knowledge	of	whole	number	
magnitudes.	Estimating	the	locations	of	10	
numbers	on	a	0-to-100	number	line	improved	
1st-graders’	ability	to	locate	whole	numbers	
on	the	number	line;55	and	showing	1st-grade	

students	the	addends	and	sums	of	addition	
problems	on	a	number	line	increased	the	
likelihood	that	students	correctly	answered	
the	problems	later.	

Number
lines
with
decimals.
In	another	
study,	number	lines	were	used	to	teach	
decimal	concepts	to	5th-	and	6th-grade	
students.56	The	teaching	technique	involved	
providing	students	with	practice	locating	
decimals	on	a	number	line	divided	into	tenths	
and	with	a	prompt	to	notice	the	tenths	digit	
for	each	number.	These	students	were	later	
more	accurate	in	locating	decimals	on	a	
number	line	than	students	whose	number	
lines	were	not	divided	into	tenths	and	did	
not	receive	prompts.	For	all	students	in	the	
study,	a	before-and-after	comparison	showed	
that	conceptual	understanding	of	fractions	
improved	after	locating	decimals	on	a	number	
line.	This	last	finding	is	suggestive	evidence,	
because	there	is	no	comparison	group	of	
students	who	did	not	use	a	number	line.	

Another	study	examined	a	Dutch	curriculum	
that	used	number	lines	and	measurement	con-
texts	to	teach	fractions.57	Students	in	the	treat-
ment	group	located	and	compared	fractions	
on	a	number	line	and	measured	objects	in	the	
classroom	using	a	strip	that	could	be	folded	to	
measure	fractional	parts.	Although	this	study	
did	not	meet	WWC	evidence	standards,	the	
authors	reported	positive	effects	on	middle	
school	students’	number	sense	with	frac-
tions.58	Two	additional	studies	that	were	not	
eligible	for	review	found	mixed	results	of	using	
a	number	line	to	teach	fraction	concepts.	Both	
studies	noted	challenges	that	students	face	
in	understanding	fractions	on	number	lines.59	

For	example,	one	study	reported	that	students	
had	difficulty	finding	equivalent	fractions	on	
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a	number	line	partitioned	into	smaller	units	
(e.g.,	finding	1/3	on	a	number	line	divided	into	
sixths).60	

Other	evidence	that	is	consistent	with	the	rec-
ommendation	includes	a	study	showing	the	
relation	between	skill	at	estimating	locations	

of	decimals	on	a	number	line	and	math	
grades	for	5th-	and	6th-grade	students,61	

and	a	mathematician’s	analysis	indicating	
that	learning	to	represent	the	full	range	of	
numbers	on	number	lines	is	fundamental	to	
understanding	numbers.62	

How
to
carry
out
the
recommendation


1.	 Use	measurement	activities	and	number	lines	to	help	students	understand	that	frac-
tions	are	numbers,	with	all	the	properties	that	numbers	share.	

When	students	view	fractions	as	numbers,	
they	understand	that	fractions,	like	whole	
numbers,	can	be	used	to	measure	quantities.	
Measurement	activities	provide	a	natural	con-
text	in	this	regard.63	Through	such	activities,	
teachers	can	develop	the	idea	that	fractions	
allow	for	more	precise	measurement	of	quan-
tities	than	do	whole	numbers.	

Teachers	can	present	situations	in	which	frac-
tions	are	used	to	solve	problems	that	cannot	
be	solved	with	whole	numbers.	For	example,	
they	can	ask	students	how	to	describe	the	
amount	of	sugar	in	a	cookie	recipe	that	
needs	more	than	1	cup	but	less	than	2	cups.	

Teachers	can	then	show	students	the	various	
measurement	lines	on	a	measuring	cup	and	
convey	the	importance	of	fractions	in	describ-
ing	quantities.	Teachers	should	emphasize	
that	fractions	provide	a	more	precise	unit	
of	measure	than	whole	numbers	and	allow	
students	to	describe	quantities	that	whole	
numbers	cannot	represent.	Fraction	strips	
(also	known	as	fraction	strip	drawings,	strip	
diagrams,	bar	strip	diagrams,	and	tape	dia-
grams)	are	length	models	that	allow	students	
to	measure	objects	using	fractional	parts	and	
reinforce	the	idea	that	fractions	can	be	used	
to	represent	quantities	(see	Example	1).	

Example
1.
Measurement
activities
with
fraction
strips


Teachers	can	use	fraction	strips	as	the	basis	for	mea-
surement	activities	to	reinforce	the	concept	that	frac-
tions	are	numbers	that	represent	quantities.64	

To	start,	students	can	take	a	strip	of	card	stock	or	
construction	paper	that	represents	the	initial	unit	of	
measure	(i.e.,	a	whole)	and	use	that	strip	to	measure	
objects	in	the	classroom	(desk,	chalkboard,	book,	etc.).	
When	the	length	of	an	object	is	not	equal	to	a	whole	
number	of	strips,	teachers	can	provide	students	with	
strips	that	represent	fractional	amounts	of	the	original	
strip.	For	example,	a	student	might	use	three	whole	
strips	and	a	half	strip	to	measure	a	desk.	

Teachers	should	emphasize	that	fraction	strips	repre-
sent	different	units	of	measure	and	should	have	stu-
dents	measure	the	same	object	first	using	only	whole	strips	and	then	using	a	fractional	strip.	Teachers	should	
discuss	how	the	length	of	the	object	remains	the	same	but	how	different	units	of	measure	allow	for	better	
precision	in	describing	it.	Students	should	realize	that	the	size	of	the	subsequently	presented	fraction	strips	is	
defined	by	the	size	of	the	original	strip	(i.e.,	a	half	strip	is	equal	to	one-half	the	length	of	the	original	strip).	

1/2 1/4

Using
fraction
strips
to
measure
an
object
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2.	Provide	opportunities	for	students	to	locate	and	compare	fractions	on	number	lines.	

Teachers	should	provide	opportunities	for	
students	to	locate	and	compare	fractions	on	
number	lines.	These	activities	should	include	
fractions	in	a	variety	of	forms,	including	
proper	fractions	(2/3),	improper	fractions	(5/3),	
mixed	numbers	(12/3),	whole	numbers	(4/2),	
decimals	(0.40),	and	percents	(70%).	

Teachers	can	initially	have	students	locate	
and	compare	fractions	on	number	lines	with	
the	fractions	already	marked	(e.g.,	a	num-
ber	line	with	marks	indicating	tenths).	Pre-
segmented	number	lines	avoid	the	difficulty	
students	have	in	accurately	partitioning	the	
number	line.	These	number	lines	also	are	
useful	for	locating	and	comparing	fractions	
whose	locations	are	indicated	(e.g.,	3/8	and	5/8 
on	a	number	line	with	eighths	marked)	and	
fractions	whose	denominator	is	a	factor	of	the	
unit	fractions	shown	on	the	number	line	(e.g.,	
1/4	and	3/4	on	a	line	with	eighths	marked),	as	
well	as	fractions	with	other	denominators	
(e.g.,	1/7,	3/5).	For	example,	students	might	
compare	the	locations	of	7/8	and	3/4	on	a	num-
ber	line	marked	with	eighths.	These	activities	
should	include	opportunities	for	students	to	
locate	whole	numbers	on	the	number	line	and	
compare	their	locations	to	those	of	fractions,	
including	ones	equivalent	to	whole	numbers	
(e.g.,	locating	1	and	8/8).	

Number	lines	also	can	be	used	to	compare	
fractions	of	varying	sizes	to	whole	numbers	
greater	than	one	(locating	10/3 on	a	number	
line	with	0	at	the	left	end,	5	at	the	right	end,	
and	1,	2,	3,	and	4	marked	in	between).	Exam-
ple	2	provides	a	strategy	that	can	be	used	
to	introduce	students	to	the	idea	of	locating	
fractions	on	a	number	line.	

Comparing	fractions	with	different	denomina-
tors	on	a	pre-segmented	number	line	can	be	
complicated	for	young	students—for	example,	
comparing	3/8	and	1/3	on	a	number	line	divided	
into	eighths.	To	help	students	understand	such	
problems,	teachers	can	label	number	lines	with	
one	fractional-unit	sequence	above	the	number	
line	and	a	different	fractional-unit	sequence	

Example
2.
Introducing
fractions
on
a

number
line


The	following	example	describes	one	way	to	
introduce	the	idea	of	locating	fractions	on	a	
number	line,	emphasizing	that	fractions	are	
numbers	with	quantities.	

To	illustrate	the	location	of	3/5	on	a	0-to-5	
number	line,	the	teacher	might	first	mark	and	
label	the	location	of	1	and	then	divide	the	
space	between	each	whole	number	into	five	
equal-size	parts.	After	this,	the	teacher	might	
add	the	labels	0/5,	1/5,	2/5,	3/5,	4/5,	and	5/5	in	the	
0–1	part	of	the	number	line	and	highlight	the	
location	of	3/5.65	Displaying	whole	numbers	as	
fractions	(e.g.,	5/5)	allows	teachers	to	discuss	
what	it	means	to	describe	whole	numbers	in	
terms	of	fractions	and	to	clarify	that	whole	
numbers	are	fractions	too.	

below	the	number	line.	For	example,	when	
asking	students	to	compare	1/3	and	3/8,	teachers	
might	label	eighths	above	the	number	line	and	
thirds	below	it.	Such	number	lines	allow	stu-
dents	who	are	relatively	early	in	the	process	of	
learning	about	fractions	to	locate	and	compare	
fractions	with	different	denominators	and	to	
think	about	the	relative	size	of	the	fractions.66	

Teachers	also	should	provide	students	with	
opportunities	to	locate	and	compare	fractions	
on	number	lines	that	are	minimally	labeled—	
for	example,	ones	with	the	labels	0,	1/2,	1,	
11/2,	and	2.	This	approach	is	almost	a	neces-
sity	for	fractions	with	large	denominators	
(e.g.,	dividing	a	number	line	into	28ths	is	dif-
ficult)	and	encourages	students	to	think	about	
the	location	of	fractions	relative	to	the	labeled	
landmarks.67	For	example,	teachers	can	have	
students	locate	6/7	on	a	number	line	marked	
with	0,	1/2,	and	1.	

For	a	whole-class	activity,	teachers	can	draw	
a	number	line	on	the	board	and	have	students	
mark	estimates	of	where	different	fractions	
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The following example describes one way to 
introduce the idea of locating fractions on a 
number line, emphasizing that fractions are 
numbers with quantities. 

To illustrate the location of 3/5 on a 0-to-5 
number line, the teacher might first mark and 
label the location of 1 and then divide the 
space between each whole number into five 
equal-size parts. After this, the teacher might 
add the labels 0/5, 1/5, 2/5, 3/5, 4/5, and 5/5 in the 
0–1 part of the number line and highlight the 
location of 3/5.65 Displaying whole numbers as 
fractions (e.g., 5/5) allows teachers to discuss 
what it means to describe whole numbers in 
terms of fractions and to clarify that whole 
numbers are fractions too.
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fall.	As	the	number	line	fills	up,	teachers	can	
guide	a	discussion	about	fractions	yet	to	be	
placed,	highlighting	the	need	to	preserve	the	
correct	order.	Inserting	decimals	and	percent-
ages	on	that	same	number	line	can	teach	
additional	valuable	lessons.	

Finally,	teachers	should	encourage	students	to	
think	about	the	distance	between	two	fractions:	
For	example,	students	could	compare	1/12	and	
1/4	and	consider	whether	1/12	is	closer	to	1/4 or	
0.	Similarly,	0.3	or	0.45	could	be	compared	to	
locations	marked	0,	1/2,	and	1,	or	0,	0.5,	and	1.	

3.	Use	number	lines	to	improve	students’	understanding	of	fraction	equivalence,	frac-
tion	density	(the	concept	that	there	are	an	infinite	number	of	fractions	between	any	
two	fractions),	and	negative	fractions.	

In	addition	to	being	useful	for	comparing	posi-
tive	fraction	magnitudes,	number	lines	also	can	
be	valuable	for	teaching	equivalent	fractions,	
negative	fractions,	and	fraction	density.	Number	
lines	are,	of	course,	not	the	only	way	to	teach	
these	concepts,	but	the	panel	believes	they	are	
helpful	for	improving	students’	understanding.	

Number	lines	can	be	used	to	illustrate	that	
equivalent	fractions	describe	the	same	magni-
tude.	For	example,	asking	students	to	locate	2/5 
and	4/10 on	a	single	number	line	can	help	them	
understand	the	equivalence	of	these	numbers.	
Teachers	can	mark	fifths	above	the	line	and	
tenths	below	it	(or	vice	versa)	to	help	students	
with	this	task.	Although	viewing	equivalent	
fractions	as	the	same	point	on	a	number	line	
can	be	challenging	for	students,68	the	panel	
believes	that	the	ability	to	do	so	is	critical	for	
thorough	understanding	of	fractions.	

A	discussion	of	equivalent	fractions	should	
build	on	points	made	in	Step	1	about	fractions	
on	the	number	line.	For	example,	teachers	can	
divide	a	0-to-1	number	line	into	halves	and	
quarters	and	show	that	1/2	and	2/4	occupy	the	
same,	or	equivalent,	point	on	the	number	line	
(see	Figure	4).	Students	can	use	a	ruler	to	iden-
tify	equivalent	fractions	on	the	stacked	number	
lines	shown	in	Figure	4,	identifying	fractions	
that	occupy	the	same	location	on	each	num-
ber	line.	Fraction	strips	also	can	be	used	to	
reinforce	the	concept	of	equivalent	fractions	
by	allowing	students	to	measure	the	distance	
between	two	points	using	different-sized	frac-
tion	strips	(see	Figure	5).	

Number	lines	also	can	be	used	to	help	stu-
dents	understand	that	an	infinite	number	of	
fractions	exist	between	any	two	other	frac-
tions.	This	is	one	way	in	which	fractions	differ	

Figure
4.
Finding
equivalent
fractions
on
a
number
line


Use
of
number
lines
to

teach
equivalence
of

fractions
in
a
Japanese

curriculum


Source:	Adapted	from	Shoseki	(2010).	
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Figure
5.
Using
fraction
strips
to
demonstrate
equivalent
fractions
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from	whole	numbers	and	can	be	a	difficult	
concept	for	students	to	grasp.69	Teachers	can	
help	students	understand	this	concept	by	
asking	them	to	make	successive	partitions	on	
the	number	line,	creating	smaller	and	smaller	
unit	fractions.70	For	example,	students	can	
divide	whole	number	segments	in	half	to	
create	halves,	and	then	divide	each	half	into	
halves	to	create	fourths,	then	divide	each	
fourth	into	halves	to	create	eighths,	and	so	
on	(this	activity	also	can	be	done	with	thirds,	
ninths,	twenty-sevenths,	etc.).	Such	divisions	
show	students	that	they	always	can	partition	
a	number	line	using	smaller	unit	fractions.71	

The	same	can	be	done	with	decimals	and	
percents—such	as	by	showing	that	0.13,	0.15,	
and	0.17	are	among	the	infinite	numbers	that	
fall	between	0.1	and	0.2,	and	that	2%	falls	
between	0%	and	10%.	

The	panel	further	recommends	that	teachers	
use	number	lines	when	introducing	negative	
fractions.	Teaching	negative	fractions	in	a	part-
whole	context	can	be	difficult,	because	the	idea	
of	a	negative	part	of	a	whole	is	non-intuitive.	
But	the	number	line	provides	a	straightforward	
visual	representation	of	fractions	less	than	zero,	
as	well	as	fractions	greater	than	zero.	

By	providing	number	lines	that	include	marks	
and	labels	for	zero,	for	several	positive	frac-
tions,	and	for	several	negative	fractions	with	
the	same	absolute	values	as	the	positive	frac-
tions,	teachers	can	help	convey	the	symmetry	
about	zero	of	positive	and	negative	fractions.	
And	by	placing	positive	and	negative	fractions	
into	stories—possibly	about	locations	above	
and	below	sea	level	or	about	money	gained	
or	lost—teachers	can	illustrate	addition	and	
subtraction	of	both	types	of	fractions.	

4.	Help	students	understand	that	fractions	can	be	represented	as	common	fractions,	deci-
mals,	and	percentages,	and	develop	students’	ability	to	translate	among	these	forms.	

Students	need	a	broad	view	of	fractions	as	
numbers.	That	includes	understanding	that	
fractions	can	be	represented	as	decimals	
and	percents	as	well	as	common	fractions.	
Teachers	should	clearly	convey	that	common	
fractions,	decimals,	and	percents	are	just	dif-
ferent	ways	of	representing	the	same	number.	

Number	lines	provide	a	useful	tool	for	helping	
students	understand	that	fractions,	decimals,	
and	percents	are	different	ways	of	describ-
ing	the	same	number.	By	using	a	number	line	

with	common	fractions	listed	above	it	and	
decimals	or	percentages	below	it,	teachers	
can	help	students	locate	and	compare	frac-
tions,	decimals,	and	percents	on	the	same	
number	line.	For	example,	teachers	can	pro-
vide	students	with	a	number	line	marked	with	
0	and	1,	and	students	can	be	asked	to	locate	
3/4,	0.75,	and	75%	on	it.	In	addition,	when	stu-
dents	use	division	to	translate	a	fraction	into	
a	decimal,	they	can	plot	both	the	fraction	and	
the	decimal	on	the	same	number	line.	
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Potential
roadblocks
and
solutions


Roadblock
2.1.
Students try to partition the 
number line into fourths by drawing four hash 
marks rather than three, or they treat the 
whole number line as the unit.72	

Suggested
Approach.	When	using	a	number	
line	with	fractions,	students	must	be	taught	to	
represent	fourths	as	four	equal-size	segments	
between	two	whole	numbers.	Teachers	should	
demonstrate	that	inserting	three	equally	
spaced	hash	marks	between,	say,	0	and	1	
divides	the	space	into	four	equal	segments,	
or	fourths.	This	rule	can	be	generalized	so	
that	students	know	that	dividing	the	number	
line	into	1/n	units	requires	drawing	n –	1	hash	
marks	between	two	whole	numbers.	

Roadblock
2.2. When students locate frac­
tions on the number line, they treat the numbers 
in the fraction as whole numbers (e.g.,	placing 
3/4	between 3 and 4). 

Suggested
Approach.	This	mistake	reflects	
a	common	misconception	in	which	students	
apply	their	whole	number	knowledge	to	
fractions—viewing	the	numbers	that	make	
up	a	fraction	as	separate	whole	numbers.	
The	misconception	can	be	addressed	by	
presenting	students	with	contrasting	cases:	
for	example,	having	them	locate	3	and	4	on	
a	0-to-4	number	line,	then	identifying	3/4	as	a	
fraction	between	0	and	1,	and	finally	discuss-
ing	why	each	fraction	goes	where	it	is	placed.	

Roadblock
2.3. Students have difficulty 
understanding that two equivalent fractions 
are the same point on a number line. 

Suggested
Approach.	Students	often	have	
trouble	internalizing	how	partitions	that	locate	
one	fraction	(e.g.,	eighths	partitions	for	locat-
ing	4/8)	also	can	help	locate	an	equivalent	

fraction	(e.g.,	1/2).	One	way	to	address	this	lack	
of	understanding	is	to	show	students	one	set	
of	numerical	labels	above	the	number	line	and	
another	set	of	labels	below	it.	Thus,	halves	
could	be	marked	just	above	the	line	and	
eighths	just	below	it,	and	teachers	could	point	
out	the	equivalent	positions	of	1/2	and	4/8,	of	
1	and	8/8,	of	11/2	and	12/8,	and	so	on.	Another	
approach	is	for	students	to	create	a	number	
line	showing	1/2	and	another	number	line	
showing	4/8	and	then	compare	the	two.	Teach-
ers	can	line	up	the	two	number	lines	and	lead	
a	discussion	about	equivalent	fractions.	

Roadblock
2.4. The curriculum materials 
used by my school district focus on part­whole 
representations and do not use the number 
line as a key representational tool for fraction 
concepts and operations. 

Suggested
Approach.	Although	it	is	impor-
tant	for	students	to	understand	that	fractions	
represent	parts	of	a	whole,	the	panel	notes	
that	this	is	only	one	use	of	fractions	and	
therefore	recommends	the	use	of	number	
lines	and	measurement	contexts	to	develop	
a	comprehensive	understanding	of	fractions.	
Manipulatives	that	often	are	used	to	represent	
part-whole	interpretations,	such	as	fraction	
circles	and	fraction	strips,	also	can	be	used	
to	convey	measurement	interpretations,	but	
considerable	care	needs	to	be	taken	to	avoid	
students	simply	counting	parts	of	the	fraction	
strip	or	circle	that	correspond	to	the	numera-
tor	and	to	the	denominator	without	under-
standing	how	the	numerator	and	denominator	
together	indicate	a	single	quantity.	Using	
number	lines	that	are	unmarked	between	the	
endpoints	can	avoid	such	counting	without	
understanding.	Some	textbooks	use	number	
lines	extensively	for	teaching	fractions;	teach-
ers	should	examine	those	books	for	ideas	
about	how	to	use	number	lines	to	convey	the	
idea	that	fractions	are	measures	of	quantity.	
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3


Help
students
understand
why
procedures
for

computations
with
fractions
make
sense.

Students are most proficient at applying computational procedures when they understand 
why those procedures make sense. Although conceptual understanding is foundational for the 
correct use of procedures, students often are taught computational procedures with fractions 
without an adequate explanation of how or why the procedures work. 

Teachers should take the time to provide such explanations and to emphasize how fraction 
computation procedures transform the fractions in meaningful ways. In other words, they 
should focus on both conceptual understanding and procedural fluency and should emphasize 
the connections between them. The panel recommends several practices for developing 
understanding of computational procedures, including use of visual representations and 
estimation to reinforce conceptual understanding. Addressing students’ misconceptions and 
setting problems in real­world contexts also can contribute to improved understanding. 

Summary
of
evidence:
Moderate
Evidence


The	panel	based	this	recommendation	in	
large	part	on	three	well-designed	studies	that	
demonstrated	the	effectiveness	of	teaching	
conceptual	understanding	when	developing	
students’	computational	skill	with	fractions.73	

These	studies	focused	on	decimals	and	were	
relatively	small	in	scale;	however,	the	panel	
believes	that	their	results,	together	with	
extensive	evidence	showing	that	meaningful	

information	is	remembered	much	better	than	
meaningless	information,	provide	persuasive	
evidence	for	this	recommendation.74	 Addi-
tional	support	for	the	recommendation	comes	
from	four	studies	that	showed	a	positive	rela-
tion	between	conceptual	and	computational	
knowledge	of	fractions.75	

The	studies	that	contributed	to	the	evidence	
base	for	this	recommendation	used	computer-
based	interventions	to	examine	the	link	
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between	conceptual	knowledge	and	computa-
tional	skill	with	decimals.	Sixth-grade	students	
completed	three	lessons	on	decimal	place	value	
(i.e.,	conceptual	knowledge)	and	three	lessons	
on	addition	and	subtraction	of	decimals	(i.e.,	
procedural	knowledge).76	Iterating	between	
the	two	types	of	lessons	improved	students’	
procedural	knowledge,	compared	with	teach-
ing	all	of	the	conceptual	lessons	before	any	of	
the	procedural	ones.	In	another	study,	5th-	and	
6th-grade	students	practiced	locating	decimals	
on	a	number	line	using	a	computer-based	
game.	Dividing	the	number	line	into	tenths	and	
encouraging	students	to	notice	the	tenths	digit	
improved	5th-	and	6th-grade	students’	ability	to	
locate	decimals	on	a	number	line	(compared	to	
not	providing	the	prompts).77	

Research	also	shows	a	positive	relationship	
between	students’	conceptual	and	procedural	
knowledge	of	fractions.	That	is,	children	who	
have	above-average	conceptual	knowledge	
also	tend	to	have	above-average	knowledge	of	
computational	procedures.	Studies	of	4th-	and	
5th-graders	and	of	7th-	and	8th-graders	indi-
cated	that	conceptual	knowledge	was	positively	
related	to	computational	proficiency	after	con-
trolling	for	prior	math	achievement,	arithmetic	
fluency,	working	memory,	and	reading	ability.78	

In	addition,	conceptual	knowledge	of	decimals	
predicted	students’	ability	to	locate	decimals	
on	a	number	line.79	While	these	studies	show	a	
correlation	between	conceptual	and	procedural	
knowledge,	they	did	not	examine	the	effective-
ness	of	interventions	that	develop	conceptual	
knowledge	to	improve	procedural	knowledge.	

The	panel	also	identified	evidence	that	spe-
cifically	addressed	two	of	the	four	steps	for	
implementing	this	recommendation.	

Use
of
representations.
Evidence	identi-
fied	by	the	panel	supports	the	recommended	

practice	of	using	visual	representations	and	
manipulatives	during	instruction	on	fraction	
computation	(Step	1).	Two	well-designed	stud-
ies	found	that	the	use	of	manipulatives	and	
pictorial	representations	had	a	positive	effect	
on	computational	skill	with	fractions.80	One	of	
these	studies	focused	on	fraction	circles	(sets	
of	circles,	in	which	the	first	is	a	whole	circle,	
the	second	is	divided	in	half,	the	third	is	
divided	in	thirds,	etc.).81	The	other	study	had	
students	use	a	variety	of	manipulatives	for	
learning	computational	procedures	with	frac-
tions,	including	fraction	squares	and	fraction	
strips.82	A	third	study	examined	the	Rational	
Number	Project	curriculum,	which	empha-
sizes	the	use	of	manipulatives	as	one	of	many	
components.83	The	authors	of	the	study	
reported	that	the	curriculum	had	a	positive	
effect	on	fraction	computation	abilities.	How-
ever,	manipulatives	were	only	one	component	
of	this	multifaceted	curriculum,	and	the	study	
provided	insufficient	information	for	the	WWC	
to	complete	a	review,	so	the	conclusions	that	
can	be	drawn	from	the	study	regarding	the	
role	of	manipulatives	are	limited.	

Real­world
contexts.	The	panel	identified	
evidence	related	to	the	use	of	real-world	con-
texts	for	improving	skill	at	executing	compu-
tational	procedures	with	fractions	(Step	4).84	

In	one	of	the	studies,	personalizing	problems	
for	5th-	and	6th-grade	students	improved	
their	ability	to	solve	division	problems	with	
fractions.85	The	other	study	found	that	pos-
ing	problems	in	everyday	contexts	improved	
11- and	12-year-old	students’	ability	to	order	
and	compare	decimals.86	Additional	studies	
argued	for	the	use	of	real-world	contexts	for	
teaching	procedures	for	computing	with	frac-
tions	but	did	not	provide	rigorous	evidence	
that	such	instruction	causes	improvement	in	
fraction	computation.87	
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How
to
carry
out
the
recommendation


1.	 Use	area	models,	number	lines,	and	other	visual	representations	to	improve	stu-
dents’	understanding	of	formal	computational	procedures.	

Teachers	should	use	visual	representations	
and	manipulatives,	including	number	lines	
and	area	models,	that	help	students	gain	
insight	into	basic	concepts	underlying	com-
putational	procedures	and	the	reasons	why	
these	procedures	work.	For	example,	when	
teaching	addition	or	subtraction	of	fractions	
with	unlike	denominators,	teachers	should	
use	a	representation	that	helps	students	see	
the	need	for	common	denominators.	

There	are	several	ways	teachers	can	use	
representations	to	illuminate	key	underlying	
concepts:	

•		Find
a
common
denominator
when

adding
and
subtracting
fractions.	A	
common	mistake	students	make	when	
faced	with	fractions	that	have	unlike	
denominators	is	to	add	both	numerators	
and	denominators.88	Certain	representa-
tions	can	provide	visual	cues	to	help	
students	see	the	need	for	common	

denominators.	For	example,	teachers	can	
demonstrate	that	when	adding	pieces	
corresponding	to	fractions	of	objects	(e.g.,	
adding	1/2	of	a	circle	and	1/3	of	a	circle),	
converting	both	1/2	and	1/3	to	sixths	pro-
vides	a	common	denominator	that	applies	
to	both	fractions	and	allows	them	to	be	
added	(Figure	6).	Discuss	with	students	
why	multiplying	denominators	always	
indicates	a	common	denominator	that	can	
be	used	to	express	both	original	fractions.	

•		Redefine
the
unit
when
multiplying

fractions.	Multiplying	two	fractions	
requires	finding	a	fraction	of	a	fraction.	
For	example,	when	multiplying	1/4	by	2/3,	
students	could	start	with	2/3	of	the	original	
(usually	unmentioned)	unit	and	find	1/4 of	
this	fractional	amount.	Pictorial	or	concrete	
representations	can	help	students	visual-
ize	this	process	to	improve	their	under-
standing	of	the	multiplication	procedure.	
For	example,	students	can	shade	in	with	

Figure
6.
Fraction
circles
for
addition
and
subtraction


1/6	

1/6	

1/6	
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=	

=	

1/3	

1/6	

1/61/6	

1/6	

1/6	

Adding
1/2
+
1/3
using
fraction
circles


Source:	Adapted	from	Cramer	and	Wyberg	(2009).	
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Figure
7.
Redefining
the
unit
when
multiplying
fractions


Lori	is	icing	a	cake.	She	knows	that	1	cup	of	icing	will	cover	2/3	of	a	cake.	How	much	cake	
can	she	cover	with	1/4	cup	of	icing?	

vertical	lines	2/3 of	a	square	cake	drawn	on	
paper	and	then	shade	in	with	horizontal	
lines	1/4 of	the	cake’s	shaded	area,	resulting	
in	a	product	represented	by	the	cross-
hatched	area	(Figure	7).89	This	approach	
illustrates	how	to	redefine	the	unit—	
initially	treating	the	full	cake	as	the	whole,	
and	then	treating	the	vertically	shaded	
portion	of	the	cake	as	the	whole.	

•		 Divide
a
number
into
fractional
parts.

Dividing	fractions	is	conceptually	similar	
to	dividing	whole	numbers,	in	that	students	
can	think	about	how	many	times	the	divi-
sor	goes	into	the	dividend.	For	example,	
1/2	÷	1/4	can	be	represented	in	terms	of	
“How	many	1/4s	are	in	1/2?”	

Teachers	can	use	representations	such	as	
ribbons	or	a	number	line	to	help	students	
model	the	division	process	for	fractions.	
Students	using	ribbons	can	cut	two	rib-
bons	of	equal	size	and	then	separate	one	
into	fourths	and	one	into	halves.	To	show	
the	division	problem	1/2	÷	1/4,	students	can	

find	out	how	many	fourths	of	a	ribbon	fit	
onto	one-half	of	a	ribbon,	when	the	whole	
ribbon	was	the	same	length	in	both	cases	
(see	Figure	8).90	Similarly,	a	teacher	can	
draw	a	number	line	with	both	fourths	and	
halves	labeled	to	show	students	that	there	
are	two	1/4	segments	in	1/2.	Teachers	can	
help	students	deepen	their	understand-
ing	of	the	division	process	by	presenting	
problems	in	which	the	divisor,	dividend,	
or	both	are	greater	than	one,	and	prob-
lems	in	which	the	quotient	is	not	an	inte-
ger,	such	as	13/4	divided	by	1/2.	

Teachers	should	consider	the	advantages	and	
disadvantages	of	different	representations	
for	teaching	procedures	for	computing	with	
fractions.	A	key	issue	is	whether	the	repre-
sentation	adequately	reflects	the	computation	
process	being	taught,	allowing	students	to	
make	links	between	the	two.	

Teachers	also	should	think	about	whether	
a	representation	can	be	used	with	different	
types	of	fractions—proper	fractions	(5/8),	
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Figure
8.
Using
ribbons
to
model
division
with
fractions


¼	 ¼	 ¼	 ¼	

½	 ½	

¼	 ¼	

½	

Step 1. Divide a ribbon into fourths. 

Step 2. Divide a ribbon of the same length into halves. 

Step 3.  Find out how many fourths of a ribbon can fit into one-half of the ribbon. 

Two fourths fit into one-half of the ribbon. 

So, ½	÷ ¼	= 2. 

Students use ribbons to solve ½	÷ ¼	

mixed	numbers	(13/8),	improper	fractions	
(11/8),	and	negative	numbers	(–1/2).	For	exam-
ple,	area	models	may	readily	illustrate	addi-
tion	of	fractions	with	positive	numbers	but	
do	not	as	easily	lend	themselves	to	explaining	
addition	of	fractions	with	negative	numbers.	
In	contrast,	number	lines	can	be	used	to	
explain	both.	

Representations	that	students	have	used	to	
learn	other	mathematical	concepts,	especially	

other	fraction	concepts,	may	be	particularly	
useful.	For	example,	many	students	learn	to	
represent	decimals	using	base-10	blocks	or	
100	grids	(10	by	10	squares,	with	each	square	
representing	1/100	and	the	whole	square	repre-
senting	1).	Familiarity	with	this	representation	
also	might	help	students	understand	adding	
and	subtracting	decimal	and	common	frac-
tions.	For	example,	100	grids	can	be	used	to	
illustrate	that	adding	2.34	+	1.69	is	the	same	
as	adding	234/100	+	169/100.	

2.	 Provide	opportunities	for	students	to	use	estimation	to	predict	or	judge	the	reason-
ableness	of	answers	to	problems	involving	computation	with	fractions.	

When	teaching	procedures	for	computing	
with	fractions,	teachers	should	provide	
opportunities	for	students	to	estimate	the	
solutions	to	problems.	Estimation	requires	
students	to	use	reasoning	skills	and	thus	
leads	them	to	focus	on	the	meaning	of	proce-
dures	for	computing	with	fractions.91	 Teach-
ers	can	ask	students	to	provide	an	initial	
estimate	and	to	explain	their	thinking	before	

having	them	compute	the	answer.92	Students,	
in	turn,	can	use	the	estimates	to	judge	the	
reasonableness	of	their	answers.	

To	improve	estimation	skills,	teachers	can	
discuss	whether	and	why	students’	solutions	
to	specific	problems	are	reasonable;	they	
also	can	ask	students	to	explain	the	strate-
gies	they	used	to	arrive	at	their	estimates	and	
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compare	their	initial	estimates	to	the	solutions	
they	reached	by	applying	a	computational	
algorithm.	Consider	an	example:	a	student	
might	estimate	that	the	solution	of	1/2	+	1/5 
is	more	than	1/2	but	less	than	3/4,	since	1/5 is	
smaller	than	1/4.	If	the	student	then	incorrectly	
adds	the	numerators	and	denominators	to	
produce	the	sum	2/7,	the	teacher	can	note	that	
this	answer	cannot	be	right	because	2/7	is	less	
than	1/2.93	From	there,	the	teacher	can	guide	
the	student	to	identify,	understand,	and	cor-
rect	the	procedural	error.	

Estimation	is	likely	to	be	most	useful	with	prob-
lems	in	which	a	solution	cannot	be	computed	
quickly	or	easily.	There	is	no	point	asking	stu-
dents	to	estimate	the	answer	to	a	problem	that	
can	be	solved	quickly	and	accurately	by	mental	
computation,	such	as	7/9	–	5/9.	

Teaching	students	effective	estimation	strate-
gies	(Example	3)	can	maximize	the	value	of	
estimation	for	deepening	understanding	of	
computations	involving	fractions.	

Example
3.
Strategies
for
estimating
with
fractions


Strengthening	estimation	skills	can	develop	students’	understanding	of	computational	procedures.	

Benchmarks.
One	way	to	estimate	is	through	benchmarks—numbers	that	serve	as	reference	points	for	esti-
mating	the	value	of	a	fraction.94	The	numbers	0,	1/2,	and	1	are	useful	benchmarks	because	students	generally	
feel	comfortable	with	them.	Students	can	consider	whether	a	fraction	is	closest	to	0,	1/2,	or	1.	For	example,	
when	adding	7/8 and	3/7,	students	may	reason	that	7/8 is	close	to	1,	and	3/7 is	close	to	1/2,	so	the	answer	will	
be	close	to	11/2.	95	Further,	if	dividing	5	by	5/6,	students	might	reason	that	5/6	is	close	to	1,	and	5	divided	by	
1	is	5,	so	the	solution	must	be	a	little	more	than	5.96	

Relative
Size
of
Unit
Fractions.	A	useful	approach	to	estimating	is	for	students	to	consider	the	size	of	
unit	fractions.	To	do	this,	students	must	first	understand	that	the	size	of	a	fractional	part	decreases	as	the	
denominator	increases.97	For	example,	to	estimate	the	answer	to	9/10	+	1/8,	beginning	students	can	be	encour-
aged	to	reason	that	9/10 is	almost	1,	that	1/8	is	close	to	1/10,	and	that	therefore	the	answer	will	be	about	1.	More	
advanced	students	can	be	encouraged	to	reason	that	9/10 is	only	1/10 away	from	1,	that	1/8 is	slightly	larger	
than	1/10,	and	therefore	the	solution	will	be	slightly	more	than	1.	The	principle	can	and	should	be	general-
ized	beyond	unit	fractions	once	it	is	understood	in	that	context.	Key	dimensions	for	generalization	include	
estimating	results	of	operations	involving	non-unit	fractions	(e.g.,	3/4	÷	2/3),	improper	fractions	(7/3	÷	3/4),	and	
decimals	(0.8	÷	0.33).	

Placement
of
Decimal
Point.
A	common	error	when	multiplying	decimals,	such	as	0.8	×	0.9	or	2.3	×	8.7,	
is	to	misplace	the	decimal.	Encouraging	students	to	estimate	the	answer	first	can	reduce	such	confusion.	For	
example,	realizing	that	0.8	and	0.9	are	both	less	than	1	but	fairly	close	to	it	can	help	students	realize	that	
answers	such	as	0.072	and	7.2	must	be	incorrect.	

3.	 Address	common	misconceptions	regarding	computational	procedures	with	fractions.	

Misconceptions	about	fractions	often	interfere	
with	understanding	computational	procedures.	
The	panel	believes	that	it	is	critical	to	identify	
students	who	are	operating	with	such	miscon-
ceptions,	to	discuss	the	misconceptions	with	
them,	and	to	make	clear	to	the	students	why	the	
misconceptions	lead	to	incorrect	answers	and	
why	correct	procedures	lead	to	correct	answers.	

Teachers	can	present	these	misconceptions	in	
discussions	about	how	and	why	some	stu-
dents’	computation	procedures	yield	correct	
answers,	whereas	others’	do	not.	The	group	
will	likely	find	that	many	computational	errors	
result	from	students	misapplying	rules	that	
are	appropriate	with	whole	numbers	or	with	
other	computational	operations	with	fractions.	
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Some	common	misconceptions	are	described	
next,	together	with	recommendations	for	
addressing	them.	

•		Believing
that
fractions’
numerators

and
denominators
can
be
treated
as

separate
whole
numbers.
A	common	
mistake	that	students	make	is	to	add	or	
subtract	the	numerators	and	denomina-
tors	of	two	fractions	(e.g.,	2/4	+	5/4	=	7/8 or	
3/5	–	1/2	=	2/3).98	Students	who	err	in	this	way	
are	misapplying	their	knowledge	of	whole	
number	addition	and	subtraction	to	frac-
tion	problems	and	failing	to	recognize	that	
denominators	define	the	size	of	the	frac-
tional	part	and	that	numerators	represent	
the	number	of	this	part.	The	fact	that	this	
approach	is	appropriate	for	multiplication	
of	fractions	is	another	source	of	support	
for	the	misconception.	

Presenting	meaningful	problems	can	be	
useful	for	overcoming	this	misconception.	
For	example,	a	teacher	might	present	the	
problem,	“If	you	have	3/4	of	an	orange	and	
give	1/3	of	it	to	a	friend,	what	fraction	of	the	
original	orange	do	you	have	left?”	Subtract-
ing	the	numerators	and	denominators	
separately	would	result	in	an	answer	of	2/1 
or	2.	Students	should	immediately	recog-
nize	the	impossibility	of	starting	with	3/4 of	
an	orange,	giving	some	of	it	away,	and	end-
ing	up	with	2	oranges.	Such	examples	can	
motivate	students	to	think	deeply	about	
why	treating	numerators	and	denominators	
as	separate	whole	numbers	is	inappropriate	
and	can	lead	them	to	be	more	receptive	to	
discussions	of	appropriate	procedures.	

•		Failing
to
find
a
common
denominator

when
adding
or
subtracting
fractions

with
unlike
denominators.
Students	
often	fail	to	convert	fractions	to	equivalent	
forms	with	a	common	denominator	before	
adding	or	subtracting	them,	and	instead	
just	insert	the	larger	denominator	in	the	
fractions	in	the	problem	as	the	denomina-
tor	in	the	answer	(e.g.,	4/5	+	4/10	=	8/10).99	

This	error	occurs	when	students	do	not	
understand	that	different	denominators	
reflect	different-sized	unit	fractions	and	that	

adding	and	subtracting	fractions	requires	
a	common	unit	fraction	(i.e.,	denominator).	
The	same	underlying	misconception	can	
lead	students	to	make	the	closely	related	
error	of	changing	the	denominator	of	a	
fraction	without	making	the	corresponding	
change	to	the	numerator—for	example,	by	
converting	the	problem	2/3	+	2/6	into	2/6	+	2/6.	
Visual	representations	that	show	equivalent	
fractions—such	as	a	number	line	or	fraction	
strip—again	can	illustrate	the	need	for	both	
common	denominators	and	appropriate	
changes	in	numerators.	

•		Believing
that
only
whole
numbers

need
to
be
manipulated
in
computa­
tions
with
fractions
greater
than
one.

When	adding	or	subtracting	mixed	numbers,	
students	may	ignore	the	fractional	parts	and	
work	only	with	the	whole	numbers	(e.g.,	
53/5	–	21/7	=	3).100	 These	students	are	either	
ignoring	the	part	of	the	problem	they	do	not	
understand,	misunderstanding	the	meaning	
of	mixed	numbers,	or	assuming	that	such	
problems	simply	have	no	solution.101	

A	related	misconception	is	thinking	that	
whole	numbers	have	the	same	denomina-
tor	as	a	fraction	in	the	problem.102	 This	
misconception	might	lead	students	to	
translate	the	problem	4	–	3/8	into	4/8	–	3/8 
and	find	an	answer	of	1/8.	When	presented	
with	a	mixed	number,	students	with	such	
a	misconception	might	add	the	whole	
number	to	the	numerator,	as	in	31/3 ×	6/7 =	
(3/3	+	1/3)	×	6/7	=	4/3 ×	6/7	=	24/21.	Helping	
students	understand	the	relation	between	
mixed	numbers	and	improper	fractions,	
and	how	to	translate	each	into	the	other,	
is	crucial	for	working	with	fractions.	

•		Treating
the
denominator
the
same

in
fraction
addition
and
multiplica­
tion
problems.	Students	often	leave	
the	denominator	unchanged	on	fraction	
multiplication	problems	that	have	equal	
denominators	(e.g.,	2/3 ×	1/3	=	2/3).103	This	
may	occur	because	students	usually	
encounter	more	fraction	addition	problems	
than	fraction	multiplication	problems;	this	
might	lead	them	to	generalize	incorrectly	
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to	multiplication	the	correct	procedure	for	
dealing	with	equal	denominators	on	addi-
tion	problems.	Teachers	can	address	this	
misconception	by	explaining	the	conceptual	
basis	of	fraction	multiplication	using	unit	
fractions	(e.g.,	1/2 ×	1/2	=	half	of	a	half	=	1/4).	
In	particular,	teachers	can	show	that	the	
problem	1/2 ×	1/2	is	actually	asking	what	
1/2	of	1/2 is,	which	implies	that	the	product	
must	be	smaller	than	either	fraction	being	
multiplied.	

•		Failing
to
understand
the
invert­and­
multiply
procedure
for
solving
frac­
tion
division
problems.
Students	often	
misapply	the	invert-and-multiply	proce-
dure	for	dividing	by	a	fraction	because	
they	lack	conceptual	understanding	of	
the	procedure.	One	common	error	is	not	
inverting	either	fraction;	for	example,	a	
student	may	solve	the	problem	2/3	÷	4/5 by	
multiplying	the	fractions	without	inverting	
4/5	(e.g.,	writing	that	2/3	÷	4/5	=	8/15).104	 Other	
common	misapplications	of	the	invert-
and-multiply	rule	are	inverting	the	wrong	
fraction	(e.g.,	2/3	÷	4/5	=	3/2 ×	4/5)	or	invert-
ing	both	fractions	(2/3	÷	4/5	=	3/2 ×	5/4).	Such	
errors	generally	reflect	a	lack	of	concep-
tual	understanding	of	why	the	invert-and-
multiply	procedure	produces	the	correct	

quotient.	The	invert-and-multiply	proce-
dure	translates	a	multi-step	calculation	into	
a	more	efficient	procedure.	

The	panel	suggests	that	teachers	help	
students	understand	the	multi-step	calcu-
lation	that	is	the	basis	for	the	invert-and-
multiply	procedure.	Teachers	can	begin	
by	noting	that	multiplying	any	number	
by	its	reciprocal	produces	a	product	of	1,	
and	that	dividing	any	number	by	1	leaves	
the	number	unchanged.	Then	teachers	
can	show	students	that	multiplying	both	
fractions	by	the	reciprocal	of	the	divisor	is	
equivalent	to	using	the	invert-and-multiply	
procedure.	For	the	problem	2/3	÷	4/5	=	(note	
that	we	refer	to	2/3	as	the	dividend	and	4/5 
as	the	divisor):	

•		 multiplying	both	the	dividend	(2/3)	and	
divisor	(4/5)	by	the	reciprocal	of	the	
divisor	yields	(2/3 ×	5/4)	÷	(4/5 ×	5/4).	

•		 multiplying	the	original	divisor	(4/5)	
by	its	reciprocal	(5/4)	produces	a	divisor	
of	1,	which	results	in	2/3 ×	5/4 ÷	1,	which	
yields	2/3 ×	5/4.	

•		 thus,	the	invert	and	multiply	procedure,	
multiplying	2/3 ×	5/4,	provides	the	solution.	

4.	 Present	real-world	contexts	with	plausible	numbers	for	problems	that	involve	com-
puting	with	fractions.	

Presenting	problems	with	plausible	numbers	
set	in	real-world	contexts	can	awaken	stu-
dents’	intuitive	problem-solving	abilities	for	
computing	with	fractions.105	The	contexts	
should	provide	meaning	to	the	fraction	quan-
tities	involved	in	a	problem	and	the	computa-
tional	procedure	used	to	solve	it.	Real-world	
measuring	contexts,	such	as	rulers,	ribbons,	
and	measuring	tapes,	can	be	useful,	as	can	
food—both	discrete	items	(e.g.,	cartons	of	
eggs,	boxes	of	chocolates)	and	continuous	
ones	(e.g.,	pizzas,	candy	bars).106	 Students	
themselves	can	be	a	helpful	source	of	ideas	
for	relevant	contexts,	allowing	teachers	to	
tailor	problems	around	details	that	are	famil-
iar	and	meaningful	to	the	students.107	 School	

events,	such	as	field	trips	or	class	parties,	
track	and	field	days,	and	ongoing	activities	
in	other	subjects,	also	can	serve	as	engaging	
contexts	for	problems.	

Teachers	can	help	students	make	connec-
tions	between	a	real-world	problem	and	
the	fraction	notation	used	to	represent	it.	In	
some	cases,	students	may	solve	a	problem	
framed	in	an	everyday	context	but	be	unable	
to	solve	the	same	problem	using	formal	
notation.108	 For	instance,	they	might	know	
that	two	halves	equal	a	whole	but	answer	
the	written	problem	1/2	+	1/2 with	2/4.	Teach-
ers	should	help	students	see	the	connection	
between	the	story	problem	and	the	fraction	

(	33	)	



Recommendation
3
continued 

notation	and	encourage	them	to	apply	their	
intuitive	knowledge	in	both	situations.	While	
trying	to	make	connections,	teachers	can	

direct	students	back	to	the	real-world	story	
problem	if	their	students	need	to	ease	into	
understanding	the	formal	notation.109	

Potential
roadblocks
and
solutions


Roadblock
3.1.
Students make computational 
errors (e.g., adding fractions without finding 
a common denominator) when using certain 
pictorial and concrete object representations 
to solve problems that involve computation 
with fractions. 

Suggested
Approach.	Teachers	should	care-
fully	choose	representations	that	map	straight-
forwardly	to	the	fraction	computation	being	
taught.	For	example,	when	teaching	fraction	
addition,	a	representation	should	demonstrate	
the	need	for	adding	similar	units	and	thus	lead	
students	to	find	a	common	denominator.	Use	
of	some	representations	can	actually	reinforce	
misconceptions.	In	one	study,	the	use	of	dot	
paper	for	adding	fractions	led	students	to	
more	often	use	the	incorrect	strategy	of	add-
ing	numerators	without	finding	a	common	
denominator.110	 Representations	that	hold	

units	constant,	such	as	a	measuring	tape	with	
marked	units,	can	help	students	see	the	need	
for	common	unit	fractions.	

Roadblock
3.2. When encouraged to esti­
mate a solution, students still focus on solving 
the problem via a computational algorithm 
rather than estimating it. 

Suggested
Approach.
Estimation	should	
be	presented	as	a	tool	for	anticipating	the	
size	and	assessing	the	reasonableness	of	an	
answer.	Teachers	should	focus	on	the	reason-
ing	needed	to	estimate	a	solution	and	should	
emphasize	that	estimation	is	a	preliminary	
step	to	solving	a	problem,	not	a	shortcut	to	
obtaining	an	exact	answer.	Teachers	who	
pose	problems	that	cannot	be	solved	quickly	
with	mental	computation	(e.g.,	problems	such	
as	5/9	+	3/7	rather	than	5/8	+	3/8)	will	likely	avoid	
this	roadblock.	
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Develop
students’

conceptual
understanding

of
strategies
for

solving
ratio,
rate,
and

proportion
problems

before
exposing
them

to
cross­multiplication

as
a
procedure
to
use

to
solve
such
problems.

Proportional reasoning is a critical skill 
for students to develop in preparation for 
more advanced topics in mathematics.111 

When students “think proportionally,” 
they understand the multiplicative 
relation between two quantities.112 For 
example, understanding the multiplicative 
relation in the equation Y = 2X	means 
understanding that Y	is twice as large 
as X (and not that X is twice as large as 
Y, which is what many students think). 
Contexts that require understanding 
of multiplicative relations include problems that involve ratios (i.e., the relation between 
two quantities, such as the ratio of boys to girls in a classroom), rates (i.e., the relation 
between two quantities measured in different units, such as distance per unit of time), and 
proportions (i.e., two equivalent ratios). Proportional reasoning often is needed in everyday 
contexts, such as adjusting recipes to the number of diners or buying material for home 
improvement projects; thus proportional reasoning problems provide opportunities to 
illustrate the value of learning about fractions. 

The panel recommends that teachers develop students’ proportional reasoning prior to teaching 
the cross­multiplication algorithm, using a progression of problems that builds on their informal 
reasoning strategies. Visual representations are particularly useful for teaching these concepts 
and for helping students solve problems. After teaching the cross­multiplication algorithm, 
teachers should return to the informal reasoning strategies, demonstrate that they and the 
algorithm lead to the same answers on problems for which the informal reasoning strategies 
are applicable, discuss why they do so, and also discuss problems that can be solved by the 
cross­multiplication algorithm that cannot easily be solved by the informal strategies. 

A caution for teachers: Evidence from many types of problem­solving studies, including ones 
involving ratio, rate, and proportion, indicates that students often learn a strategy to solve a 
problem in one context but cannot apply the same strategy in other contexts.113 Stated another 
way, students often do not recognize that problems with different cover stories are the same 
problem mathematically.114 To address this issue, teachers should point to connections among 
problems with different cover stories and illustrate how the same strategies can solve them. 
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Summary
of
evidence:
Minimal
Evidence


Evidence	for	the	recommendation	comes	
from	consensus	documents	that	emphasize	
the	importance	of	proportional	reasoning	
for	mathematics	learning,	as	well	as	the	
panel’s	expert	opinion.115	 Additionally,	the	
panel	separately	reviewed	evidence	relevant	
to	particular	action	steps	within	the	recom-
mendation.	These	action	steps	are	supported	
by	case	studies	demonstrating	the	variety	of	
strategies	students	use	to	solve	ratio,	rate,	
and	proportion	problems;	a	rigorous	study	
of	manipulatives;	and	two	well-designed	
studies	that	taught	strategies	for	solving	
word	problems.	

Building
on
developing
strategies.
Three	
small	case	studies	provided	evidence	that	
students	use	a	variety	of	strategies	to	solve	
proportional	reasoning	problems	(Step	1).116	

Some	students	initially	applied	a	buildup	
strategy	(e.g.,	to	solve	2:3	=	x:12,	they	added	
2:3	four	times	until	they	reached	8:12,	and	
then	said	x	=	8),	whereas	others	applied	a	
strategy	that	focused	on	the	multiplicative	
relation	between	two	ratios	(e.g.,	to	solve	
2:3	=	x:12,	they	identified	the	relation	
between	the	denominators	[3	×	4	=	12]	and	
applied	this	relation	to	determine	the	miss-
ing	numerator	[2	×	4	=	8],	then	said	x	=	8).	
However,	these	studies	did	not	examine	
whether	basing	instruction	on	these	strategies	
improved	students’	proportional	reasoning.	
The	panel	believes	that	students’	proportional	
reasoning	can	be	strengthened	through	
presenting	a	progression	of	problems	that	
encourages	use	of	these	strategies	and	that	
provides	a	basis	for	realizing	that	the	cross-
multiplication	procedure	can	solve	some,	but	
not	all,	types	of	problems	more	efficiently	
than	other	strategies.	

Using
representations.	The	evidence	sup-
porting	the	use	of	manipulatives	and	picto-
rial	representations	to	teach	proportionality	

concepts	is	limited	(Step	2).	However,	one	
study	that	met	WWC	standards	found	that	the	
use	of	a	manipulative	improved	4th-graders’	
ability	to	visualize	and	compare	two	ratios,	
which	improved	their	ability	to	solve	mixture	
problems,	compared	to	students	who	had	no	
exposure	to	these	problems	or	the	manipula-
tive.117	In	another	study	that	met	WWC	stan-
dards,	students	improved	their	ability	to	solve	
missing	value	proportion	problems	by	repre-
senting	information	from	these	problems	in	a	
data	table	that	highlighted	the	multiplicative	
relationships	between	quantities.118	A	third	
well-designed	study	found	a	positive	impact	
on	student	learning	of	collaboratively	con-
structing	pictorial	representations	relative	to	
using	teacher-generated	representations.119	

These	studies	indicate	that	manipulatives	
and	pictorial	representations	can	be	effective	
teaching	tools;	however,	the	principles	that	
determine	when	they	are	and	are	not	helpful	
remain	poorly	understood.	

Teaching
problem­solving
strategies.

The	panel	also	identified	limited	evidence	
supporting	the	recommendation	to	teach	
strategies	for	solving	word	problems	involv-
ing	ratios	and	proportions	(Step	3).	The	
interventions	examined	in	these	studies	
taught	middle	school	students	a	four-step	
strategy	for	solving	ratio	and	proportion	
word	problems.120	This	strategy	developed	
students’	understanding	of	common	problem	
structures,	directed	students	to	use	a	dia-
gram	to	identify	key	information	needed	to	
solve	a	problem,	and	encouraged	students	
to	compare	different	solution	strategies.	One	
of	these	studies	focused	on	students	with	
learning	disabilities,	while	the	other	sampled	
students	with	a	diverse	mix	of	ability	lev-
els.121	 Both	studies	found	a	positive	effect	on	
the	accuracy	of	students’	solutions	to	ratio	
and	proportion	problems.	

(	36	)	



Recommendation
4
continued 

How
to
carry
out
the
recommendation


1.		Develop	students’	understanding	of	proportional	relations	before	teaching	computa-
tional	procedures	that	are	conceptually	difficult	to	understand	(e.g.,	cross-multiplication).	
Build	on	students’	developing	strategies	for	solving	ratio,	rate,	and	proportion	problems.	

Opportunities	for	students	to	solve	ratio,	rate,	
and	proportion	problems	should	be	provided	
prior	to	teaching	the	cross-multiplication	
algorithm.122	 Teachers	can	use	a	progression	
of	problems	that	builds	on	students’	develop-
ing	strategies	for	proportional	reasoning.123	 In	
particular,	teachers	can	initially	pose	problems	
that	allow	solutions	via	the	buildup	and	unit	
ratio	strategies	and	progress	to	problems	that	
are	easier	to	solve	through	cross	multiplication.	
Encouraging	students	to	apply	their	own	strate-
gies,	discussing	with	students	varied	strate-
gies’	strengths	and	weaknesses,	and	helping	
students	understand	why	a	problem’s	solution	
is	correct	are	advisable.124	 If	students	do	not	
generate	these	strategies	on	their	own,	teach-
ers	should	introduce	the	strategies	as	ways	of	
solving	ratio,	rate,	and	proportion	problems.	

Teachers	can	initially	pose	story	problems	
that	allow	students	to	use	a	buildup	strategy,	
in	which	they	repeatedly	add	the	numbers	
within	one	ratio	to	solve	the	problem	(see	
Example	4).125	Problems	that	facilitate	the	use	
of	the	buildup	strategy	should	have	an	inte-
gral	relation	between	the	component	num-
bers	in	the	two	ratios—a	relation	in	which	the	
numbers	in	one	ratio	can	be	generated	by	
repeatedly	adding	numbers	in	the	other	ratio,	
allowing	students	to	build	up	to	the	unknown	
number.	For	example,	the	ratios	2:3	and	10:15	
have	an	integral	relation,	because	repeatedly	
adding	2s	and	3s	to	the	first	ratio	leads	to	
10:15.	Thus,	initial	problems	should	involve	
ratios	for	which	students	can	easily	apply	
a	buildup	strategy,	such	as,	“John	is	baking	
bread	for	some	friends.	He	uses	2	cups	of	
flour	for	every	3	friends.	If	he	wants	to	make	
bread	for	15	friends,	how	many	cups	of	flour	
should	he	use?”	

Next,	teachers	can	present	similar	problems,	
but	with	larger	numbers,	that	demonstrate	

to	students	how	time-consuming	it	can	be	
to	add	up	repeatedly	to	the	unknown	value.	
Students	will	see	the	advantage	of	multiply-
ing	and	dividing	rather	than	depending	upon	
repeated	addition.	For	example,	in	the	baking	
bread	problem,	John	could	be	baking	bread	
for	all	54	students	in	the	5th	grade.	

Teachers	can	then	present	problems	that	
cannot	be	solved	immediately	either	through	
repeated	addition	or	through	multiplying	or	
dividing	a	given	number	by	a	single	inte-
ger	(see	Example	4).	These	are	problems	
that	involve	ratios	without	an	integral	rela-
tion,	such	as	x/6	=	3/9.	Such	problems	can	
be	solved	by	the	unit	ratio	strategy,	which	
involves	reducing	the	known	ratio	(3/9)	to	a	
form	with	a	numerator	of	1	and	then	deter-
mining	the	multiplicative	relation	between	
the	new	unit	ratio	and	the	ratio	with	the	
unknown	element	(x/6).	The	multiplicative	
relation	between	the	denominators	in	the	
unit	ratio	and	the	unknown	ratio	can	then	
be	used	to	solve	for	the	missing	element.	
For	example,	x/6	=	3/9	could	be	solved	by	
expressing	3/9	as	1/3,	identifying	2/2	as	the	
number	that	could	be	used	to	multiply	1/3 
and	obtain	a	denominator	of	6	without	
changing	the	value	of	1/3,	multiplying	1/3 by	
2/2	to	obtain	2/6,	and	answering	“x	=	2.”126	

The	same	type	of	reasoning	can	be	used	to	
solve	problems	for	which	the	answer	is	not	a	
whole	number;	for	example,	“Susan	is	making	
dinner	for	6	people	and	wants	to	use	a	recipe	
that	serves	8	people.	The	recipe	for	8	calls	
for	2	cups	of	cream.	How	much	cream	will	
she	need	to	serve	6?”	This	context	presents	
the	problem	as	2:8	as	x:6.	Students	could	
solve	this	problem	by	reasoning	that	since	
2	cups	of	cream	serve	8	people,	1	cup	of	
cream	would	serve	4	people,	and	11/2 cups	
of	cream	would	serve	6.	
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Problems	such	as	those	in	the	last	paragraph	
can	be	used	to	help	students	recognize	the	
advantages	of	a	strategy	that	can	solve	
problems	regardless	of	the	particular	num-
bers.	Cross-multiplication	can	be	introduced	
as	such	an	approach.	Problems	that	do	not	
involve	integral	relations	and	cannot	easily	
be	reduced	to	unit	fractions	will	help	students	
see	the	advantages	of	cross-multiplication,	
which	is	essentially	a	procedure	to	create	
equivalent	ratios.	Its	use	can	be	illustrated	
with	problems	such	as	those	presented	in	
the	previous	paragraph	that	were	solved	with	
a	unit	strategy.	For	example,	students	could	
be	encouraged	to	solve	the	last	problem	

with	the	cross-multiplication	strategy:	writing	
xthe	equation	2/8	=	 /6	and	cross-multiplying	to	

find	the	missing	value.	After	students	arrive	
at	the	same	answer	of	11/2,	teachers	can	lead	
students	in	a	discussion	of	why	the	unit	ratio	
and	cross-multiplication	procedures	yield	
the	same	answer	(see	Example	5).	Students	
should	practice	both	with	problems	that	are	
solved	easily	through	informal	reasoning	and	
mental	mathematics	and	with	problems	that	
are	solved	easily	using	cross-multiplication	
but	not	through	the	buildup	or	unit	ratio	
strategies.	Teachers	can	encourage	students	
to	discuss	how	to	anticipate	which	approach	
will	be	easiest.	

Example
4.
Problems
encouraging
specific
strategies


Ratio,	rate,	and	proportion	problems	can	be	solved	using	many	strategies,	with	some	problems	encouraging	
use	of	particular	strategies.	Illustrated	below	are	three	commonly	used	strategies	and	types	of	problems	on	
which	each	strategy	is	particularly	advantageous.	

Buildup
Strategy


Sample
problem.
If	Steve	can	purchase	3	baseball	cards	for	$2,	how	many	baseball	cards	can	he	purchase	
with	$10?	

Solution
approach.
Students	can	build	up	to	the	unknown	quantity	by	starting	with	3	cards	for	$2,	and	repeat-
edly	adding	3	more	cards	and	$2,	thus	obtaining	6	cards	for	$4,	9	cards	for	$6,	12	cards	for	$8,	and	finally	15	
cards	for	$10.	

Unit
Ratio
Strategy


Sample
problem.	Yukari	bought	6	balloons	for	$24.	How	much	will	it	cost	to	buy	5	balloons?	

Solution
approach.	Students	might	figure	out	that	if	6	balloons	costs	$24,	then	1	balloon	costs	$4.	This	strat-
egy	can	later	be	generalized	to	one	in	which	eliminating	all	common	factors	from	the	numerator	and	denomina-
tor	of	the	known	fraction	does	not	result	in	a	unit	fraction	(e.g.,	a	problem	such	as	6/15	=	x/10,	in	which	reducing	
6/15	results	in	2/5).	

Cross­Multiplication


Sample
problem.
Luis	usually	walks	the	1.5	miles	to	his	school	in	25	minutes.	However,	today	one	of	the	
streets	on	his	usual	path	is	being	repaired,	so	he	needs	to	take	a	1.7-mile	route.	If	he	walks	at	his	usual	speed,	
how	much	time	will	it	take	him	to	get	to	his	school?	

Solution
approach.
This	problem	can	be	solved	in	two	stages.	First,	because	Luis	is	walking	at	his	“usual	
speed,”	students	know	that	1.5/25	=	1.7/x.	Then,	the	equation	may	be	most	easily	solved	using	cross-multiplication.	
Multiplying	25	and	1.7	and	dividing	the	product	by	1.5	yields	the	answer	of	281/3	minutes,	or	28	minutes	and	20	
seconds.	It	would	take	Luis	28	minutes	and	20	seconds	to	reach	school	using	the	route	he	took	today.	
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Example
5.
Why
cross­multiplication
works


Teachers	can	explain	why	the	cross-multiplication	procedure	works	by	starting	with	two	equal	fractions,	
such	as	4/6 =	6/9.	The	goal	is	to	show	that	when	two	equal	fractions	are	converted	into	fractions	with	the	
same	denominator,	their	numerators	also	are	equivalent.	The	following	steps	help	demonstrate	why	the	
procedure	works.	

Step
1.
 Start	with	two	equal	fractions,	for	example:	4/6	=	6/9.	
Step
2.
 Find	a	common	denominator	using	each	of	the	two	denominators.	

a.	 First,	multiply	4/6	by	9/9,	which	is	the	same	as	multiplying	4/6	by	1.	

b.	 Next,	multiply	6/9	by	6/6,	which	is	the	same	as	multiplying	6/9	by	1.	

Step
3.
 Calculate	the	result:	(4	×	9)	
=	

(6	×	6)	
(6	×	9)	 (9	×	6)	

Step
4.
 Check	that	the	denominators	are	equal.	If	two	equal	fractions	have	the	
same	denominator,	then	the	numerators	of	the	two	equal	fractions	must	
be	equal	as	well,	so	4	×	9	=	6	×	6.	

Note	that	in	this	problem,	4	×	9	=	6	×	6	is	an	instance	of	(a	×	d	=	b	×	c).	

As	a	result,	students	can	see	that	the	original	proportion,	4/6	=	6/9,	can	be	solved	using	cross-multiplication,	
4	×	9	=	6	×	6,	as	a	procedure	to	create	equivalent	ratios	efficiently.	

2.	 Encourage	students	to	use	visual	representations	to	solve	ratio,	rate,	and	
proportion	problems.	

The	panel	recommends	that	teachers	encour-
age	the	use	of	visual	representations	for	
ratio,	rate,	and	proportion	problems.	Teach-
ers	should	carefully	select	representations	
that	are	likely	to	elicit	insight	into	a	particular	
aspect	of	ratio,	rate,	and	proportion	concepts.	
For	example,	a	ratio	table	can	be	used	to	rep-
resent	the	relations	in	a	proportion	problem	
(see	Figure	9).	To	identify	the	amount	of	flour	
needed	for	32	people	when	a	recipe	calls	
for	1	cup	of	flour	to	serve	8,	students	can	
use	a	ratio	table	to	repeatedly	add	1	cup	of	
flour	per	8	people	to	find	the	correct	amount	
for	32	people	(i.e.,	they	can	use	the	buildup	
strategy).	Alternatively,	students	can	use	the	
ratio	table	to	see	that	multiplying	the	ratio	
by	4/4	(i.e.,	4	times	the	recipe)	provides	the	
amount	of	flour	needed	for	32	people.	This	
visual	representation	provides	a	specific	refer-
ent	that	teachers	can	point	to	as	they	discuss	
with	students	why	multiplication	leads	to	the	
same	solution	as	the	buildup	strategy.	

Figure
9.
Ratio
table
for
a
proportion

problem


Cups

of
Flour


1	 2	 3	 4


Number

of
People

Served


8	 16	 24	 32


In	addition	to	using	the	ratio	table	as	a	tool	
for	solving	problems,	teachers	can	use	it	to	
explore	different	aspects	of	proportional	
relations,	such	as	the	multiplicative	relations	
within	and	between	ratios.	In	the	ratio	table	in	
Figure	10,	the	number	of	cups	of	flour	needed	
is	always	2.5	times	the	number	of	people;	
thus,	the	ratio	between	them	is	always	2.5:1.	

As	discussed	in	Recommendation	3,	teachers	
should	not	always	provide	representations	to	
students;	they	sometimes	should	encourage	
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them	to	create	their	own	representations—in	
this	case,	representations	of	ratios,	rates,	and	
proportions.127	Prior	to	formal	instruction	in	
ratios,	students	tend	to	use	tabular	or	other	
systematic	forms	of	record	keeping,128	 which	
can	help	them	understand	the	functional	
relation	between	rows	or	columns	or	the	
numbers	in	a	ratio.129	 Teachers	should	help	
students	extend	these	and	other	represen-
tations	to	a	broad	range	of	ratio,	rate,	and	
proportion	problems.	

Figure
10.
Ratio
table
for
exploring

proportional
relations


Cups

of
Flour


5	 7.5	 10	 12.5	

Number

of
People

Served


2	 3	 4	 5	

3.	 Provide	opportunities	for	students	to	use	and	discuss	alternative	strategies	for	
solving	ratio,	rate,	and	proportion	problems.	

The	goal	is	to	develop	students’	ability	to	
identify	problems	with	a	common	underlying	
structure	and	to	solve	problems	that	are	set	
in	a	variety	of	contexts.130	 Instruction	might	
focus	on	the	meaningful	features	of	different	
problem	types,	including	ratio	and	propor-
tion	problems,	so	that	students	can	transfer	
their	learning	to	new	situations.	For	example,	
students	might	first	learn	to	solve	recipe	
problems,	such	as,	“A	recipe	calls	for	3	eggs	
to	make	20	cupcakes.	If	you	want	to	make	80	
cupcakes,	how	many	eggs	do	you	need?”	Hav-
ing	learned	to	solve	such	problems,	students	
might	then	be	asked	to	solve	similar	problems	
with	different	contexts,	such	as:	“Building	3	
dog-houses	requires	42	boards;	how	many	
boards	are	needed	to	build	9	doghouses?”131	

Teachers	also	should	help	students	identify	
key	information	needed	to	solve	a	problem.	
Once	students	can	identify	the	key	informa-
tion	in	a	problem,	they	can	be	taught	to	use	
diagrams	to	represent	that	information.132	

Such	diagrams	should	not	simply	represent	
the	story	problem	in	diagram	form;	they	also	
should	identify	the	information	needed	to	
solve	the	problem	and	the	relation	between	
different	quantities	in	the	problem.	Teachers	
should	encourage	students	to	use	different	
diagrams	and	strategies	to	arrive	at	solutions	
and	should	provide	opportunities	for	students	
to	compare	and	discuss	their	diagrams	and	
strategies.133	

The	panel	suggests	using	real-life	contexts	
based	on	students’	experiences.	A	few	exam-
ples	are	provided	here:134	

•		Unit
price.	Teachers	can	pose	problems	
based	on	the	unit	price	of	an	object,	such	
as	comparing	the	value	of	two	items	(e.g.,	
a	16-ounce	can	of	soda	for	$0.89	and	a	
12-ounce	can	of	soda	for	$0.62)	and	deter-
mining	how	much	a	certain	amount	of	an	
item	costs	given	the	cost	per	unit	and	the	
number	of	units	purchased.	The	context	
of	unit-price	problems	can	be	buying	or	
selling	produce	at	a	grocery	store,	cans	
of	paint	at	a	hardware	store,	or	any	other	
purchasing	situation.	

•		Scaling.	Students	can	solve	problems	
related	to	the	enlargement	or	reduction	of	
a	photo,	drawing,	or	geometric	shape	(e.g.,	
double	the	width	and	double	the	length	of	
a	photo	to	create	a	new	photo	whose	area	
is	four	times	that	of	the	original).	Another	
example	of	scaling	is	using	a	map	legend	
to	find	the	actual	distance	between	two	
cities,	based	on	their	distance	on	the	map.	

•		 Recipes.	Recipes	and	cooking	provide	
useful	settings	for	ratio	and	proportion	
problems,	for	example,	“If	a	recipe	calls	
for	1	egg	and	3	cups	of	milk,	and	the	
cook	wants	to	make	as	much	as	possible	
using	all	8	eggs	she	has,	how	much	milk	is	
needed,	assuming	that	the	ratio	of	eggs	to	
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milk	in	the	original	recipe	is	maintained?”	
Students	also	can	revise	a	recipe	to	make	
more	or	less	of	the	final	amount,	in	situa-
tions	that	call	for	changing	the	number	of	
servings	or	amounts	of	ingredients	using	
equivalent	ratios.	

•		Mixture.	Problems	related	to	the	mixture	
of	two	or	more	liquids	provide	another	
context	for	posing	ratio	and	proportion	
problems.	Students	can	compare	the	
concentration	of	a	mixture	(e.g.,	compare	
the	relative	amount	of	one	liquid	to	the	
amount	of	another	liquid	in	a	mixture)	or	
determine	how	to	maintain	the	original	
ratio	between	liquids	in	a	mixture	if	the	
amount	of	one	of	the	liquids	changes.	

•		 Time/speed/distance.
Students	can	
be	told	the	time,	speed,	and	distance	
that	one	car	traveled	and	the	values	of	
any	two	of	these	variables	for	a	second	
car	and	then	be	asked	for	the	value	of	
the	third	variable	for	the	second	car.	For	
example,	they	could	be	told	that	car	A	
traveled	for	2	hours	at	a	rate	of	45	miles	
per	hour,	so	it	traveled	90	miles.	Then	
they	could	be	told	that	car	B	traveled	
at	the	same	speed	but	traveled	only	60	
miles	and	be	asked	to	determine	the	
amount	of	time	that	car	B	traveled.	

Potential
roadblocks
and
solutions


Roadblock
4.1.
Many students misapply the 
cross­multiplication strategy. 

Suggested
Approach.
Carefully	presenting	
several	examples	of	the	type	shown	in	Exam-
ple	5	can	help	students	understand	the	logic	
behind	the	cross-multiplication	procedure	and	
why	the	ratios	within	the	problem	need	to	be	
in	the	correct	form	for	the	procedure	to	work.	
Making	sure	that	students	understand	the	
logic	of	each	step	in	the	demonstration	takes	
time,	but	it	can	prevent	many	future	errors	
and	misunderstandings.	

Roadblock
4.2.
Some students rely nearly 
exclusively on the cross­multiplication strategy 
for solving ratio, rate, and proportion prob­
lems, failing to recognize that there often are 
more efficient ways to solve these problems. 

Suggested
Approach.
Teachers	should	
provide	students	opportunities	to	use	a	variety	
of	strategies	for	solving	ratio,	rate,	and	propor-
tion	problems	and	initially	present	problems	
that	are	easiest	to	solve	with	strategies	other	
than	cross-multiplication.	For	example,	teach-
ers	can	present	problems	in	which	the	relation	

within	the	given	ratio	is	integral	(e.g.,	5/15)	and	
the	relation	between	the	corresponding	num-
bers	across	the	two	ratios	is	not	(e.g.,	5/15	=	6/x).	
These	types	of	problems	may	encourage	stu-
dents	to	use	prior	knowledge	of	multiplicative	
relations	between	numerator	and	denominator	
within	the	ratio	where	both	are	known.	Requir-
ing	students	to	solve	problems	mentally	(with-
out	pencil	and	paper)	also	can	increase	the	use	
of	strategies	other	than	cross-multiplication	
and	build	number	sense	with	fractions.	

Roadblock
4.3. Students do not generalize 
strategies across different ratio, rate, and 
proportion contexts. 

Suggested
Approach.	In	addition	to	provid-
ing	students	with	problems	across	a	variety	of	
contexts	and	teaching	a	variety	of	rate,	ratio,	and	
proportion	problem-solving	strategies,	teachers	
should	strive	to	link	new	problems	with	previ-
ously	solved	ones.	Teachers	can	regularly	have	
students	judge	when	the	same	solution	strategy	
could	be	used	for	different	types	of	problems.	For	
example,	teachers	can	demonstrate	how	informa-
tion	in	two	types	of	problems,	such	as	recipes	
and	mixture	problems,	can	be	organized	in	the	
same	way	and	then	compare	solution	procedures	
for	the	two	types	of	problems	side	by	side.	
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Professional
development
programs
should
place

a
high
priority
on
improving
teachers’
understanding

of
fractions
and
of
how
to
teach
them.

Teachers play a critical role in helping students understand fraction concepts. Teaching 
for understanding requires that teachers themselves have a thorough understanding of 
fraction concepts and operations—including deep knowledge of why computation procedures 
work. Appropriate use of representations for teaching fractions, a key aspect of the panel’s 
recommendations, requires that teachers understand a range of representations and how to 
use them to illustrate particular points. 

An awareness of common misconceptions and of inappropriate strategies students use to solve 
fractions problems also is crucial for effective instruction in this area. The panel believes that 
preservice teacher education and professional development programs must develop teachers’ 
abilities in each of these areas, especially given considerable evidence that many U.S. teachers 
lack deep understanding of fraction concepts.135 

Summary
of
evidence:
Minimal
Evidence


Despite	the	limited	evidence	related	to	this	
recommendation,	the	panel	believes	teach-
ers	must	develop	their	knowledge	of	frac-
tions	and	of	how	to	teach	them.	Researchers	
have	consistently	found	that	teachers	
lack	a	deep	conceptual	understanding	of	

fractions,136	and	that	teachers’	mathematical	
content	knowledge	is	positively	correlated	
with	students’	mathematics	achievement.137	

Taken	together,	these	findings	suggest	a	
great	need	for	professional	development	in	
fraction	concepts.	Regardless,	the	evidence	
rating	assigned	by	the	panel	recognizes	the	
limited	amount	of	rigorous	evidence	on	the	
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effects	of	professional	development	activi-
ties	related	to	fractions.	

In	one	well-designed	study,	teachers	who	
received	training	on	fraction	concepts,	on	
students’	understanding	of	fractions,	on	stu-
dents’	motivation	for	learning	math,	and	on	
how	to	assess	students’	knowledge	of	frac-
tions	improved	students’	conceptual	under-
standing	of	fractions	and	their	ability	to	
compute	with	fractions.138	 However,	another	
well-designed	study	found	no	impact	on	
student	achievement	in	fractions,	decimals,	
percentages,	and	proportions,	despite	offer-
ing	7th-grade	teachers	up	to	68	hours	of	
professional	development	on	rational	num-
bers	through	a	summer	institute	and	one-day	
seminars.139	 Two	other	studies	that	met	WWC	
standards	provided	training	on	how	students	
develop	knowledge	and	skills	related	to	
specific	math	concepts.	One	of	these	stud-
ies	focused	on	whole	number	addition	and	
subtraction	and	found	improvements	in	

students’	whole	number	computation	and	
solutions	to	word	problems.	The	second	
study	provided	teacher	training	on	students’	
algebraic	reasoning	and	reported	a	positive	
impact	on	student	learning.	

Research	indicates	that	many	elementary	
school	teachers	have	limited	knowledge	of	
fraction	concepts	and	procedures.140	 Inter-
views	with	U.S.	elementary	school	teachers	
showed	that	a	high	percentage	of	them	were	
unable	to	explain	computational	procedures	
for	fractions.141	 Another	study	found	that	
some	elementary	school	teachers	had	diffi-
culty	ordering	fractions,	adding	fractions,	and	
solving	ratio	problems.142	Many	of	the	teach-
ers	who	solved	problems	correctly	could	not	
explain	their	own	problem-solving	process.	
The	panel	views	this	limited	knowledge	of	
fractions	as	problematic,	given	evidence	that	
teachers’	mathematical	content	knowledge	is	
related	to	students’	learning.143	

How
to
carry
out
the
recommendation


1.	 Build	teachers’	depth	of	understanding	of	fractions	and	computational	procedures	
involving	fractions.	

To	provide	effective	fractions	instruction,	
teachers	need	a	deep	understanding	of	frac-
tion	concepts	and	operations.	In	particular,	
teachers	need	to	understand	the	reasoning	
behind	computations	that	involve	fractions	so	
they	can	clearly	and	coherently	explain	to	stu-
dents	why	the	procedures	work,	not	just	the	
sequence	of	steps	to	take.	Without	a	concep-
tual	understanding	of	fraction	computation,	
teachers	are	not	likely	to	help	students	make	
sense	of	fraction	operations.144	 Therefore,	
teacher	preparation	and	professional	develop-
ment	activities	must	support	a	deeper	level	of	
understanding	of	fractions.145	

Teachers	should	have	opportunities	to	gain	
better	understanding	of	fractions	algorithms	
by	solving	problems	and	exploring	the	
meaning	of	algorithms.146	 One	approach	
is	to	pose	problems	that	provoke	deep	

discussions	of	the	algorithms,	possibly	
using	advanced	versions	of	examples	from	
teachers’	lessons.147	For	example,	teachers	
might	solve	a	problem	in	which	they	have	
to	equally	distribute	fractional	parts	of	cake	
among	a	number	of	people	(e.g.,	3	cakes	dis-
tributed	among	8	people),	whereas	students	
might	be	asked	to	distribute	a	whole	number	
of	cookies	(e.g.,	18	cookies	among	6	people).	
Particularly	useful	are	problems	or	activities	
that	lead	teachers	to	question	why	an	algo-
rithm	works	or	to	examine	what	they	do	and	
do	not	understand	about	an	algorithm.148	

Although	teachers	can	address	these	prob-
lems	on	their	own	or	in	small	groups,	mak-
ing	time	for	discussion	is	crucial.	

Having	teachers	estimate	answers	to	fractions	
problems	and	discuss	the	reasoning	that	
led	to	the	estimates	also	can	be	useful.	All	
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activities	should	eventually	link	back	to	the	
classroom,	with	opportunities	for	teachers	to	
discuss	how	they	would	respond	to	students’	
questions	about	why	estimation	is	valuable	
and	the	logic	that	separates	effective	and	less	
effective	estimation	procedures.	

Professional	development	should	not	focus	
exclusively	on	fraction	topics	covered	at	the	
teacher’s	grade	level.	Teachers	must	under-
stand	fraction	concepts	covered	in	the	entire	
elementary	and	middle	school	curricula	and	
should	know	how	these	concepts	fit	within	

the	broader	math	curriculum.	Awareness	of	
fraction	concepts	taught	in	earlier	grades	
ensures	that	teachers	can	build	on	what	stu-
dents	already	know;	it	also	can	help	teachers	
identify	and	address	common	misconceptions	
that	students	might	have	developed.	Under-
standing	fraction	concepts	and	other	more	
advanced	mathematics	that	will	be	covered	
in	later	grades	helps	teachers	set	goals	and	
think	about	how	their	teaching	can	provide	
foundations	for	ideas	that	students	will	
encounter	in	the	future.	

2.	 Prepare	teachers	to	use	varied	pictorial	and	concrete	representations	of	fractions	and	
fraction	operations.	

To	use	concrete	and	pictorial	representations	
effectively,	teachers	must	understand	how	
these	representations	link	to	fraction	concepts	
and	how	they	can	be	used	to	improve	student	
learning.	Teacher	education	and	professional	
development	activities	should	prepare	teach-
ers	to	use	such	representations	for	teaching	
fractions	and	should	help	teachers	under-
stand	how	the	representations	relate	to	the	
concepts	being	taught.	

Teachers	might	learn,	for	example,	that	
diagrams	of	sharing	scenarios	can	help	high-
light	the	link	between	fractions	and	division	
(i.e.,	the	quotient	interpretation	of	fractions)	
by	allowing	students	to	represent	fractions	
with	equal	shares	(e.g.,	2	large	brownies	
shared	among	5	children).	Number	lines	can	
focus	students	on	measurement	interpreta-
tions	of	fractions,	with	fractions	represent-
ing	a	distance	between	two	numbers.	Area	

models—	particularly	rectangular	ones,	but	
models	using	other	shapes	as	well—can	be	
used	to	depict	part-whole	representations	
of	fractions.	

Development	activities	should	provide	oppor-
tunities	for	teachers	to	integrate	representa-
tions	into	fractions	lessons.149	In	addition,	
teachers	need	to	understand	difficulties	that	
might	arise	when	they	use	a	pictorial	or	
concrete	representation	to	teach	fractions.	For	
example,	students	may	view	the	entire	num-
ber	line,	rather	than	the	distance	between	two	
numbers,	as	the	unit	when	locating	fractions	
(e.g.,	they	might	interpret	the	task	of	locat-
ing	3/4	on	a	0-to-5	number	line	as	locating	the	
point	75%	of	the	way	across	the	number	line).	
Professional	development	activities	need	to	
help	teachers	anticipate	misconceptions	and	
learning	problems	that	are	likely	to	arise,	and	
identify	ways	of	addressing	them.	

3.	 Develop	teachers’	ability	to	assess	students’	understandings	and	misunderstandings	
of	fractions.	

Professional	development	activities	with	
teachers	should	emphasize	how	students	
develop	an	understanding	of	fractions	and	
the	obstacles	students	face	in	learning	about	
them.150	Information	from	research	on	the	
development	of	fraction	learning	should	be	
provided	in	these	discussions.151	

One	method	that	is	useful	for	meeting	this	
goal	is	to	provide	teachers	with	opportuni-
ties	to	analyze	and	critique	student	thinking	
about	fractions.	This	can	be	done	by	exam-
ining	students’	written	work	or	watching	
video	clips	of	students	solving	problems	
that	are	designed	to	provide	insight	into	
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students’	thinking.152	For	example,	teachers	
can	be	asked	to	analyze	sources	of	students’	
difficulty	on	problems	such	as,	“Paige	had	
3	boxes	of	cereal.	Each	box	was	2/3	full.	If	
the	cereal	in	the	3	boxes	were	poured	into	
empty	boxes,	how	many	boxes	would	it	fill?	
Use	rectangular	drawings	or	a	number	line	
to	display	your	reasoning.”	Teachers	can	be	
asked	to	video-record	students’	performance	
on	such	problems	before	a	professional	
development	session;	then	teachers	can	bring	
students’	work	or	video	clips	to	the	session	
and	use	them	as	a	basis	for	discussion.	

Teachers	should	know	the	types	of	mistakes	
students	most	often	make	when	working	
with	fractions	and	also	should	understand	the	
underlying	misconceptions	that	cause	them.	
Analyzing	students’	work	is	a	useful	way	to	
identify	problem	areas	and	to	gain	insight	
into	students’	thought	processes.	To	be	most	
effective,	teachers	must	know	how	to	design	
problems	that	diagnose	the	source	of	errors.	
For	example,	teachers	might	structure	a	
decimal-ordering	problem	to	assess	whether	
students	understand	place	value	(e.g.,	order-
ing	the	following	decimals	from	smallest	to	
largest:	0.2,	0.12,	0.056).	

Preservice	and	in-service	activities	should	
help	teachers	understand	research	on	chil-
dren’s	knowledge	of	fractions;	the	research	
presented	should	be	chosen	to	inform	teach-
ers’	assessment	activities	and	instruction.	For	
example,	research	has	shown	that	students	
often	have	difficulty	with	fraction	names	and	
with	understanding	the	value	of	fractions.153	

Whether	students	in	a	given	classroom	are	
having	such	difficulty	can	be	assessed	by	
asking	them	to	state	fractions	that	label	the	
locations	of	hatch	marks	on	a	number	line	
with	endpoints	of	0	and	1.	Such	an	assess-
ment	might	indicate	that	students	refer	to	a	
variety	of	locations	as	1/2,	or	that	they	view	
fractions	with	larger	denominators	as	larger	
than	fractions	with	smaller	denominators	
(e.g.,	they	might	think	that	1/8	>	1/3).	Such	
a	pattern	might	lead	to	an	engaging	and	
productive	discussion	of	how	the	system	
for	naming	fractions	works	and	why	that	
naming	procedure	makes	sense.	More	gener-
ally,	development	activities	should	provide	
opportunities	for	teachers	to	practice	writing	
or	selecting	problems	that	accurately	assess	
students’	understanding	and	to	use	assess-
ment	results	to	design	useful	lessons.	

Potential
roadblocks
and
solutions


Roadblock
5.1. Administrators or profes­
sional development personnel might argue 
that the topic of fractions is just one of many 
that elementary and middle school teachers 
must be prepared to teach and that their dis­
trict, program, or school cannot devote more 
time or resources to it. 

Suggested
Approach.	The	panel	recog-
nizes	that	time	and	resources	for	providing	
professional	development	are	limited.	How-
ever,	a	convincing	argument	can	be	made	
for	devoting	some	time	and	resources	to	this	
topic:	(1)	fractions	are	a	critical	foundation	
for	more	advanced	mathematics,	(2)	many	
teachers	lack	sufficient	understanding	of	
fraction	to	teach	the	topic	effectively,	and	

(3)	U.S.	students	lag	further	behind	those	
in	other	countries	in	solving	problems	with	
fractions	than	in	solving	problems	with	
whole	numbers.154	The	panel	believes	the	
need	is	critical	for	elementary	and	middle	
school	teachers	to	receive	professional	devel-
opment	related	to	their	content	knowledge	
of	fractions	and	to	the	teaching	of	fractions,	
including	decimals,	percentages,	ratios,	
rates,	and	proportions.	The	panel	suggests	
that	school	and	district	leaders	consider	
fractions	a	high	priority	for	professional	
development.	

Roadblock
5.2. Some teachers have difficulty 
with whole number topics, such as multiplica­
tion and division, that are related to the teach­
ing of fractions. 
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Suggested
Approach.	A	deep	understand-
ing	of	whole	number	multiplication	and	
division,	including	why	and	how	common	
computational	algorithms	work,	is	essen-
tial	for	teaching	fractions	effectively.	When	
selecting	or	designing	professional	develop-
ment	activities	related	to	fractions,	education	
leaders	should	consider	whether	reviewing	
these	key	whole	number	topics	is	a	neces-
sary	prerequisite	for	teachers	in	the	particu-
lar	school	or	district.	

Roadblock
5.3.
Some teachers do not think 
additional professional development involving 
fractions is necessary. 

Suggested
Approach.	Although	most	teach-
ers	are	able	to	compute	with	fractions,	many	
do	not	have	a	strong	conceptual	background	
regarding	fractions	or	an	understanding	of	
the	logic	underlying	computational	algo-
rithms	used	for	solving	fraction	problems.	By	
first	determining	if	teachers	know	why	and	
how	common	computational	algorithms	(e.g.,	
invert	and	multiply)	work	and	why	certain	
steps	within	algorithms	are	necessary	(e.g.,	
establishing	common	denominators	for	addi-
tion	and	subtraction),	education	leaders	can	
decide	whether	professional	development	
involving	fractions	is	an	important	need	in	
their	schools	or	districts.	
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C

Common
fraction
–	A	fraction	written	in	the	form	a /b,	where	both	a and	b are	integers	and	b	does	not	
equal	zero	(e.g.,	3/4,	6/5,	–	(1/8)).		
Covariation
–	A	measure	of	how	much	two	quantities	change	together.	For	example,	the	extent	to	which		
one	quantity	increases	as	another	quantity	increases.		

D

Denominator
–	For	any	fraction	a /b,	the	denominator	is	the	number	below	the	hash	line.	The	denominator	
represents	the	divisor	of	a	division	problem,	or	the	number	of	parts	into	which	a	whole	amount	is	divided	
(e.g.,	for	the	fraction	2/3,	the	denominator	3	refers	to	a	whole	divided	into	three	parts).	

E

Equal
sharing
–	The	activity	of	completely	distributing	an	object	or	set	of	objects	equally	among	a	group	
of	people.		

Equivalent
fractions
–	Fractions	that	represent	the	same	numerical	value;	equal	fractions.	For		
example,	2/4	and	4/8	are	both	equal	to	1/2;	therefore	2/4,	4/8,	and	1/2	are	equivalent	fractions.		

F

Fraction
density
–	The	concept	that	between	any	two	fractions	there	is	another	fraction.	For	example,	
the	fraction	1/4 is	between	0	and	1/2;	the	fraction	1/8 is	between	0	and	1/4;	and	the	fraction	1/16	is	between	
0	and	1/8.	One	consequence	of	this	fact	is	that	between	any	two	fractions	there	are	an	infinite	number	
of	fractions.	

I

Improper
fraction
–	A	fraction	with	a	numerator	that	is	greater	than	or	equal	to	the	denominator.	Examples	
of	improper	fractions	include	5/5,	9/8,	and	14/9.	

M

Mixed
number
–	A	fraction	written	as	a	whole	number	and	a	fraction	less	than	one.	Examples	of	mixed	
numbers	include	12/3,	43/8,	and	–25/6.		
Multiplicative
relation
–	A	relation	between	two	quantities	in	which	one	quantity	can	be	multiplied	by	a		
factor	to	obtain	a	second	quantity.		

N

Numerator	–	For	any	common	fraction	a /b,	the	numerator	is	the	number	above	the	hash	line.	The	numerator	
represents	the	dividend	of	a	division	problem	or	the	number	of	fractional	parts	represented	by	a	fraction	
(e.g.,	for	the	fraction	2/3,	the	numerator	2	represents	the	number	of	thirds).	
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P

Percent	–	Any	number	expressed	as	a	fraction	or	ratio	of	100	(i.e.,	with	a	denominator	of	100).	For	example,	
75%	is	equivalent	to	0.75	or	75/100.		
Proportion
–	An	expression	of	two	equivalent	ratios	or	fractions.	A	proportion	is	an	equation	written	in		
the	form	a /b	=	c /d,	thus	indicating	that	the	two	ratios	are	equivalent.		

Proportional
reasoning
–	The	literature	consists	of	several	different	definitions	of	proportional	reasoning.		
On	a	basic	level,	the	term	means	understanding	and	working	with	the	underlying	relations	in	proportions.155		

Others	describe	proportional	reasoning	as	the	ability	to	compare	one	relative	amount	to	another,156	or	the		
ability	to	understand	multiplicative	relations	or	reason	about	multiplicative	situations.157		

Q

Quotient
–	The	solution	to	a	division	problem.	For	example,	3	is	the	quotient	for	the	following	division	
problem:	12	÷	4	=	3.	

R

Rational
number
–	Any	number	that	can	be	expressed	in	the	form	a /b where	a and	b	are	both	integers		
and	b does	not	equal	zero.	Rational	numbers	can	take	many	different	forms,	including	common	fractions,		
ratios,	decimals,	and	percents.		

Rate
–	The	relation	between	two	quantities	measured	in	different	units.	For	example,	distance	per	unit	of		
time.		

Ratio
–	The	relation	between	two	quantities.	For	example,	the	ratio	2:3	might	represent	the	relation-
ship	of	the	number	of	boys	to	girls	in	a	classroom,	or	two	boys	for	every	three	girls	in	the	class.		

U

Unit
fraction	–	A	fraction	with	a	numerator	of	one	(e.g.,	1/3,	1/11).	
Unit
ratio	–	A	ratio	with	a	denominator	of	one	(e.g.,	5:1,	9:1).	

W

Whole
numbers	–	The	set	of	numbers	starting	with	zero	and	increasing	by	one	(i.e.,	0,	1,	2,	3…).	
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What
is
a
practice
guide?

The	Institute	of	Education	Sciences	(IES)	publishes	practice	guides	to	share	rigorous	evidence	and	
expert	guidance	on	addressing	education-related	challenges	not	solved	with	a	single	program,	
policy,	or	practice.	Each	practice	guide’s	panel	of	experts	develops	recommendations	for	a	coherent	
approach	to	a	multifaceted	problem.	Each	recommendation	is	explicitly	connected	to	supporting	
evidence.	Using	standards	for	rigorous	research,	the	supporting	evidence	is	rated	to	reflect	how	
well	the	research	demonstrates	that	the	recommended	practices	are	effective.	Strong	evidence	
means	positive	findings	are	demonstrated	in	multiple	well-designed,	well-executed	studies,	leaving	
little	or	no	doubt	that	the	positive	effects	are	caused	by	the	recommended	practice.	Moderate	evi-
dence	means	that	well-designed	studies	show	positive	impacts,	but	some	questions	remain	about	
whether	the	findings	can	be	generalized	or	whether	the	studies	definitively	show	that	the	practice	
is	effective.	Minimal	evidence	means	data	may	suggest	a	relationship	between	the	recommended	
practice	and	positive	outcomes,	but	research	has	not	demonstrated	that	the	practice	is	the	cause	
of	positive	outcomes.	(See	Table	1	for	more	details	on	levels	of	evidence.)	

How
are
practice
guides
developed?


To	produce	a	practice	guide,	IES	first	selects	
a	topic.	Topic	selection	is	informed	by	
inquires	and	requests	to	the	What	Works	
Clearinghouse	Help	Desk,	formal	surveys	of	
practitioners,	and	a	limited	literature	search	of	
the	topic’s	research	base.	Next,	IES	recruits	a	
panel	chair	who	has	a	national	reputation	and	
expertise	in	the	topic.	The	chair,	working	with	
IES,	then	selects	panelists	to	co-author	the	
guide.	Panelists	are	selected	based	on	their	
expertise	in	the	topic	area	and	the	belief	that	
they	can	work	together	to	develop	relevant,	
evidence-based	recommendations.	IES	rec-
ommends	that	the	panel	include	at	least	one	
practitioner	with	relevant	experience.	

The	panel	receives	a	general	template	for	
developing	a	practice	guide,	as	well	as	
examples	of	published	practice	guides.	Panel-
ists	identify	the	most	important	research	
with	respect	to	their	recommendations	and	
augment	this	literature	with	a	search	of	
recent	publications	to	ensure	that	supporting	
evidence	is	current.	The	search	is	designed	
to	find	all	studies	assessing	the	effectiveness	
of	a	particular	program	or	practice.	These	
studies	are	then	reviewed	against	the	What	
Works	Clearinghouse	(WWC)	standards	by	
certified	reviewers	who	rate	each	effective-
ness	study.	WWC	staff	assist	the	panelists	in	

compiling	and	summarizing	the	research	and	
in	producing	the	practice	guide.	

IES	practice	guides	are	then	subjected	to	
rigorous	external	peer	review.	This	review	
is	done	independently	of	the	IES	staff	that	
supported	the	development	of	the	guide.	A	
critical	task	of	the	peer	reviewers	of	a	practice	
guide	is	to	determine	whether	the	evidence	
cited	in	support	of	particular	recommenda-
tions	is	up-to-date	and	that	studies	of	similar	
or	better	quality	that	point	in	a	different	direc-
tion	have	not	been	overlooked.	Peer	reviewers	
also	evaluate	whether	the	level	of	evidence	
category	assigned	to	each	recommendation	is	
appropriate.	After	the	review,	a	practice	guide	
is	revised	to	meet	any	concerns	of	the	review-
ers	and	to	gain	the	approval	of	the	standards	
and	review	staff	at	IES.	

A
final
note
about
IES
practice
guides


In	policy	and	other	arenas,	expert	panels	
typically	try	to	build	a	consensus,	forging	
statements	that	all	its	members	endorse.	
But	practice	guides	do	more	than	find	com-
mon	ground;	they	create	a	list	of	actionable	
recommendations.	When	research	clearly	
shows	which	practices	are	effective,	the	
panelists	use	this	evidence	to	guide	their	
recommendations.	However,	in	some	cases,	
research	does	not	provide	a	clear	indication	
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of	what	works,	and	panelists’	interpretation	
of	the	existing	(but	incomplete)	evidence	
plays	an	important	role	in	guiding	the	recom-
mendations.	As	a	result,	it	is	possible	that	
two	teams	of	recognized	experts	working	
independently	to	produce	a	practice	guide	
on	the	same	topic	would	come	to	very	differ-
ent	conclusions.	Those	who	use	the	guides	
should	recognize	that	the	recommendations	
represent,	in	effect,	the	advice	of	consultants.	
However,	the	advice	might	be	better	than	

what	a	school	or	district	could	obtain	on	its	
own.	Practice	guide	authors	are	nationally	
recognized	experts	who	collectively	endorse	
the	recommendations,	justify	their	choices	
with	supporting	evidence,	and	face	rigorous	
independent	peer	review	of	their	conclusions.	
Schools	and	districts	would	likely	not	find	
such	a	comprehensive	approach	when	seek-
ing	the	advice	of	individual	consultants.	

Institute
of
Education
Sciences
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the	Middle	Institute	Partnership.	He	was	chair	
of	the	Conference	Board	of	the	Mathematical	
Sciences	committee	that	produced	The Math­
ematical Education of Teachers	and	co-chair	
of	the	National	Research	Council	committee	
that	produced	the	report	Educating Teachers 
of Science, Mathematics, and Technology: New 
Practices for the New Millennium.	Dr.	Lewis	
was	also	co-principal	investigator	for	Math	
Matters,	a	National	Science	Foundation	grant	
to	revise	the	mathematics	education	of	future	
elementary	school	teachers	at	UNL.	

Yukari
Okamoto,
Ph.D.,	is	a	professor	in	
the	department	of	education	at	the	University	
of	California–Santa	Barbara.	Her	work	focuses	
on	cognitive	development,	the	teaching	and	
learning	of	mathematics	and	science,	and	
cross-cultural	studies.	She	is	particularly	
interested	in	children’s	acquisition	of	math-
ematical,	scientific,	and	spatial	concepts	and	
participated	in	the	video	studies	of	mathemat-
ics	and	science	teaching	as	part	of	the	Third	
International	Mathematics	and	Science	Study	
(TIMSS).	Dr.	Okamoto’s	recent	publications	
include	Fourth­Graders’ Linking of Rational 
Number Representation: A Mixed Method 
Approach and Comparing U.S. and Japanese 
Elementary School Teachers’ Facility for Link­
ing Rational Number Representations.	

Laurie
Thompson,
M.A.,	has	10	years	
of	experience	as	an	elementary	teacher	
and	math	resource	teacher.	Her	experience	

includes	teaching	1st,	3rd,	4th,	and	5th	
grades	in	Carroll	County,	Maryland;	Loudon	
County	Public	Schools,	Virginia;	and	Katy	
Independent	School	District,	Texas.	As	an	
elementary	math	resource	teacher	in	Loudon	
County,	Ms.	Thompson	worked	with	elemen-
tary	math	teachers	to	team-teach	lessons,	
organize	guided	instructional	centers,	and	
conduct	small-group	instruction.	In	this	role,	
she	also	developed	and	evaluated	mathematics	
lessons	and	materials	for	kindergarten	
through	5th-grade	classrooms.	She	has	
served	as	a	mentor	and	team	leader	for	new	
teachers	and	participated	in	professional	
learning	communities.	

Jonathan
Wray,
M.A.,	is	the	instructional	
facilitator	for	secondary	mathematics	cur-
ricular	programs	in	the	Howard	County	
(Maryland)	Public	School	System.	He	recently	
completed	a	two-year	term	as	president	of	
the	Maryland	Council	of	Teachers	of	Math-
ematics	(MCTM).	Mr.	Wray	was	selected	as	
the	MCTM	Outstanding	Teacher	Mentor	in	
2002	and	as	his	district’s	Outstanding	Tech-
nology	Leader	in	Education	by	the	Maryland	
Society	for	Educational	Technology	in	2004.	
He	serves	on	the	editorial	panel	of	Teaching 
Children Mathematics,	a	peer-reviewed	journal	
produced	by	the	National	Council	of	Teachers	
of	Mathematics.	Mr.	Wray	also	has	served	as	a	
classroom	teacher	for	primary	and	intermedi-
ate	grades,	a	gifted/talented	resource	teacher,	
an	elementary	mathematics	resource	teacher,	
a	curriculum	and	assessment	developer,	and	
an	educational	consultant.	

Staff

Jeffrey
Max	is	a	researcher	at	Mathematica	
Policy	Research	with	experience	conducting	
evaluations	in	the	education	area.	His	cur-
rent	work	focuses	on	teacher	quality	issues,	
including	measures	of	teacher	effective-
ness,	the	distribution	of	teacher	quality,	and	
teacher-compensation	reform.	Mr.	Max	also	
contributes	to	the	What	Works	Clearinghouse,	
previously	working	on	the	practice	guide	that	
addresses	access	to	higher	education.	His	

prior	experience	includes	teaching	kindergar-
ten	in	a	New	Orleans	public	school.	

Moira
McCullough
is	a	research	analyst	at	
Mathematica	Policy	Research	and	has	experi-
ence	with	education	evaluations	and	research.	
Ms.	McCullough	has	worked	extensively	for	
the	What	Works	Clearinghouse.	She	is	a	certi-
fied	reviewer	of	studies	across	several	areas	
and	coordinated	the	elementary	school	math	
topic	area.	She	contributed	to	the	practice	
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guide	addressing	access	to	higher	education	
and	to	research	perspectives	synthesizing	
expert	recommendations	to	states	and	school	
districts	for	use	of	funds	from	the	American	
Recovery	and	Reinvestment	Act.	She	also	has	
experience	with	measures	of	teacher	effec-
tiveness	in	mathematics.	

Andrew
Gothro	is	a	research	analyst	at	Math-
ematica	Policy	Research.	He	has	experience	
providing	research	support	and	conducting	
quantitative	data	analysis	on	topics	ranging	
from	child	development	to	antipoverty	pro-
grams.	Mr.	Gothro	supported	the	panel	on	this	
project	by	identifying	and	organizing	relevant	

research,	synthesizing	findings	from	reviewed	
studies,	and	crafting	language	for	an	audience	
of	education	practitioners.	

Sarah
Prenovitz	is	a	research	assistant/	
programmer	at	Mathematica	Policy	Research.	
She	has	experience	providing	research	support	
and	conducting	data	analysis	for	studies	of	
teacher	incentive	programs	and	professional	
development	programs,	as	well	as	programs	
to	support	and	encourage	employment	for	
persons	with	disabilities.	She	also	has	devel-
oped	companion	materials	to	accompany	a	
curriculum	for	Head	Start	staff	on	using	contin-
uous	assessment	to	shape	classroom	practice.	
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Disclosure
of
Potential
Conflicts
of
Interest


Practice	guide	panels	are	composed	of	individuals	who	are	nationally	recognized	experts	on	the	
topics	about	which	they	are	making	recommendations.	IES	expects	the	experts	to	be	involved	pro-
fessionally	in	a	variety	of	matters	that	relate	to	their	work	as	a	panel.	Panel	members	are	asked	to	
disclose	these	professional	activities	and	institute	deliberative	processes	that	encourage	critical	exam-
ination	of	their	views	as	they	relate	to	the	content	of	the	practice	guide.	The	potential	influence	of	
the	panel	members’	professional	activities	is	further	muted	by	the	requirement	that	they	ground	their	
recommendations	in	evidence	that	is	documented	in	the	practice	guide.	In	addition,	before	all	practice	
guides	are	published,	they	undergo	an	independent	external	peer	review	focusing	on	whether	the	
evidence	related	to	the	recommendations	in	the	guide	has	been	presented	appropriately.	

The	professional	activities	reported	by	each	panel	member	that	appear	to	be	most	closely	associ-
ated	with	the	panel	recommendations	are	noted	below.	

Jim
Lewis	receives	royalties	as	an	author	of	Math Vantage,	a	mathematics	curriculum	for	middle	
school	students.	This	program	is	not	mentioned	in	the	guide.	
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Rationale
for
Evidence
Ratingsa


The	panel	conducted	an	initial	search	for	research	from	1989	to	2009	on	practices	for	improving	stu-
dents’	learning	of	fractions.	The	search	focused	on	studies	of	interventions	for	teaching	fractions	to	
students	in	kindergarten	through	8th	grade	that	did	not	exclusively	focus	on	students	with	diagnosed	
learning	disabilities;	studies	examined	students	in	both	the	United	States	and	other	countries.	

Panelists	identified	more	than	3,000	studies	through	this	initial	search,	including	125	with	causal	
designs	reviewed	according	to	What	Works	Clearinghouse	(WWC)	standards.	Twenty-six	of	the	stud-
ies	met	evidence	standards	with	or	without	reservations.	Given	the	limited	research	on	practices	for	
improving	students’	fraction	knowledge,	the	panel	expanded	its	search	beyond	fractions	to	identify	
studies	relevant	for	number	lines	(Recommendation	2)	and	professional	development	(Recommendation	
5).	This	led	panel	members	to	an	additional	seven	studies	that	met	standards	with	or	without	reserva-
tions.	The	panel	also	examined	studies	that	did	not	have	designs	eligible	for	a	WWC	review	but	were	rel-
evant	to	the	recommendations,	including	correlational	studies,	case	studies,	and	teaching	experiments.	

Recommendation
1.


Build
on
students’
informal
understand­
ing
of
sharing
and
proportionality
to


develop
initial
fraction
concepts.



Level
of
evidence:
Minimal
Evidence


The	panel	assigned	a	rating	of	minimal evi­
dence	to	this	recommendation.	The	recom-
mendation	is	based	on	seven	studies	showing	
that	students	have	an	early	understanding	of	
sharing	and	proportionality158	and	two	stud-
ies	of	instruction	that	used	sharing	scenarios	
to	teach	fraction	concepts.159	 However,	none	
of	the	studies	in	this	latter	group	met	WWC	
standards.	Despite	this	limited	evidence,	the	
panel	believes	that	students’	informal	knowl-
edge	of	sharing	and	proportionality	provides	
a	foundation	for	teaching	fraction	concepts.	

The	panel	separately	examined	the	research	
on	sharing	activities	and	proportional	rela-
tions	for	this	recommendation.	

Sharing
activities.
Children	have	the	ability	
to	create	equal	shares	at	an	early	age.	Children	
as	young	as	age	5	can	complete	basic	sharing	
tasks	that	involve	evenly	distributing	a	set	of	
12	or	24	objects	among	two	to	four	recipi-
ents.160	In	one	study,	most	5-year-old	children	
could	do	this	even	when	using	different-size	

units	(i.e.,	equally	distributing	single,	double,	
and	triple	blocks).	The	ability	to	create	equal	
shares	improves	with	age,	with	6-year-old	
children	performing	better	than	4-	and	5-year-
olds.161	Sharing	continuous	objects	is	more	
difficult	for	young	children	than	sharing	a	set	
of	objects:	children	in	one	study	had	more	dif-
ficulty	sharing	a	rope	among	three	recipients	
than	sharing	a	set	of	crackers.162	

Children’s	understanding	of	how	to	share	does	
not	necessarily	extend	to	underlying	fraction	
concepts.	Many	students	do	not	understand	
that	sharing	the	same	set	of	objects	with	
more	people	results	in	smaller	shares	for	each	
person.163	One	study	that	potentially	met	
standards	showed	an	improved	understanding	
of	this	concept	among	kindergarten	students	
who	were	given	results	from	sharing	scenarios	
with	different	numbers	of	sharers	(i.e.,	differ-
ent	denominators).164	This	study	demonstrated	
the	potential	for	using	sharing	activities	as	
the	basis	for	teaching	early	fraction	concepts.	
However,	a	review	of	the	study	could	not	
be	completed	because	insufficient	informa-
tion	was	provided	on	the	number	of	schools	
assigned	to	each	condition.	

Two	case	studies	showed	how	an	early	
understanding	of	sharing	could	be	used	to	
teach	fractions	to	elementary	students.165	

a	Eligible	studies	that	meet	WWC	evidence	standards	or	meet	evidence	standards	with	reservations	are	indicated	by	bold
text	in	the	
endnotes	and	references	pages.	
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In	both	studies,	a	teacher	posed	various	story	
problems	based	on	sharing	scenarios	to	
teach	fraction	concepts	such	as	equivalence	
and	ordering,	as	well	as	fraction	computa-
tion.	For	example,	students	solved	problems	
about	people	sharing	varying	amounts	of	
food	or	the	use	of	seating	arrangements	
to	share	a	set	of	objects	in	different	ways.	
The	instruction	in	both	studies	included	
story	problems	based	on	realistic	situations,	
opportunities	for	students	to	use	their	own	
drawings	and	strategies	to	obtain	solutions,	
and	whole-class	discussions.	

One	of	these	studies	examined	a	Dutch	cur-
riculum	for	4th-grade	students	but	did	not	
meet	standards	because	only	one	classroom	
was	assigned	to	the	treatment.166	 The	other	
study	presented	a	five-week	instructional	unit	
to	17	1st-grade	students	but	lacked	a	control	
group,	so	it	did	not	have	a	reviewable	design.	
However,	both	studies	reported	positive	
results	with	using	sharing	scenarios	to	teach	
fraction	concepts.167	

Proportional
relations.	Young	children	have	
an	early	understanding	of	proportional	rela-
tions.	Three	studies	presented	proportions	
with	geometric	figures	or	everyday	objects	
and	had	students	identify	or	create	a	match-
ing	proportion.168	For	example,	in	one	study,	
the	experimenter	pretended	to	eat	a	portion	
of	a	pizza	and	had	children	pretend	to	eat	the	
same	proportion	from	a	box	of	chocolates.169	

In	another	study,	students	matched	propor-
tions	represented	by	boxes	filled	with	blue	and	
white	bricks.170	By	age	6,	children	matched	
equivalent	proportions	in	all	of	these	studies.	

One-half	plays	an	important	role	in	children’s	
early	proportional	reasoning	abilities.	Children	
performed	better	when	choosing	between	
options	that	crossed	the	half	point	(i.e.,	one	
figure	was	more	than	one-half	filled,	and	
the	other	was	less	than	one-half	filled)	than	
between	two	proportions	that	were	both	
more	than	or	less	than	one-half	filled.171	 Chil-
dren	tended	to	have	more	difficulty	matching	
proportions	represented	by	discrete	objects	
than	by	continuous	objects.172	

Children’s	early	understanding	of	proportional	
relations	also	is	reflected	in	their	ability	to	solve	
basic	analogies.	Analogies	are	similar	to	propor-
tions	in	that	students	must	identify	a	relation	in	
the	first	set	of	items	and	then	apply	this	relation	
to	a	second	set	of	items.	One	study	found	that	
children	ages	6	and	7	performed	above	chance	
on	analogies	based	on	simple	patterns	or	pro-
portional	equivalence.173	For	example,	students	
could	complete	the	analogy,	“Half	circle	is	to	
half	rectangle	as	quarter	circle	is	to	quarter	
rectangle.”	One	study	found	that	children	could	
map	the	relative	sizes	of	items	within	a	three-
item	set	to	the	relative	sizes	of	items	within	
another	set	of	three	objects.174	For	example,	
when	the	experimenter	selected	the	largest	of	
three	different-size	cups,	children	could	pick	the	
corresponding	cup	from	their	set	of	three	cups.	

The	panel	did	not	identify	studies	meeting	
standards	that	examined	the	effect	of	using	
this	early	knowledge	to	teach	fraction	con-
cepts.	However,	one	study	that	potentially	
met	standards	examined	a	way	to	improve	
students’	ability	to	match	equivalent	propor-
tions.175	The	author	provided	6-	to	8-year-old	
children	with	feedback	and	explanations	
about	how	to	use	the	half	boundary	to	identify	
equivalent	proportions.	This	strategy	focused	
children	on	the	part-part	relation	between	
shaded	and	unshaded	areas	used	to	represent	
proportions;	the	author	reported	positive	
effects	on	children’s	ability	to	identify	which	of	
two	glasses	was	more	full—and,	therefore,	on	
whether	students	could	differentiate	between	
absolute	and	relative	amounts	of	water.	

Recommendation
2.

Help
students
recognize
that
fractions

are
numbers
and
that
they
expand

the
number
system
beyond
whole

numbers.
Use
number
lines
as
a
central

representational
tool
in
teaching
this

and
other
fraction
concepts
from
the

early
grades
onward.


Level
of
evidence:
Moderate
Evidence


The	panel	rates	this	recommendation	as	being	
supported	by	moderate evidence,	based	on	
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three	studies	that	met	WWC	standards	and	
used	number	lines	to	teach	students	about	the	
magnitudes	of	whole	numbers;176	one	study	
that	met	WWC	standards	and	showed	that	
instruction	with	number	lines	improved	stu-
dents’	understanding	of	decimal	fractions;177	

and	four	studies	that	showed	strong	correla-
tions	between	number	line	estimates	with	
whole	numbers	and	performance	on	arith-
metic	and	mathematical	achievement	tests.178	

Another	study	demonstrated	that	a	property	
of	number	line	estimates	that	has	been	
documented	extensively	with	whole	numbers	
also	is	present	with	fractions	(specifically,	
logarithmic	to	linear	transitions	in	patterns).	
This	suggests	that	representations	of	numeri-
cal	magnitudes	influence	understanding	of	
fractions	as	well	as	of	whole	numbers.179	 The	
panel	believes	that	given	the	clear	applicability	
of	number	lines	to	fractions	as	well	as	whole	
numbers,	these	findings	indicate	that	number	
lines	can	improve	fraction	learning	for	elemen-
tary	and	middle	school	students.	

The	evidence	to	support	this	recommenda-
tion	includes	studies	that	examined	the	use	of	
number	lines	and	other	linear	representations	
to	teach	whole	number	and	fraction	concepts.	

Number
lines
for
whole
number
concepts.

(see	Table	D.1.)	Three	studies	that	met	stan-
dards	found	that	briefly	playing	a	linear	board	
game	with	numbers	improved	preschool	
students’	understanding	of	whole	number	
magnitude.180	 In	the	studies,	students	from	
low-income	backgrounds	played	a	numeric	
board	game	20	to	30	times	over	the	course	
of	four	to	five	sessions	lasting	15	to	20	minutes	
each.	The	game	involved	moving	a	marker	
one	or	two	spaces	at	a	time	across	a	horizontal	
board	that	had	the	numbers	1	to	10	listed	in	
order	from	left	to	right	in	consecutive	squares.	
Students	used	a	spinner	to	determine	whether	
to	make	one	or	two	moves	and	then	said	
out	loud	the	number	they	had	spun	and	the	
numbers	on	the	squares	as	they	moved.	The	
experimenter	played	the	game	with	each	
child	and	helped	each	correctly	name	num-
bers.	Control	students	in	two	of	the	studies	
played	the	same	game	but	with	colors	rather	

than	numbers,181	and	control	students	in	the	
other	study	completed	counting	and	number-
identification	tasks.182	

The	linear	board	game,	which	the	panel	views	
as	a	proxy	for	number	lines,	had	a	positive	
effect	on	students’	ability	to	compare	the	
size	of	whole	numbers.	Authors	of	the	three	
studies	reported	significant	effect	sizes	of	
0.75,	0.99,	and	1.17	on	accuracy	in	compar-
ing	whole	numbers	(from	0	to	10).183	 The	
linear	board	game	also	improved	participating	
students’	ability	to	locate	whole	numbers	on	a	
number	line	accurately.	These	studies	measure	
the	accuracy	of	students’	number	line	esti-
mates	using	a	measure	called	percent	abso-
lute	error,	which	is	the	difference	between	
a	student’s	estimate	and	the	actual	number	
divided	by	the	scale	of	the	number	line.	Two	
of	the	studies	found	effect	sizes	for	percent	
absolute	error	of	0.63	(author	reported)	and	
0.86	(WWC	calculated).184	One	of	the	studies	
also	reported	that	playing	the	game	signifi-
cantly	improved	students’	ability	to	learn	the	
answers	to	addition	problems	on	which	they	
received	feedback.185	

Research	supporting	the	use	of	number	lines	
with	whole	numbers	includes	two	additional	
studies	that	met	WWC	standards.	One	of	the	
studies	had	students	place	10	evenly	spaced	
numbers	on	a	number	line	before	locating	
numbers	on	a	0-to-100	number	line.186	 The	
authors	report	that	this	approach	led	to	a	
substantively	important	but	not	significant	
increase	in	the	accuracy	of	students’	number	
line	estimates,	whereas	students	in	the	control	
group,	who	located	one	number	at	a	time,	did	
not	improve.187	(The	WWC	defines	substan-
tively	important,	or	large,	effects	on	outcomes	
to	be	those	with	effect	sizes	greater	than	0.25	
standard	deviations.188)	

The	second	supporting	study	used	a	number	
line	to	improve	1st-grade	students’	perfor-
mance	on	addition	problems	for	which	they	
had	been	trained.189	 Treatment	group	students	
viewed	the	addends	and	sums	of	four	addi-
tion	problems	on	a	number	line;	control	group	
students	received	feedback	on	the	problems	
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Table
D.1.
Studies
of
interventions
that
used
number
lines
to
improve
understanding

of
whole
number
magnitude
that
met
WWC
standards
(with
or
without
reservations)


Citation
 Grade
Level
 Analysis
Sample
Size
 Intervention
 Comparison


Siegler	and	Ramani	 Preschool	 36	students	 Students	play	a	linear	 Students	play	a	linear	
(2008)	 board	game	with	 board	game	with	colors.	

numbers.	

Ramani	and	Siegler	 Preschool	 112	students	 Students	play	a	linear	 Students	play	a	linear	
(2008)	 board	game	with	 board	game	with	colors.	

numbers.	

Siegler	and	Ramani	 Preschool	 88	students	 Students	play	a	linear	 Students	participate	in	
(2009)	 board	game	with	 counting	and	number-

numbers.190	 identification	tasks.	

Siegler	and	Booth	 1st	and	2nd191	 55	students	 Students	place	10	evenly	 Students	use	number	
(2004)	 spaced	numbers	on	a	 lines	without	locating	

number	line.	 evenly	spaced	numbers	
first.	

Booth	and	Siegler	
(2008)	

1st	 52	students	 Students	receive	a	
number	line	showing	
addends	and	sums	

Students	solve	trained	
addition	problems	with-
out	a	number	line.	

for	trained	addition	
problems.192	

but	did	not	use	a	number	line.	The	authors	
reported	that	treatment	group	students	were	
more	likely	than	control	group	students	to	
answer	the	same	addition	problems	correctly	
later.	In	addition,	the	study	noted	that	the	
number	line	experience	led	to	improved	qual-
ity	of	errors	on	the	addition	problems	(errors	
that	were	closer	to	the	correct	answer).	

The	panel	also	identified	evidence	showing	a	
relation	between	students’	accuracy	in	locat-
ing	whole	numbers	on	a	number	line	and	
general	math	achievement.193	These	studies	
show	a	positive	significant	relation	between	
the	linearity	of	number	line	estimates	and	
general	math	achievement	for	students	in	
kindergarten	through	4th	grade,	with	correla-
tions	ranging	from	0.39	to	0.69.	The	accuracy	
of	number	line	estimates	(i.e.,	how	close	a	
number	is	to	its	actual	position)	was	positively	
related	to	general	math	achievement,	with	
one	study	finding	a	significant	relation	rang-
ing	from	0.37	to	0.66);194	 an	additional	study	
found	positive	but	non-significant	relations	for	
1st-	and	2nd-graders	in	one	experiment	and	
significant	positive	relations	for	2nd-	and	4th-
graders	in	another	experiment.195	

Number
lines
for
teaching
fraction
con­
cepts.	One	study	that	met	WWC	standards	

examined	the	use	of	number	lines	for	com-
paring	the	magnitude	of	decimals.196	 Sixty-
one	students	in	5th	and	6th	grades	played	
a	computer	game	in	which	they	located	a	
decimal’s	position	on	a	0-to-1	number	line.	
Students	in	the	treatment	and	control	groups	
completed	15	problems	during	sessions	last-
ing	about	40	minutes.	The	study	involved	
three	treatment	groups	that	received	inter-
ventions	designed	to	help	students	correctly	
represent	the	problem:	the	first	treatment	
group	received	a	prompt	for	students	to	
notice	the	tenths	digit	of	each	decimal,	the	
second	group	used	a	number	line	with	the	
tenths	place	marked,	and	the	third	group	
received	both	the	prompts	and	marked	tenths	
on	the	number	line.	Students	in	the	control	
group	also	solved	computer-based	number	
line	problems,	but	without	the	assistance	of	
these	interventions.	

Since	students	in	both	the	treatment	and	con-
trol	groups	used	number	lines,	the	study	does	
not	provide	causal	evidence	for	whether	using	
number	lines	improves	students’	understand-
ing	of	decimals.	However,	the	results	indicate	
that	focusing	on	certain	aspects	of	the	num-
ber	line—specifically,	noticing	and	marking	
the	tenths	place—led	to	significant	improve-
ments	in	students’	ability	to	locate	decimals	
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on	a	number	line.	The	combination	of	plac-
ing	tenths	markings	on	the	number	lines	
and	prompting	students	to	notice	and	think	
about	them	(treatment	group	3)	significantly	
improved	students’	ability	to	locate	decimal	
fractions	on	a	number	line	relative	to	when	
neither	was	present	(effect	size	of	0.57).	When	
students	only	received	the	tenths	markings	
(treatment	group	1)	or	only	heard	the	prompts	
(treatment	group	2),	the	interventions	did	not	
have	a	significant	effect.	The	panel	believes	
this	outcome	indicates	that	the	combination	of	
the	prompts	and	markings,	together	with	use	
of	the	number	line,	leads	to	increased	under-
standing	of	decimals’	magnitude.	

A	comparison	of	students’	conceptual	under-
standing	of	decimals	before	and	after	the	
intervention	provides	additional	evidence	on	
the	usefulness	of	number	lines.	Playing	the	
computer-based	number	line	game	led	to	
improvements	in	treatment	and	control	stu-
dents’	conceptual	understanding	of	decimals,	
including	their	ability	to	compare	relative	
magnitudes	of	fractions,	identify	equivalent	
fractions,	and	understand	place	value.	This	
is	suggestive	evidence,	because	there	is	no	
comparison	group	of	students	who	did	not	
use	a	number	line.	

Another	study	examined	the	use	of	number	
lines	in	fractions	instruction	but	did	not	
meet	standards.197	The	study	compared	two	
Dutch	curricula	over	the	course	of	a	school	
year.	One	curriculum	focused	on	the	use	of	
number	lines	and	measurement	contexts	to	
teach	fractions;	the	other	curriculum	used	
circles	and	part-whole	representations	of	
fractions.	Students	in	the	treatment	group	
measured	objects	using	different-size	bars	
and	compared	fractions	on	a	number	line.	
The	authors	reported	positive	effects	on	9-
to	10-year-olds’	understanding	of	fractions.	
However,	the	study	did	not	meet	standards,	
because	only	one	classroom	of	students	was	
assigned	to	the	treatment.	Another	problem	
in	interpreting	the	study	was	that	the	experi-
mental	group	encouraged	student	interaction,	
whereas	the	control	group	students	primarily	

worked	alone.	As	a	result,	distinguishing	the	
effect	of	these	instructional	approaches	from	
the	effect	of	the	curriculum	was	not	possible.	

Two	additional	studies	that	were	not	eligible	
for	review	found	mixed	results	of	using	a	
number	line	to	teach	fraction	concepts.198	

One	study	examined	using	a	number	line	to	
teach	fraction	addition	to	a	class	of	6th-grade	
students.	Based	on	classroom	observations	
and	interviews	with	the	teacher	and	two	
students,	the	authors	found	that	students	had	
difficulty	viewing	partitions	on	a	number	line	
as	fixed	units,	as	well	as	difficulty	associating	
equivalent	fractions	with	a	single	point	on	
the	number	line.	Minor	differences	in	how	the	
teacher	presented	the	number	line	affected	
whether	students	viewed	the	partitions	as	
fixed	units.	

The	second	study	described	three	small	
case	studies	of	fraction	instruction	that	used	
number	lines	for	representing	and	ordering	
fractions.199	In	this	study,	4th-	and	5th-grade	
students	had	trouble	locating	fractions	on	a	
number	line	when	fractions	were	in	reduced	
form	and	the	number	line	was	organized	by	a	
smaller	unit	fraction	(e.g.,	they	had	difficulty	
locating	1/3	on	a	number	line	divided	into	
sixths).	However,	the	authors	also	reported	
that	number	line	instruction	improved	stu-
dents’	ability	to	work	with	fractions.	

Additional
evidence.
Other	types	of	evi-
dence	also	supported	the	importance	of	
developing	students’	ability	to	understand	
fractions	on	a	number	line.	Students’	ability	
to	locate	decimals	on	a	number	line	is	related	
to	general	math	achievement.	A	study	of	
5th-	and	6th-grade	German	students	found	
a	significant	positive	correlation	between	
students’	skill	in	estimating	the	location	of	
decimals	on	a	number	line	and	their	self-
reported	mathematics	grades	in	school.200	In	
addition,	a	mathematician’s	analysis	indicated	
that	learning	to	represent	the	full	range	of	
numbers	on	number	lines	is	fundamental	to	
understanding	numbers.201	
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Recommendation
3.


Help
students
understand
why


procedures
for
computations
with


fractions
make
sense.



Level
of
evidence:
Moderate
Evidence


The	panel	rated	this	recommendation	as	
being	supported	by	moderate evidence,	based	
on	studies	specifically	related	to	conceptual	
and	procedural	knowledge	of	fractions.	This	
evidence	rating	is	based	on	three	randomized	
controlled	trials	that	met	WWC	standards	and	
demonstrated	the	effectiveness	of	teaching	
conceptual	understanding	when	developing	
students’	computational	skill	with	decimals.202	

Interventions	that	iterated	between	instruc-
tion	on	conceptual	knowledge	and	procedural	
knowledge	had	a	positive	effect	on	decimal	
computation.203	Although	the	studies	focused	
on	decimals	and	were	relatively	small-scale,	
the	panel	believes	that	the	three,	together	
with	the	extensive	evidence	that	meaning-
ful	information	is	remembered	much	better	
than	meaningless	information,204	provide	
persuasive	evidence	for	the	recommendation.	
Additional	support	for	the	recommendation	
comes	from	four	correlational	studies	of	4th-,	
5th-	and	6th-grade	students	that	showed	
significant	relations	between	conceptual	and	
procedural	knowledge	of	fractions.205	Consen-
sus	documents,	such	as	Adding It Up	and	the	
National	Mathematics	Advisory	Panel	report,	
also	suggest	the	importance	of	combining	
instruction	on	conceptual	understanding	with	
procedural	fluency.206	

Panel	members	focused	their	review	on	
studies	that	specifically	examined	interven-
tions	to	develop	students’	understanding	
of	fraction	computation.	Three	randomized	
controlled	trials	that	met	WWC	standards	
support	the	recommendation.207	Two	of	the	
studies	used	computer-based	interventions	to	
compare	different	ways	of	ordering	concep-
tual	and	procedural	instruction	for	6th-grade	
students.208	The	studies’	treatment	groups	
alternated	between	conceptual	lessons	on	
decimal	place	value	and	procedural	lessons	
on	addition	and	subtraction	of	decimals;	the	

control	groups	completed	all	of	the	concep-
tual	lessons	before	receiving	any	of	the	pro-
cedural	lessons.	The	intervention	consisted	
of	six	lessons,	during	which	students	solved	
word	problems	while	receiving	feedback	from	
the	computer	program	as	needed.	Both	of	the	
relatively	small-scale	studies	found	positive	
effects	of	iterating	between	conceptual	and	
procedural	lessons.	One	randomly	assigned	
26	students	and	found	a	large,	significant	
effect	on	computational	proficiency	with	
decimals	(effect	size	=	2.38);	the	other	study	
randomly	assigned	four	classrooms	and	
found	a	substantively	important,	but	not	
significant,	effect	(effect	size	=	0.63).	

The	third	study	examined	an	intervention	
designed	to	improve	students’	conceptual	
understanding	of	how	to	locate	decimals	on	
a	number	line.209	In	it,	5th-	and	6th-grade	
students	practiced	locating	fractions	on	a	num-
ber	line	using	a	computer-based	game	called	
Catch	the	Monster.	Students	in	the	treatment	
groups	received	either	a	prompt	to	notice	
the	tenths	digit	or	a	number	line	divided	into	
tenths—two	interventions	that	the	panel	
views	as	building	students’	conceptual	knowl-
edge.	Control	students	did	not	receive	the	
prompts	and	used	a	0-to-1	number	line	with-
out	the	tenths	marked.	Both	treatments	had	a	
significant,	positive	effect	on	students’	ability	
to	locate	decimals	on	a	number	line	without	
the	prompts	or	the	tenths	marked.	Receiving	
both	the	prompts	and	the	number	line	with	
the	tenths	marked	had	a	greater	impact	than	
receiving	the	two	interventions	separately.	

The	panel’s	recommendation	also	is	sup-
ported	by	correlational	evidence	that	shows	a	
significant	relation	between	students’	concep-
tual	and	procedural	knowledge	of	fractions.	
Hecht	et	al.	(2003)	administered	a	variety	of	
assessments	to	105	5th-graders,	and	Hecht	
(1998)	assessed	103	7th-	and	8th-graders	to	
examine	how	conceptual	understanding	and	
procedural	skill	are	related.	Hecht	and	Vagi	
(in	press)	included	a	sample	of	181	4th-	and	
5th-graders	to	measure	the	relation	between	
conceptual	and	procedural	knowledge.	
The	studies	measured	both	conceptual	and	

((	6600	))	



Appendix
D
continued 

Table
D.2.
Studies
of
interventions
that
developed
conceptual
understanding

of
fraction
computation
that
met
WWC
standards
(with
or
without
reservations)


Citation

Grade

Level


Analysis

Sample
Size
 Intervention
 Comparison
 Outcome
 Effect
Size210


Rittle-Johnson	
and	

6th	 4	classrooms	 Students	complete	
six	computer-based	

Students	complete	
six	computer-based	

Computational	
proficiency	

0.63,	ns	

Koedinger	
(2002)	

lessons	on	computa-
tion	with	decimals,	
alternating	between	

lessons	on	computa-
tion	with	decimals,	
completing	all	of	the	

with	decimals	

conceptual	and	proce-
dural	lessons.	

conceptual	lessons	
before	the	procedural	
lessons.	

Rittle-Johnson	
and	

6th	 26	students	 Students	complete	
six	computer-based	

Students	complete	
six	computer-based	

Decimal	
arithmetic	

2.83,	sig	

Koedinger	
(2009)	

lessons	on	computa-
tion	with	decimals,	
alternating	between	

lessons	on	computa-
tion	with	decimals,	
completing	all	of	the	

conceptual	and	proce-
dural	lessons.	

conceptual	lessons	
before	the	procedural	
lessons.	

Rittle-Johnson,	
Siegler,	and	
Alibali	(2001)	

5th	and	
6th	

61	students	 When	locating	deci-
mals	on	a	number	
line,	students	receive	
a	prompt	to	notice	
the	tenths	digit	and	
use	a	0-to-1	number	

When	locating	decimals	
on	a	number	line,	
students	used	a	
0-to-1	number	line	
without	the	tenths	
marked.	

Locating	
decimals	on	
a	number	line	

0.57,	sig	

line	with	the	tenths	
marked.	

ns	=	not	significant	
sig	=	statistically	significant	

procedural	knowledge	of	fractions	and	frac-
tion	computation.	All	three	studies	found	that	
after	controlling	for	other	factors,	conceptual	
knowledge	of	fractions	significantly	predicted	
students’	ability	to	succeed	at	fraction	com-
putation	and	estimation.	While	these	studies	
show	a	correlation	between	conceptual	and	
procedural	knowledge,	they	do	not	establish	
whether	interventions	to	develop	conceptual	
knowledge	improve	procedural	knowledge.	

In	another	experiment,	Rittle-Johnson,	
Siegler,	and	Alibali	(2001)211	found	that	5th-
grade	students’	understanding	of	decimals	
(i.e.,	relative	magnitude	and	equivalence)	
was	significantly	related	to	their	ability	to	
locate	decimals	on	a	number	line.212	Con-
trolling	for	initial	procedural	knowledge,	
conceptual	knowledge	was	found	to	account	
for	20%	of	performance	variance	on	a	test	of	
procedural	knowledge.	

Manipulatives
and
representations.
The	
panel	identified	evidence	that	supports	the	first	
action	step,	which	recommends	using	manipu-
latives	and	visual	representations	to	teach	frac-
tion	computation.	Two	randomized	controlled	
trials,	both	unpublished	dissertations,	that	met	
WWC	standards	found	that	using	manipulatives	
had	a	positive	effect	on	fraction	computa-
tion.213	Nishida	(2008)214	conducted	a	relatively	
small-scale	study	on	the	use	of	fraction	circles	
to	teach	numerator-denominator	relations	and	
other	fraction	concepts.	The	study	found	that	
having	students	use	fraction	circles,	rather	than	
observing	teachers’	use	of	them,	significantly	
improved	students’	understanding	of	fraction	
concepts	relevant	to	computation	(effect	size	=	
0.73).	The	use	of	manipulative	fraction	circles	
also	had	a	substantively	important,	but	not	
statistically	significant,	effect	on	fraction	under-
standing,	compared	with	the	use	of	pictures	of	
fractions	circles.	
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The	second	study	found	that	using	a	variety	
of	manipulatives	to	supplement	a	3rd-grade	
fractions	curriculum	improved	students’	
understanding	of	fractions	and	fraction	com-
putation.215	The	study’s	unit	included	lessons	
on	fraction	magnitude,	equivalence,	addition,	
and	subtraction.	Teachers	in	the	study	used	
many	of	the	same	materials,	but	teachers	in	
the	treatment	group	also	employed	various	
manipulatives	and	models,	including	frac-
tion	squares,	fraction	games,	fraction	strips,	
pizzas,	fraction	spinners,	cubes,	grid	cards,	
paper	strips,	virtual	manipulatives,	cutouts,	
and	shapes.	The	use	of	these	manipulatives	
had	a	substantively	important,	but	not	statis-
tically	significant,	effect	on	a	textbook	assess-
ment	of	fraction	knowledge	and	computation	
(effect	size	=	0.60).	

A	randomized	controlled	trial	that	poten-
tially	meets	standards	examined	the	use	of	
manipulatives	and	real-world	contexts	for	
teaching	fractions.216	The	study	examined	
a	curriculum	developed	by	the	Rational	
Number	Project	(RNP)	that	employs	a	multi-
pronged	approach	incorporating	manipula-
tives,	real-world	contexts,	and	estimation	
and	focuses	on	building	students’	quantita-
tive	sense	of	fractions.	Teachers	of	5th-	and	
6th-grade	students	were	randomly	assigned	
to	use	either	the	RNP	curriculum	or	one	
of	two	commercial	curricula	that	included	
minimal	use	of	manipulatives	(Addison­Wesley 
Mathematics	or	Mathematics Plus).	The	RNP	
curriculum	had	a	significant	positive	effect	on	
fraction	computation	and	estimation	(effect	
size	=	0.27	and	0.65,	respectively).	However,	
the	study	provided	insufficient	information	
to	assess	sample	attrition,	and	amount	of	
use	of	manipulatives	was	only	one	of	many	
differences	between	the	curricula,	making	it	
difficult	to	distinguish	which	aspects	of	the	
intervention	led	to	the	positive	outcomes.	

Real­world
contexts
and
intuitive
under­
standing.
Use	of	real-world	concepts	also	
can	improve	fraction	computation	profi-
ciency	(Step	4).	A	randomized	controlled	trial	
that	met	WWC	standards	indicated	that	using	
information	from	students	to	personalize	

lessons	on	fraction	division	significantly	
improved	their	ability	to	solve	fraction	
division	word	problems.217	Students	in	the	
treatment	condition	received	instruction	via	
computer-assisted	lessons	based	on	contexts	
suggested	by	the	students;	control	students	
were	taught	using	abstract	lessons	with-
out	such	contexts.	The	treatment	targeted	
5th-	and	6th-grade	students	during	a	single-
lesson	unit	on	fraction	division.	

A	quasi-experimental	design	study	that	
potentially	meets	standards	evaluated	the	
impact	of	practicing	fraction	computation	
with	problems	set	in	everyday	contexts.218	

Over	the	course	of	three	days,	students	in	the	
treatment	group	solved	contextualized	prob-
lems	involving	computation	with	decimals.	
Problems	included	references	to	soft-drink	
bottles,	monetary	exchanges,	and	measure-
ment.	The	control	group	solved	similar	prob-
lems	but	without	any	contextual	references.	
Based	on	the	author’s	calculations,	instruction	
using	contextualized	problems	significantly	
improved	the	students’	ability	to	order	and	
compare	decimals.	The	study	had	a	small	
sample	of	16	11- and	12-year-olds	from	New	
Zealand;	it	potentially	met	standards	because	
insufficient	information	existed	to	demon-
strate	that	the	treatment	and	control	groups	
were	equivalent	at	baseline.	

Recommendation
4.

Develop
students’
conceptual

understanding
of
strategies
for
solving

ratio,
rate,
and
proportion
problems

before
exposing
them
to
cross­
multiplication
as
a
procedure
to
use

to
solve
such
problems.


Level
of
evidence:
Minimal
Evidence


The	panel	assigned	a	rating	of	minimal 
evidence	to	this	recommendation.	Evidence	
for	the	overall	recommendation	comes	from	
consensus	documents	that	emphasize	the	
importance	of	proportional	reasoning	for	
mathematics	learning.219	The	panel	sepa-
rately	reviewed	evidence	for	the	three	action	
steps	that	comprise	this	recommendation.	
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These	action	steps	are	supported	by	case	
studies	demonstrating	the	variety	of	strate-
gies	students	use	to	solve	ratio,	rate,	and	
proportion	problems;	a	study	of	manipula-
tives	that	met	WWC	standards;	and	two	stud-
ies	that	met	standards	and	taught	strategies	
for	solving	word	problems.	

Building
on
early­developing
strategies

for
solving
proportionality
problems.

Evidence	for	the	first	action	step	is	based	
on	case	studies	that	examine	students’	strate-
gies	for	solving	proportionality	problems.	
No	studies	both	met	standards	and	exam-
ined	the	effect	of	using	students’	developing	
strategies	to	improve	their	understanding	of	
proportionality.	However,	the	panel	believes	
that	the	findings	of	these	case	studies	provide	
a	basis	for	using	a	progression	of	problems	
that	builds	on	these	strategies	to	develop	
students’	proportional	reasoning.	

A	literature	review	of	early	proportional	
reasoning	found	that	students	initially	tend	
to	rely	on	strategies	that	build	up	additively	
from	one	ratio	to	another.220	Students	who	
use	this	approach	may	not	understand	the	
multiplicative	relations	between	ratios.221	

To	illustrate	this	point,	a	case	study	of	21	
4th- and	5th-grade	students	described	four	
developmental	levels	for	solving	proportion-
ality	problems.222	One	important	difference	
among	these	levels	was	whether	the	develop-
mental	levels	only	involved	building	up	from	
smaller	to	larger	ratios	or	whether	they	also	
included	the	knowledge	that	ratios,	like	frac-
tions,	can	be	reduced.	

Carpenter	et	al.	(1999)	and	Lamon	(1994)	
suggested	that	treating	ratios	as	single	units	
is	an	important	developmental	step	for	
proportional	reasoning.	In	Cramer,	Post,	and	
Currier	(1993),	8th-grade	students	were	more	
likely	than	7th-grade	students	to	solve	pro-
portionality	problems	by	treating	the	ratio	as	
a	unit	and	by	finding	an	equivalent	fraction.	
Both	studies	confirm	that	students	have	more	
difficulty	with	proportionality	problems	that	
involve	non-integer	relations.223	

Using
visual
representations
and
manipu­
latives.	Visual	representations	and	concrete	
manipulatives	can	increase	students’	proficiency	
in	solving	rate,	ratio,	and	proportion	problems.	
In	a	randomized	controlled	trial	that	met	stan-
dards,	Fujimura	(2001)	evaluated	the	impact	of	
providing	students	with	concrete	manipulatives	
to	solve	mixture	problems.	Japanese	students	
in	4th	grade	received	a	manipulative	to	assist	
them	in	solving	a	proportion	problem	involv-
ing	the	mixture	of	two	liquids.	Students	used	
the	manipulative	to	visually	represent	the	unit	
rate,	or	the	amount	of	orange	concentrate	for	
each	unit	of	water.	Completing	a	problem	using	
the	manipulative	improved	students’	ability	to	
later	solve	the	same	type	of	mixture	problems	
without	the	manipulative.	Students	in	the	treat-
ment	group	performed	significantly	better	than	
students	with	no	exposure	to	mixture	problems	
during	the	intervention	(effect	size	=	0.74).	
The	treatment	had	a	substantively	important,	
but	not	statistically	significant,	effect	relative	
to	a	control	group	in	which	students	received	
a	worksheet	to	calculate	the	unit	rate	to	solve	
mixture	problems	(effect	size	=	0.34).	

An	instructional	strategy	that	taught	students	
to	use	a	data	table	for	representing	informa-
tion	in	a	missing	value	proportion	problem	
had	a	significant	positive	effect	on	the	stu-
dents’	ability	to	solve	these	problems.	In	a	
study	that	met	WWC	standards,	7th-graders	
were	taught	a	problem-solving	strategy	in	
which	they	identified	the	problem	type,	rep-
resented	the	problem	in	a	table,	determined	
the	multiplicative	relation	between	the	known	
quantities,	and	then	applied	that	relation	to	
calculate	the	unknown	quantity.224	Research-
ers	randomly	assigned	five	classrooms	
to	receive	instruction	in	either	the	above	
strategy	or	a	substitute	approach	in	which	
students	learned	to	recognize	the	problem	
structure,	solve	the	problem	by	substitut-
ing	integers	for	any	complex	numbers,	and	
then	resolve	the	problem	with	the	complex	
numbers.	After	10	lessons,	students	in	the	
treatment	group	performed	better	than	those	
in	the	control	group	on	missing	value	propor-
tion	problems.	
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In	another	randomized	controlled	trial	that	met	
standards,	Terwel	et	al.	(2009)	investigated	the	
effectiveness	of	instructing	5th-grade	students	
to	solve	percentage	problems	by	constructing	
representations	collaboratively	instead	of	using	
teacher-made	representations	and	graphs.	This	
intervention	had	a	substantively	important,	
but	not	statistically	significant,	impact	on	stu-
dent	performance	on	a	researcher-constructed	
posttest	of	problem	solving	with	percentages	
(effect	size	=	0.41).	

Strategies
for
solving
word
problems.

The	literature	on	teaching	strategies	for	
word	problems	includes	many	studies	out-
side	the	scope	of	this	guide—studies	that	
focus	on	students	in	9th	grade	or	above,	
low-performing	students,	and	students	with	
learning	disabilities	or	on	topics	other	than	
ratio,	rate,	or	proportion.225	In	its	review	of	
available	research,	the	National	Mathematics	
Advisory	Panel	used	these	studies	to	sup-
port	the	teaching	of	explicit	strategies	for	
solving	word	problems	with	low-performing	
students	and	students	with	learning	dis-
abilities.226	However,	for	this	action	step,	the	
panel	sought	evidence	specifically	related	to	
students	without	diagnosed	learning	disabili-
ties	up	to	8th	grade	and	to	ratio,	rate,	and	
proportion	word	problems.	

Two	randomized	controlled	trials	that	met	
standards	examined	a	four-step	strategy	
for	teaching	students	to	solve	ratio	and	
proportion	word	problems.227	The	strategy	
involved	a	schema-based	approach	in	which	
students	identify	the	problem	type,	repre-
sent	critical	information	from	the	problem	
in	a	diagram,	translate	information	into	a	
mathematical	equation,	and	solve	the	prob-
lem.	Key	aspects	of	the	approach,	which	was	
designed	to	address	concerns	about	the	limi-
tations	of	direct	instruction,	include	teaching	
students	to	identify	underlying	problem	
structures,	such	as	through	schematic	dia-
grams,	and	comparing	and	contrasting	dif-
ferent	solution	strategies	and	problem	types.	
One	of	the	studies	focused	on	students	with	
learning	disabilities	(i.e.,	16	of	the	19	stu-
dents	had	a	diagnosed	learning	disability),228	

and	the	other	included	students	with	a	more	
diverse	ability	range.229	Xin,	Jitendra,	and	
Deatline-Buckman	(2005)	found	a	significant	
positive	effect	(albeit	with	students	with	
learning	problems)	of	an	approach	that	
taught	students	to	identify	the	problem	type	
and	represent	the	problem	using	a	diagram.	
Students	in	the	comparison	group	also	
learned	strategies	for	solving	word	problems	
but	focused	more	on	drawing	pictures	to	
represent	the	problems.	Jitendra	et	al.	(2009)	
found	a	substantively	important,	but	not	
statistically	significant,	effect	of	teaching	the	
four-step	strategy	on	researcher-developed	
tests	of	ratio	and	proportion	word	problems,	
relative	to	teaching	word	problems	with	
a	district-adopted	mathematics	textbook	
(effect	size	=	0.33	and	0.38,	immediate	and	
delayed	posttests,	respectively).230	

A	third	randomized	controlled	trial,	Moore	
and	Carnine	(1989),	also	examined	an	explicit	
strategy	for	teaching	students	to	solve	ratio	
and	proportion	word	problems.	This	study	
met	standards	but	is	outside	the	review	
protocol	because	it	included	students	in	9th	
through	11th	grades	and	focused	on	special	
education	and	low-performing	students.	
The	panel	views	the	study	as	providing	
supplemental	evidence	to	support	the	recom-
mendation.	The	WWC	did	not	have	sufficient	
information	to	calculate	effect	sizes,	but	the	
study’s	authors	report	that	teaching	students	
explicit	rules	and	problem-solving	strategies	
significantly	improved	their	proficiency	in	
solving	ratio	word	problems	relative	to	stu-
dents	taught	using	a	basal	curriculum.	

Recommendation
5.

Professional
development
programs

should
place
a
high
priority
on

improving
teachers’
understanding

of
fractions
and
of
how
to
teach
them.


Level
of
evidence:
Minimal
Evidence


The	panel	assigned	a	minimal evidence rating	
to	this	recommendation	because	of	limited	
rigorous	evidence	on	the	effects	of	fractions-
related	professional	development	activities.	
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To	evaluate	this	recommendation,	the	panel	
sought	evidence	that	professional	development	
that	focuses	specifically	on	fractions	improves	
student	outcomes.231	Two	studies	that	focused	
on	developing	teachers'	knowledge	of	fractions	
met	standards.	The	professional	development	
in	the	first	study	addressed	the	first	two	action	
steps	for	the	recommendation	and	found	posi-
tive	effects	on	student	learning;	the	second	
study	addressed	all	three	action	steps	but	did	
not	find	a	significant	effect	on	students'	under-
standing	of	fractions.232	Two	other	studies	met	
standards	and	provided	evidence	for	the	recom-
mendation’s	third	step—developing	teachers’	
understanding	of	students’	mathematical	think-
ing—but	focused	on	whole	number	addition	
and	algebraic	reasoning	rather	than	on	frac-
tions.233	A	handful	of	other	studies	potentially	
met	standards	but	did	not	examine	fractions	
or	did	not	provide	professional	development	
directly	relevant	to	the	recommendation.234	

Despite	the	limited	evidence	on	the	effects	of	
professional	development	activities	on	teach-
ers’	understanding	of	fraction	concepts	and	
skills,	the	panel	believes	the	need	to	develop	
teachers’	knowledge	of	fractions	and	of	how	
to	teach	them	is	critical.	Teachers’	mathemati-
cal	content	knowledge	is	positively	correlated	
with	students’	mathematics	achievement,235	

and	researchers	have	consistently	found	that	
teachers	in	the	United	States	lack	a	deep	con-
ceptual	understanding	of	fractions.236	Taken	
together,	these	findings	suggest	that	provid-
ing	professional	development	on	fraction	
concepts	is	important.	

Professional
development
related
to

fractions.	One	random	assignment	study	
met	standards	and	examined	a	professional	
development	program	called	Integrated	
Mathematics	Assessment	(IMA).	This	pro-
gram	addressed	teachers’	understanding	
of	(1)	fraction	concepts,	(2)	how	students	
learn	fractions,	(3)	students’	motivation	for	
math	achievement,	and	(4)	assessment.237	

Teachers	learned	about	fraction	concepts	
through	activities	and	exercises	that	were	
more	complex	versions	of	those	for	students.	

To	understand	students’	thinking,	teachers	
examined	student	work	and	videotapes	of	
students	solving	problems	and	explored	
students’	difficulties	in	learning	fractions.	The	
IMA	training	consisted	of	a	five-day	summer	
institute	and	13	follow-up	sessions	for	upper	
elementary	teachers.	Teachers	assigned	to	
the	IMA	professional	development	program	
achieved	a	significant	improvement	in	their	
students’	conceptual	understanding	of	frac-
tions,	compared	with	teachers	in	the	teacher	
support	group,	who	met	nine	times	to	reflect	
on	their	instructional	practices.	The	IMA	
training	had	a	substantively	important,	but	
not	statistically	significant,	effect	on	students’	
ability	to	compute	with	fractions.	

A	more	recent	study	of	professional	develop-
ment	related	to	fractions	also	met	WWC	stan-
dards	but	did	not	find	a	significant	effect	on	
students’	learning	of	fraction	concepts.238	The	
study	examined	two	professional	development	
programs	for	7th-grade	teachers	in	12	districts	
across	the	country.	Teachers	in	the	treatment	
schools	were	eligible	for	about	68	hours	of	
training	through	a	three-day	summer	institute	
and	five	1-day	seminars	paired	with	two-day	
in-school	coaching	visits.	The	professional	
development	focused	on	conceptual	and	pro-
cedural	skill	in	rational	number	topics,	as	well	
as	mathematics	knowledge	for	teaching.	This	
included	identifying	the	key	aspects	of	math-
ematical	understanding,	recognizing	common	
errors	made	by	students,	and	selecting	rep-
resentations	for	teaching	fractions.	Activities	
included	solving	math	problems	and	receiving	
feedback	on	their	solutions,	discussing	com-
mon	student	misconceptions,	and	planning	les-
sons.	Teachers	in	the	control	schools	received	
the	existing	professional	development	pro-
vided	by	the	district.	However,	the	professional	
development	did	not	have	a	significant	impact	
on	students’	understanding	of	fractions,	deci-
mals,	percentages,	or	proportions.	

Professional
development
related
to

other
mathematics
topics.
Finding	little	
evidence	related	specifically	to	fractions,	the	
panel	expanded	its	review	to	include	profes-
sional	development	that	focused	on	other	
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math	topics.	Two	additional	studies	met	
standards	and	implemented	training	relevant	
to	the	third	action	step	of	the	recommenda-
tion—developing	teachers’	understanding	of	
students’	mathematical	thinking.239	

One	study	examined	a	four-week	summer	
workshop	(20	hours)	aimed	at	developing	
teachers’	knowledge	of	how	children	learn	
whole	number	addition	and	subtraction	
concepts.240	Teachers	participating	in	the	pro-
gram,	called	Cognitively	Guided	Instruction	
(CGI),	learned	about	children’s	solution	strate-
gies	and	how	to	classify	problem	types,	dis-
cussed	how	to	incorporate	information	from	
the	CGI	workshop	into	the	classroom,	and	
planned	instruction	accordingly.	Compared	
with	a	control	group	of	teachers	who	received	
four	hours	of	workshops	on	problem	solving	
and	the	use	of	nonroutine	problems,	the	CGI	
program	had	a	substantively	important,	but	
not	statistically	significant,	effect	on	computa-
tion	problems	and	addition	and	subtraction	
word	problems.	The	differing	amounts	of	
time	that	teachers	spent	in	the	two	conditions	
also	limited	interpretation	of	the	findings.	

The	second	study,	a	randomized	controlled	
trial	study	conducted	in	a	large,	urban	
district	with	1st-	through	5th-grade	teachers,	
also	examined	a	professional	development	
program	focused	on	developing	teachers’	
understanding	of	students’	mathematical	
thinking.241	Emphasizing	understanding	of	
the	equal	sign	and	using	number	relations	
to	simplify	calculations,	the	training	in	this	
study	was	designed	to	improve	teachers’	
ability	to	incorporate	algebraic	reasoning	
into	elementary	mathematics.	Teachers	
learned	to	make	sense	of	students’	strategies	
for	solving	problems,	to	link	students’	think-
ing	to	key	mathematical	ideas,	and	to	lead	
mathematical	conversations	with	students.	
The	program	included	an	initial	meeting	and	
eight	monthly	after-school	work-group	meet-
ings	(a	total	of	about	16.5	hours),	as	well	as	
a	trainer	who	spent	a	half-day	a	week	at	each	
school	to	provide	additional	support.	Results	
from	the	study	showed	that	this	profes-
sional	development	significantly	improved	

students’	understanding	of	the	equal	sign	
and	students’	use	of	relational-thinking	strat-
egies	for	solving	computations	but	not	for	
solving	equations	(i.e.,	with	letters	represent-
ing	unknown	quantities).	

Additional
evidence.
There	is	further	
evidence	that	students’	achievement	is	
positively	related	to	teachers’	mathematics	
knowledge	for	teaching—for	example,	their	
skill	at	explaining	math	concepts,	under-
standing	student	strategies,	and	providing	
representations.	A	study	of	699	1st-	and	
3rd-grade	math	teachers	found	a	positive	
relation	between	teachers’	math	knowledge	
for	teaching	and	students’	learning	gains	
in	math	after	controlling	for	student	and	
teacher	characteristics.242	 Although	this	
study	did	not	specifically	focus	on	fractions,	
it	demonstrated	the	importance	of	teachers’	
math	content	knowledge	for	teaching.	

Professional	development	with	fractions	is	
needed	because	many	U.S.	teachers	lack	a	
deep	conceptual	understanding	of	fractions.243	

A	study	comparing	Chinese	and	American	
teachers	found	that	only	9	of	the	21	U.S.	
teachers	who	tried	to	calculate	13/4	÷	1/2 did	
so	correctly,	whereas	all	72	Chinese	teachers	
correctly	completed	the	problem.244	U.S.	
teachers	could	not	represent	or	explain	
division	with	fractions,	and	many	confused	
the	algorithm	for	dividing	fractions	with	the	
algorithms	for	adding,	subtracting,	and	multi-
plying	fractions.	

Other	studies	have	reported	similar	findings.	
A	study	of	218	elementary	school	teachers	
in	Minnesota	and	Illinois	found	that	many	
teachers	could	not	solve	computation	prob-
lems	involving	fractions	and	that	most	of	
those	who	correctly	solved	problems	could	
not	provide	a	correct	explanation	of	their	
solutions.245	For	example,	almost	half	of	the	
teachers	in	the	Minnesota	study	incorrectly	
solved	a	subtraction	problem	involving	frac-
tions	(1/3	–	3/7).	Further,	a	study	of	46	preser-
vice	middle	school	teachers	at	a	university	
in	Texas	found	that	most	teachers	knew	the	
procedure	for	dividing	with	fractions	but	did	
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not	understand	why	the	procedure	worked	
and	could	not	judge	whether	an	alternative	
procedure	for	solving	a	division	problem	with	
fractions	was	correct.246	

These	studies	clearly	indicate	that	teach-
ers’	understanding	of	fractions	needs	to	be	

upgraded.	However,	the	recommendation	
regarding	professional	development	is	largely	
based	on	the	panel’s	expertise,	because	of	
the	limited	evidence	regarding	the	effects	of	
professional	development	activities	focused	
on	fractions.	
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Heuristic


This	appendix	contains	a	heuristic	for	categorizing	the	evidence	base	for	practice	guide	recommenda-
tions	as	strong evidence,	moderate evidence,	or	minimal evidence.	This	heuristic	is	intended	to	serve	
as	a	framework	to	ensure	that	the	levels	of	evidence	are	consistently	applied	across	practice	guides	
while	at	the	same	time	clarifying	the	levels	for	panelists	and	educators.	The	core	document	to	accom-
pany	this	heuristic	is	the	“Institute	of	Education	Sciences	levels	of	evidence	for	practice	guides”	(Table	1	
in	this	practice	guide).	

Table
E.1.
Evidence
heuristic


Criteria
for
a
Strong
Evidence
Base

This
criterion
is
necessary

for
a
strong
level
of
evidence.


High	internal	validity	(high-quality	causal	designs).	Studies	must	meet	WWC	standards	with	
or	without	reservations.247	 

High	external	validity	(requires	a	quantity	of	studies	with	high-quality	casual	designs).	Studies	
must	meet	WWC	standards	with	or	without	reservations.248	 

Effects	on	relevant	outcomes—consistent	positive	effects	without	contradictory	evidence	
(i.e.,	no	statistically	significant	negative	effects)	in	studies	with	high	internal	validity.249	 

Direct	relevance	to	scope	(i.e.,	ecological	validity)—relevant	context	(e.g.,	classroom	vs.	laboratory),	
sample	(e.g.,	age	and	characteristics),	and	outcomes	evaluated.	



Direct	test	of	the	recommendation	in	the	studies,	or	the	recommendation	is	a	major	component	
of	the	intervention	tested	in	the	studies.	



For	assessments,	meets	The Standards for Educational and Psychological Testing. 
Panel	has	a	high	degree	of	confidence	that	this	practice	is	effective.	 

Criteria
for
a
Moderate
Evidence
Base

This
criterion
is
necessary
for

a
moderate
level
of
evidence.


High	internal	validity	but	moderate	external	validity	(i.e.,	studies	that	support	strong	causal	conclu-
sions,	but	generalization	is	uncertain)	OR	studies	with	high	external	validity	but	moderate	internal	
validity	(i.e.,	studies	that	support	the	generality	of	a	relation,	but	the	causality	is	uncertain).	

•		The	research	may	include	studies	generally	meeting	WWC	standards	and	supporting	the	effec-
tiveness	of	a	program,	practice,	or	approach	with	small	sample	sizes	and/or	other	conditions	
of	implementation	or	analysis	that	limit	generalizability.	

•		The	research	may	include	studies	that	support	the	generality	of	a	relation	but	do	not	meet	WWC	
standards;	250	however,	they	have	no	major	flaws	related	to	internal	validity	other	than	lack	of	
demonstrated	equivalence	at	pretest	for	quasi-experimental	design	studies	(QEDs).	QEDs	with-
out	equivalence	must	include	a	pretest	covariate	as	a	statistical	control	for	selection	bias.	These	
studies	must	be	accompanied	by	at	least	one	relevant	study	meeting	WWC	standards.	



Effects	on	relevant	outcomes—a	preponderance	of	evidence	of	positive	effects.	Contradictory	
evidence	(i.e.,	statistically	significant	negative	effects)	must	be	discussed	by	the	panel	and	con-
sidered	with	regard	to	relevance	to	the	scope	of	the	guide	and	intensity	of	the	recommendation	
as	a	component	of	the	intervention	evaluated.	



Relevance	to	scope	(i.e.,	ecological	validity)	may	vary,	including	relevant	context	(e.g.,	classroom	
vs.	laboratory),	sample	(e.g.,	age	and	characteristics),	and	outcomes	evaluated.	

Intensity	of	the	recommendation	as	a	component	of	the	interventions	evaluated	in	the	studies	
may	vary.	

For	assessments,	evidence	of	reliability	that	meets	The Standards for Educational and Psychological 
Testing	but	with	evidence	of	validity	from	samples	not	adequately	representative	of	the	population	
on	which	the	recommendation	is	focused.	



The	panel	is	not	conclusive	about	whether	the	research	has	effectively	controlled	for	other	
explanations	or	whether	the	practice	would	be	effective	in	most	or	all	contexts.	

The	panel	determines	that	the	research	does	not	rise	to	the	level	of	strong	evidence	but	is	more	
compelling	than	a	minimal	level	of	evidence.	



(continued) 
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Criteria
for
a
Minimal
Evidence
Base

This
criterion
is
necessary
for

a
minimal
level
of
evidence.


Expert	opinion	based	on	defensible	interpretations	of	theory	(or	theories).	In	some	cases,	this	
simply	means	that	the	recommended	practices	would	be	difficult	to	study	in	a	rigorous,	experi
mental	fashion;	in	other	cases,	it	means	that	researchers	have	not	yet	studied	this	practice.	

Expert	opinion	based	on	reasonable	extrapolations	from	research:	

•		The	research	may	include	evidence	from	studies	that	do	not	meet	t
strong	evidence	(e.g.,	case	studies,	qualitative	research).	

•		The	research	may	be	out	of	the	scope	of	the	practice	guide.	

•		The	research	may	include	studies	for	which	the	intensity	of	the	reco
nent	of	the	interventions	evaluated	in	the	studies	is	low.	

he	crit

mme

eria	for

ndation

	moder

	as	a	co

ate	or	

mpo

There	may	be	weak	or	contradictory	evidence.	

In	the	panel’s	opinion,	the	recommendation	must	be	addressed	as	part	of	the	practice	guide;	how
ever,	the	panel	cannot	point	to	a	body	of	research	that	rises	to	the	level	of	moderate	or	strong.	


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Table
E.1.
Evidence
heuristic
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-

-

((	6699	))	



Endnotesa


1.		 For	more	information,	see	the	WWC	Fre-
quently	Asked	Questions	page	for	practice	
guides,	http://ies.ed.gov/ncee/wwc/refer-
ences/idocviewer/doc.aspx?docid=15.	

2.		 See	the	WWC	guidelines	at	http://ies.ed.gov/	
ncee/wwc/pdf/wwc_procedures_v2_stan-
dards_handbook.pdf.	

3.		This	includes	randomized	control	trials	
(RCTs),	quasi-experimental	designs	(QEDs),	
regression	discontinuity	designs	(RDDs),	and	
single-case	designs	(SCDs)	evaluated	with	
WWC	standards.	

4.		 If	the	only	evidence	meeting	standards	(with	
or	without	reservations)	is	SCDs,	the	guide-
lines	set	by	the	SCD	standards	panel	will	
apply.	For	external	validity,	the	requirements	
are	a	minimum	of	five	SCD	research	papers	
examining	the	intervention	that	meet	evi-
dence	standards	or	meet	evidence	standards	
with	reservations,	the	studies	must	be	con-
ducted	by	at	least	three	different	research	
teams	at	three	different	geographical	loca-
tions,	and	the	combined	number	of	experi-
ments	across	studies	totals	at	least	20.	

5.		 In	certain	circumstances	(e.g.,	a	comparison	
group	cannot	be	formed),	the	panel	may	
base	a	moderate	rating	on	multiple	correla-
tional	designs	with	strong	statistical	controls	
for	selection	bias	that	demonstrate	consis-
tent	positive	effects	without	contradictory	
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7.		 National	Academy	of	Sciences	(2007).	
8.		McCloskey	(2007);	National	Academy	of	

Sciences	(2007);	Rivera-Batiz	(1992).	
9.		 Starkey,	Klein,	and	Wakeley	(2004).	

10.		Rivera-Batiz	(1992).	
11.		 Mullis	et	al.	(1997).	
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were	reported	by	the	authors	(the	
authors	did	not	provide	sufficient	information	
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and
Ali­
bali
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208.		Rittle­Johnson
and
Koedinger
(2002,

2009).	

209.		Rittle­Johnson,
Siegler,
and
Alibali
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nificant	(sig);	for	a	p-value	≥	0.05,	the	effect	
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Siegler,
and
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(2001),	Experiment	1.	

212.		 Ibid.	
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 (2008);
 Nishida


(2008).	
214.		 Nishida
(2008),
Experiment
2.
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Hawkins
(2008).	
216.		Cramer,	Post,	and	delMas	(2002).	
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and
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223.		Carpenter	et	al.	(1999);	Cramer,	Post,	and	

Currier	(1993).	
224.		 Sellke,
Behr,
and
Voelker
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Sweller	(1987);	Lewis	(1989);	Lewis	and	Mayer	
(1987);	Reed	and	Bolstad	(1991);	Sweller	and	
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227.		 Jitendra
et
al.
(2009);
Xin,
Jitendra,
and


Deatline­Buchman
(2005).	
228.		Xin,
Jitendra,
and
Deatline­Buchman


(2005).	
229.		Jitendra
et
al.
(2009).	
230.		Jitendra
et
al.
(2009)	reported	a	signifi-

cant	positive	effect	of	the	treatment	on	the	
problem	solving	posttest.	However,	when	
the	WWC	applied	a	clustering	correction,	
since	students	in	the	study	were	clustered	
in	classrooms,	the	results	were	not	sig-
nificant.	For	an	explanation,	see	the	WWC	
Tutorial	on	Mismatch.	For	the	formulas	
the	WWC	used	to	calculate	the	statistical	

significance,	see	the	WWC	Procedures	and	
Standards	Handbook.	

231.		 The	panel	did	not	review	studies	that	mea-
sured	the	effect	of	professional	development	
on	teacher	knowledge,	although	a	review	
by	the	National	Math	Advisory	Panel	did	
not	identify	any	studies	with	a	comparison	
group	design.	

232.		 Garet
et
al.
(2010);
Saxe,
Gearhart,
and

Nasir
(2001).


233.		 Carpenter
et
al.
(1989);
Jacobs
et
al.

(2007).	

234.		Cole	(1992);	Meyer	and	Sutton	(2006);	Niess	
(2005);	Ross,	Hogaboam-Gray,	and	Bruce	
(2006);	Sloan	(1993).	

235.		Hill,	Rowan,	and	Ball	(2005).	
236.		Li	and	Kulm	(2008);	Ma	(1999);	Newton	

(2008);	Post	et	al.	(1988).	
237.		 Saxe,
Gearhart,
and
Nasir
(2001).Although	

the	study	also	used	a	quasi-experimental	
design	to	compare	two	math	curricula,	only	
the	professional	development	portion	of	this	
study,	which	used	a	random	assignment	
design,	is	relevant	for	Recommendation	5.	

238.		Garet
et
al.
(2010).	
239.		Carpenter
et
al.
(1989);
Jacobs
et
al.


(2007).	
240.		 Carpenter
et
al.
(1989).	
241.		 Jacobs
et
al.
(2007).	
242.		Hill,	Rowan,	and	Ball	(2005).	
243.		Li	and	Kulm	(2008);	Ma	(1999);	Post	et	al.	

(1988).	
244.		Ma	(1999).	
245.		Post	et	al.	(1988).	
246.		Li	and	Kulm	(2008).	
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(QEDs),	regression	discontinuity	designs	
(RDDs),	and	single-case	designs	(SCDs)	
evaluated	with	WWC	standards.	

248.		 If	the	only	evidence	meeting	standards	
(with	or	without	reservations)	is	SCDs,	
the	guidelines	set	by	the	SCD	standards	
panel	will	apply.	For	external	validity,	the	
requirements	are	a	minimum	of	five	SCD	
research	papers	examining	the	interven-
tion	that	meet	evidence	standards	or	
meet	evidence	standards	with	reserva-
tions,	the	studies	must	be	conducted	by	
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at	least	three	different	research	teams	at	 and	floor,	the	assessment’s	item	gradients,	
three	different	geographical	locations,	
and	the	combined	number	of	experiments	
across	studies	totals	at	least	20.	

whether	the	assessment	was	overaligned	
with	the	intervention,	and	the	appropriate-
ness	of	the	assessment	for	the	sample	to	

249.	 When	evaluating	whether	effects	are	con- which	it	was	applied.	
sistent	or	contradictory,	consider	the	psy-
chometric	properties	of	the	assessments.	
For	example,	effects	are	less	likely	to	be	

250.	 In	certain	circumstances	(e.g.,	a	comparison	
group	cannot	be	formed),	the	panel	may	base	
a	moderate	rating	on	multiple	correlational	

detected	if	an	assessment	is	unreliable.	
Psychometric	properties	to	consider	include	
reliability,	the	presence	of	limited	or	con-

designs	with	strong	statistical	controls	for	
selection	bias	that	demonstrate	consistent	pos-
itive	effects	without	contradictory	evidence.	

strained	variance,	the	assessment’s	ceiling	
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