Skip to main content

Part of the book series: Progress in Biological Control ((PIBC,volume 5))

Abstract

Natural enemies such as predators and parasitoids fulfil an important ecological and economic function by helping to keep herbivore populations below the economic injury level. Thus, they contribute to sustainable integrated pest management (IPM) systems. It is well established that plant resistance factors that affect herbivores also interact with natural enemies and consequently with the biological control function they provide. Similarly, host plant resistance derived from genetic engineering will have an impact on biological control. There is evidence today that the currently available transgenic crops that express Cry proteins derived from Bacillus thuringiensis (Bt) have no direct effects on natural enemies due to their narrow spectrum of activity. However, the fact that the target pests are efficiently controlled by the deployed Bt crops has inevitable consequences for natural enemies that specialize on these species as hosts or prey. On the other hand, it has become clear that in crop systems where the deployment of Bt varieties has lead to a decline in insecticide use, biological control organisms have benefited significantly. Consequently, this technology can contribute to natural enemy conservation and thus be a useful tool in IPM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamczyk, J.J., Jr., Adams, L.C., and Hardee, D.D., 2001. Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. Journal of Economic Entomology 94: 1589–1593.

    Article  PubMed  CAS  Google Scholar 

  • Agrawal, A.A., 2000. Mechanisms, ecological consequences and agricultural implications of tritrophic interactions. Current Opinion in Plant Biology 3: 329–335.

    Article  PubMed  CAS  Google Scholar 

  • Álvarez-Alfageme, F., Martínez, M., Pascual-Ruiz, S., Castañera, P., Diaz, I., and Ortego, F., 2007. Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Research 16: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Bale, J.S., van Lenteren, J.C., and Bigler, F., 2008. Biological control and sustainable food production. Philosophical Transactions of the Royal Society B 363: 761–776.

    Article  CAS  Google Scholar 

  • Barbosa, P., ed., 1998. Conservation Biological Control. Academic, San Diego, CA, USA.

    Google Scholar 

  • Barbosa, P., Saunders, J.A., Kemper, J., Trumbule, R., Olechno, J., and Martinat, P., 1986. Plant allelochemicals and insect parasitoids: effects of nicotine on Cotesia congregata Say (Hymenoptera, Braconidae) and Hyposoter annulipes (Cresson) (Hymenoptera, Ichneum- onidae). Journal of Chemical Ecology 12: 1319–1328.

    Article  CAS  Google Scholar 

  • Bates, S.L., Zhao, J.-Z., Roush, R.T., and Shelton, A.M., 2005a. Insect resistance management in GM crops: past, present and future. Nature Biotechnology 23: 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Bates, S.L., Cao, J., Zhao, J.Z., Earle, E.D., Roush, R.T., and Shelton, A.M., 2005b. Evaluation of a chemically inducible promoter for developing a within-plant refuge for resistance management. Journal of Economic Entomology 98: 2188–2194.

    Article  PubMed  CAS  Google Scholar 

  • Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., and Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. Nature Biotechnology 25: 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  • Bell, H.A., Fitches, E.C., Down, R.E., Marris, G.C., Edwards, J.P., Gatehouse, J.A., and Gatehouse, A.M.R., 1999. The effect of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on Eulophus pennicornis (Hymenoptera: Eulophidae), a parasitoid of the tomato moth Lacanobia oleracea (Lepidoptera: Noctuidae). Journal of Insect Physiology 45: 983–991.

    Article  PubMed  CAS  Google Scholar 

  • Bell, H.A., Fitches, E.C., Marris, G.C., Bell, J., Edwards, J.P., Gatehouse, J.A., and Gatehouse, A.M.R., 2001. Transgenic GNA expressing potato plants augment the beneficial biocontrol of Lacanobia oleracea (Lepidoptera; Noctuidae) by the parasitoid Eulophus pennicornis (Hymenoptera; Eulophidae). Transgenic Research 10: 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Benrey, B., and Denno, R.F., 1997. The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78: 987–999.

    Google Scholar 

  • Bhatti, M.A., Duan, J., Head, G.P., Jiang, C.J., McKee, M.J., Nickson, T.E., Pilcher, C.L., and Pilcher, C.D., 2005. Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on foliage-dwelling arthropods. Environmental Entomology 34: 1336–1345.

    Article  Google Scholar 

  • Bottrell, D.G., Barbosa, P., and Gould, F., 1998. Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annual Review of Entomology 43: 347–367.

    Article  PubMed  CAS  Google Scholar 

  • Bourguet, D., Chaufaux, J., Micoud, A., Delos, M., Naibo, B., Bombarde, F., Marque, G., Eychenne, N., and Pagliari, C., 2002. Ostrinia nubilalis parasitism and the field abundance of non-target insects in transgenic Bacillus thuringiensis corn (Zea mays). Environmental Biosafety Research 1: 49–60.

    Article  PubMed  Google Scholar 

  • Breitler, J.C., Cordero, M.J., Royer, M., Meynard, D., San Segundo, B., and Guiderdoni, E., 2001. The −689/+197 region of the maize protease inhibitor gene directs high level, wound-inducible expression of the cry1B gene which protects transgenic rice plants from stemborer attack. Molecular Breeding 7: 259–274.

    Article  CAS  Google Scholar 

  • Breitler, J.C., Vassal, J.M., Catala, M.M., Meynard, D., Marfà, V., Melé, E., Royer, M., Murillo, I., San Segundo, B., Guiderdoni, E., and Messeguer, J., 2004. Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnology Journal 2: 417–430.

    Article  PubMed  CAS  Google Scholar 

  • Brookes, G., and Barfoot, P., 2006a. Global impact of biotech crops: socio-economic and environmental effects in the first ten years of commercial use. AgBioForum 9: 139–151.

    Google Scholar 

  • Brookes, G., and Barfoot, P., 2006b. GM Crops: The First Ten Years–Global Socio-Economic and Environmental Impacts. ISAAA Brief No. 36, International Service for the Acquisition of Agri-Biotech Applications, Ithaca, NY, USA.

    Google Scholar 

  • Bruck, D.J., Lopez, M.D., Lewis, L.C., Prasifka, J.R., and Gunnarson, R.D., 2006. Effects of transgenic Bacillus thuringiensis corn and permethrin on nontarget arthropods. Journal of Agricultural and Urban Entomology 23: 111–124.

    CAS  Google Scholar 

  • Buschman, L.L., and DePew, L.J., 1990. Outbreaks of banks grass mite (Acari: Tetranychidae) in grain sorghum following insecticide application. Journal of Economic Entomology 83: 1570–1574.

    CAS  Google Scholar 

  • Campbell, B.C., and Duffey, S.S., 1979. Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control. Science 205: 700–702.

    Article  PubMed  CAS  Google Scholar 

  • Candolfi, M.P., Brown, K., Grimm, C., Reber, B., and Schmidli, H., 2004. A faunistic approach to assess potential side-effects of genetically modified Bt-corn on non-target arthropods under field conditions. Biocontrol Science and Technology 14: 129–170.

    Article  Google Scholar 

  • Cao, J., Shelton, A.M., and Earle, E.D., 2001. Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis cry1Ab gene with the chemically inducible PR-1a promoter. Molecular Breeding 8: 207–216.

    Article  CAS  Google Scholar 

  • Carrière, Y., Ellers-Kirk, C., Sisterson, M., Antilla, L., Whitlow, M., Dennehy, T.J., and Tabashnik, B.E., 2003. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proceedings of the National Academy of Sciences of the USA 100: 1519–1523.

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo, M.G., Yafuso, C., Schmidt, C., Huang, C.Y., Rahman, M., Olson, C., Ellers-Kirk, C., Orr, B.J., Marsh, S.E., Antilla, L., Dutilleu, P., and Carrière, Y., 2006. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proceedings of the National Academy of Sciences of the USA 103: 7571–7576.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., Zhao, J.-Z., Ye, G.-Y., Fu, Q., and Shelton, A.M., 2006. Impact of insect-resistant transgenic rice on target insect pests and non-target arthropods in China. Insect Science 13: 409–420.

    Article  CAS  Google Scholar 

  • Chen, M., Liu, Z.C., Ye, G.Y., Shen, Z.C., Hu, C. Peng, Y. F., Altosaar, I., and Shelton, A.M., 2007. Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis (Hemiptera: Miridae) - A case study of the compatibility of Bt rice with biological control. Biological Control 42: 242–250.

    Article  Google Scholar 

  • Chu, C.-C., Natwick, E.T., Leon-Lopez, R., Dessert, J.R., and Henneberry, T.J., 2006. Pink bollworm moth (Lepidoptera: Gelechiidae) catches in the Imperial Valley, California from 1989 to 2003. Insect Science 13: 469–475.

    Article  Google Scholar 

  • Cortesero, A.M., Stapel, J.O., and Lewis, W.J., 2000. Understanding and manipulating plant attributes to enhance biological control. Biological Control 17: 35–49.

    Article  Google Scholar 

  • Croft, B.A., 1990. Arthropod Biological Control Agents and Pesticides. Wiley, New York, USA.

    Google Scholar 

  • Davison, M.M., Butler, R.C., Wratten, S.D., and Conner, A.J., 2006. Impacts of insect-resistant transgenic potatoes on the survival and fecundity of a parasitoid and an insect predator. Biological Control 37: 224–230.

    Article  Google Scholar 

  • DeBach, P., and Rosen, D., 1991. Biological Control by Natural Enemies, 2nd ed. Cambridge University Press, Cambridge, UK, pp. 140–148.

    Google Scholar 

  • Denno, R.F., McClure, M.S., and Ott, J.R., 1995. Interspecific interactions in phytophagous insects–competition re-examined and resurrected. Annual Review of Entomology 40: 297–331.

    Article  CAS  Google Scholar 

  • Dively, G.P., 2005. Impact of transgenic VIP3A x Cry1Ab lepidopteran-resistant field corn on the non-target arthropod community. Environmental Entomology 34: 1267–1291.

    Article  Google Scholar 

  • Duan, X., Li, X., Xue, Q., Abo-El-Saad, M., Xu, D., and Wu, R., 1996. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nature Biotechnology 14: 494–498.

    Article  PubMed  CAS  Google Scholar 

  • Dutta, I., Majumder, P., Saha, P., Ray, K., and Das, S., 2005. Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Science 169: 996–1007.

    Article  CAS  Google Scholar 

  • Dutton, A., Klein, H., Romeis, J., and Bigler, F., 2002. Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecological Entomology 27: 441–447.

    Article  Google Scholar 

  • Dutton, A., Romeis, J., and Bigler, F., 2003. Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a case study. BioControl 48: 611–636.

    Article  CAS  Google Scholar 

  • East, R., Kain, W.M., and Douglas, J.A., 1980. The effect of grass grub on the herbage production of different pasture species in the pumice country. Proceedings of the New Zealand Grassland Association 41: 105–115.

    Google Scholar 

  • EFSA (European Food Safety Authority), 2006. Guidance document of the Scientific Panel on Genetically Modified Organisms for the risk assessment of genetically modified plants and derived food and feed. EFSA Journal 99: 1–100. http://www.efsa.europa.eu/EFSA/Scientific_Document/gmo_guidance_gm_plants_en,0.pdf (accessed 21 January 2008).

  • Ehler, L.E., 1998. Conservation biological control: past, present and future. In: Conservation Biological Control, P. Barbosa, ed., Academic, San Diego, CA, USA, pp. 1–8.

    Chapter  Google Scholar 

  • Eigenbrode, S.D., 2004. The effects of plant epicuticular waxy blooms on attachement and effectiveness of predatory insects. Arthropod Structure & Development 33: 91–102.

    Article  CAS  Google Scholar 

  • Eigenbrode, S.D., and Espelie, K.E., 1995. Effects of plant epicuticular lipids on insect herbivores. Annual Review of Entomology 40: 141–194.

    Article  Google Scholar 

  • El-Heneidy, A.H., Barbosa, P., and Gross, P., 1988. Influence of dietary nicotine on the fall armyworm, Spodoptera frugiperda and its parasitoid, the Ichneumonid wasp Hyposoter annulipes. Entomologia Experimentalis et Applicata 46: 227–232.

    Article  CAS  Google Scholar 

  • Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A., and Koziel, A.G., 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activity against lepidopteran insects. Proceedings of the National Academy of Sciences of the USA 93: 5389–5394.

    Article  PubMed  CAS  Google Scholar 

  • Farrar, R.R.J., Kennedy, G.G., and Kashyap, R.K., 1992. Influence of life history differences of two tachinid parasitopids of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) on their interactions with glandular trichome/methyl ketone-based insect resistance in tomato. Journal of Chemical Ecology 18: 499–515.

    Article  CAS  Google Scholar 

  • Fernandes, O.A., Faria, M., Martinelli, S., Schmidt, F., Carvalho, V.F., and Moro, G., 2007. Short-term assessment of Bt maize on non-target arthropods in Brazil. Scientia Agricola 64: 249–255.

    Google Scholar 

  • Ferry, N., Jouanin, L., Ceci, L.R., Mulligan, A., Emami, K., Gatehouse, J.A., and Gatehouse, A.M.R., 2005. Impact of oilseed rape expressing the insecticidal serine protease inhibitor, mustard trypsin inhibitor-2 on the beneficial predator Pterostichus madidus. Molecular Ecology 14: 337–349.

    Article  PubMed  CAS  Google Scholar 

  • Ferry, N., Mulligan, E.A., Stewart, C.N., Tabashnik, B.E., Port, G.R., and Gatehouse, A.M.R., 2006. Prey-mediated effects of transgenic canola on a beneficial, non-target, carabid beetle. Transgenic Research 15: 501–514.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, K.D., Kenmore, P.E., and Sogawa, K., 1994. Judicious use of insecticides deter planthopper outbreaks and extend the life of resistant varieties in Southeast Asian rice. In: Planthoppers: Their Ecology and Management, R.F. Denno and J.T. Perfect, eds., Chapman & Hall, New York, USA, pp. 599–614.

    Google Scholar 

  • Gallardo, F., Boethel, D.J., Fuxa, J.R., and Richter, A., 1990. Susceptibility of Heliothis zea (Boddie) larvae to Nomuraea riley (Farlow) Samson: effects of alpha-tomatine at the third trophic level. Journal of Chemical Ecology 16: 1751–1759.

    Article  CAS  Google Scholar 

  • Garcia-Alonso, M., Jacobs, E., Raybould, A., Nickson, T.E., Sowig, P., Willekens, H., van der Kouwe, P., Layton, R., Amijee, F., Fuentes, A.M., and Tencalla, F., 2006. A tiered system for assessing the risk of genetically modified plants to non-target organisms. Environmental Biosafety Research 5: 57–65.

    Article  PubMed  Google Scholar 

  • Gatehouse, J.A., 1994. Use of the rice sucrose synthase-1 promotor to direct phloem-specific expression of β-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. Journal of Experimental Botany 45: 623–631.

    Article  Google Scholar 

  • Gerson, U., and Cohen, E., 1989. Resurgences of spider mites (Acari: Tetranychidae) induced by synthetic pyrethroids. Experimental and Applied Acarology 6: 29–46.

    Article  CAS  Google Scholar 

  • Godfray, H.C.J., 1994. Parasitoids. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Greene, J.K., Turnipseed, S.G., Sullivan, M.J., and May, O.L., 2001. Treatment thresholds for stink bugs (Hemiptera: Pentatomidae) in cotton. Journal of Economic Entomology 94: 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Greenplate, J.T., 1999. Quantification of Bacillus thuringiensis insect control protein Cry1Ac over time in Bollgard cotton fruit and terminaly. Journal of Economic Entomology 92: 1377–1383.

    CAS  Google Scholar 

  • Groot, A.T., and Dicke, M., 2002. Insect-resistant transgenic plants in a multi-trophic context. The Plant Journal 31: 387–406.

    Article  PubMed  CAS  Google Scholar 

  • Gurr, G.M., Wratten, S.D., and Altieri, M.A., eds., 2004. Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods. CABI, Wallingford, UK.

    Google Scholar 

  • Hare, J.D., 1992. Effects of plant variation on herbivore-natural enemy interactions. In: Plant Resistance to Herbivores and Pathogens: Ecology, Evolution and Genetics, R.S Fritz and E.L. Simms, eds., University of Chicago Press, Chicago, IL, USA, pp. 278–298.

    Google Scholar 

  • Hare, J.D., 2002. Plant genetic variation in tritrophic interactions. In: Multitrophic Level Interactions, T. Tscharntke and B.A. Hawkins, eds., Cambridge University Press, Cambridge, UK, pp. 8–43.

    Chapter  Google Scholar 

  • Harris, J.G., Hershey, C.N., and Watkins, M.J., 1998. The usage of Karate (lambda-cyhalothrin) oversprays in combination with refugia, as a viable and sustainable resistance management strategy for Bt cotton. In: Proceedings of the Beltwide Cotton Conferences, San Diego, CA, USA, 5–9 January 1998, Vol. 2., P. Dugger and D. Richter, eds., National Cotton Council, Memphis, TN, USA, pp. 1217–1220.

    Google Scholar 

  • Harwood, J.D., Wallin, W.G., and Obrycki, J.J., 2005. Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem. Molecular Ecology 14: 2815–2823.

    Article  PubMed  CAS  Google Scholar 

  • Head, G., Brown, C.R., Groth, M.E., and Duan, J.J., 2001. Cry1Ab protein levels in phytophagous insects feeding on transgenic corn: implications for secondary exposure risk assessment. Entomologia Experimentalis et Applicata 99: 37–45.

    Article  CAS  Google Scholar 

  • Head, G., Moar, M., Eubanks, M., Freeman, B., Ruberson, J., Hagerty, A., and Turnipseed, S., 2005. A multi-year, large-scale comparison of arthropod populations on commercially managed Bt and non-Bt cotton fields. Environmental Entomology 34: 1257–1266.

    Article  Google Scholar 

  • Heinrichs, E.A., Aquino, G.B., Chelliah, S., Valencia, S.L., and Reissig, W.H., 1982. Resurgence of Nilaparvata lugens (Stål) populations as influenced by method and timing of insecticide applications in lowland rice. Environmental Entomology 11: 78–84.

    Google Scholar 

  • Hellmich, R.L., Higgins, L.S., Witkowski, J.F., Campbell, J.E., and Lewis, L.C., 1999. Oviposition by European corn borer (Lepidoptera: Crambidae) in response to various transgenic corn events. Journal of Economic Entomology 92: 1014–1020.

    Google Scholar 

  • Hilbeck, A., Baumgartner, M., Fried, P.M., and Bigler, F., 1998. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology 27: 480–487.

    Google Scholar 

  • Hoheisel, G.A., and Fleischer, S.J., 2007. Coccinellids, aphids, and pollen in diversified vegetable fields with transgenic and isoline cultivars. Journal of Insect Science 7: 64. http://www.insectscience.org/7.61/.

  • Holt, J., Wareing, D.R., and Norton, G.A., 1992. Strategies of insecticide use to avoid resurgence of Nilaparvata lugens (Homoptera; Delphacidae) in tropical rice: a simulation analysis. Journal of Economic Entomology 85: 1979–1989.

    Google Scholar 

  • Howald, R., Zwahlen, C., and Nentwig, W., 2003. Evaluation of Bt oilseed rape on the non-target herbivore Athalia rosae. Entomologia Experimentalis et Applicata 106: 87–93.

    Article  Google Scholar 

  • Huang, J.K., Hu, R.F., Rozelle, S., and Pray, C., 2005. Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308: 688–690.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Hu, R., Rozelle, S. and Pray, C., 2008. Genetically modified rice, yields, and pesticides: Assessing farm-level productivity effects in China. Economic Development and Cultural Change 56: 241–264.

    Article  Google Scholar 

  • Icoz, I., and Stotsky, G., 2008. Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biology and Biochemistry 40: 559–586.

    Article  CAS  Google Scholar 

  • James, C., 2007. Global Status of Commercialized Biotech/GM Crops: 2007. ISAAA Brief No. 37, International Service for the Acquisition of Agri-Biotech Applications, Ithaca, NY, USA.

    Google Scholar 

  • Johnson, M.T., 1997. Interaction of resistant plants and wasp parasitoids of tobacco budworm (Lepidoptera: Noctuidae). Environmental Entomology 26: 207–214.

    Google Scholar 

  • Johnson, M.T., and Gould, F., 1992. Interaction of genetically engineered host plant-resistance and natural enemies of Heliothis virescens (Lepidoptera, Noctuidae) in tobacco. Environmental Entomology 21: 586–597.

    Google Scholar 

  • Kanrar, S., Venkateswari, J., Kirti, P.B., and Chopra, V.L., 2002. Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Reports 20: 976–981.

    Article  CAS  Google Scholar 

  • Kappers, I.F., Aharoni, A., van Herpen, T.W.J.M., Luckerhoff, L.L.P., Dicke, M., and Bouwmeester, H.J., 2005. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309 (5743): 2070–2072.

    Article  PubMed  CAS  Google Scholar 

  • Kartohardjono, A., and Heinrichs, E.A., 1984. Populations of the brown planthopper, Nilaparvanta lugens (Stal) (Homoptera: Delphacidae), and its predators on rice varieties with different levels of resistance. Environmental Entomology 13: 359–365.

    Google Scholar 

  • Keller, I., Fluri, P., and Imdorf, A., 2005. Pollen nutrition and colony development in honey bees: part I. Bee World 86: 3–10.

    Google Scholar 

  • Kennedy, G.G., 2003. Tomato, pests, parasitoids and predators: tritrophic interactions involving the genus Lycopersicon. Annual Review of Entomology 48: 51–72.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, G.G., and Gould, F., 2007. Ecology of natural enemies and genetically engineered host plants. In: Perspectives in Ecological Theory and Integrated Pest Management, M. Kogan and P. Jepson, eds., Cambridge University Press, Cambridge, UK, pp. 269–300.

    Google Scholar 

  • Lawo, N.C., and Romeis, J., 2008. Assessing the utilization of a carbohydrate food source and the impact of insecticidal proteins on larvae of the green lacewing, Chrysoperla carnea. Biological Control 44: 389–398.

    Article  CAS  Google Scholar 

  • Lei, T., Khan, M., and Wilson, L., 2003. Boll damage by sucking pests: an emerging threat, but what do we know about it? In: World Cotton Research Conference III: Cotton for the New Millennium, A. Swanepoel, ed., Agricultural Research Council - Institute for Industrial Crops, Cape Town, South Africa, pp. 1337–1344.

    Google Scholar 

  • Leslie, T.W., Hoheisel, G.A., Biddinger, D.J., Rohr, J.R., and Fleisher, S.J., 2007. Transgenes sustain epigeal insect biodiversity in diversified vegetable farm systems. Environmental Entomology 36: 234–244.

    Article  PubMed  CAS  Google Scholar 

  • Li, F.-F., Ye, G.-Y., Wu, Q., Peng, Y.-F., and Chen, X.-X., 2007. Arthropod abundance and diversity in Bt and non-Bt rice fields. Environmental Entomology 36: 646–654.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.-B., Tabashnik, B.E., Dennehy, T.J., Carrière, Y., Sims, M.A., and Meyer, S.K., 2002. Oviposition and mining in bolls of Bt- and non-Bt cotton by resistant and susceptible pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology 95: 143–148.

    Article  PubMed  Google Scholar 

  • Lovinger, A., Liewehr, D., and Lamp, W.O., 2000. Glandular trichomes on alfalfa impede searching behavior of the potato leafhopper parasitoid. Biological Control 18: 187–192.

    Article  Google Scholar 

  • Luck, R.F., and Dahlsten, D.L., 1975. Natural decline of a pine needle scale (Chionaspis pinifoliae [Fitch]), outbreak at South Lake Tahoe, California, following cessation of adult mosquito control with malathion. Ecology 56: 893–904.

    Article  Google Scholar 

  • Ludy, C., and Lang, A., 2006. Bt maize pollen exposure and impact on the garden spider, Araneus diadematus. Entomologia Experimentalis et Applicata 118: 145–156.

    Article  CAS  Google Scholar 

  • Lundgren, J.G., Razzak, A.A., and Wiedenmann, R.N., 2004. Population responses and food consumption by predators Coleomegilla maculata and Harmonia axyridis (Coleoptera: Coccinellidae) during anthesis in an Illinois cornfield. Environmental Entomology 33: 958–963.

    Article  Google Scholar 

  • Lundgren, J.G., Huber, A., and Wiedenmann, R.N., 2005. Quantification of consumption of corn pollen by the predator Coleomegilla maculata (Coleoptera: Coccinellidae) during anthesis in an Illinois cornfield. Agricultural and Forest Entomology 7: 53–60.

    Article  Google Scholar 

  • Malcolm, S.B., 1990. Chemical defence in chewing and sucking insect herbivores: plant-derived cardenolides in the monarch butterfly and orleander aphid. Chemoecology 1: 12–21.

    Article  CAS  Google Scholar 

  • Mao, Y.-B., Cai, W.-J., Wang, J.-W., Hong, G.-J., Tao, X.-Y., Wang, L.-J., Huang, Y.-P., and Chen, X.-Y., 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology 25: 1307–1313.

    Article  PubMed  CAS  Google Scholar 

  • Marvier, M., McCreedy, C., Regetz, J., and Kareiva, P., 2007. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316: 1475–1477.

    Article  PubMed  CAS  Google Scholar 

  • Mehlo, L., Gahakwa, D., Nghia, P.T., Loc, N.T., Capell, T., Gatehouse, J.A., Gatehouse, A.M.R., and Christou, P., 2005. An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proceedings of the National Academy of Sciences of the USA 102: 7812–7816.

    Article  PubMed  CAS  Google Scholar 

  • Meissle, M., Vojtech, E., and Poppy, G.M., 2005. Effects of Bt maize-fed prey on the generalist predator Poecilus cupreus L. (Coleoptera: Carabidae). Transgenic Research 14: 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Meiyalaghan, S., Jacobs, J.M.E., Butler, R.C., Wratten, S.D., and Conner, A.J., 2006. Expression of cry1Ac9 and cry9Aa2 genes under a potato light-inducible Lhca3 promoter in transgenic potatoes for tuber moth resistance. Euphytica 147: 297–309.

    Article  CAS  Google Scholar 

  • Men, X., Ge, F., Edwards, C.A., and Yardim, E.N., 2005. The influence of pesticide applications on Helicoverpa armigera Hubner and sucking pests in transgenic Bt cotton and non-transgenic cotton in China. Crop Protection 24: 319–324.

    Article  CAS  Google Scholar 

  • Mendelsohn, M., Kough, J., Vaituzis, Z., and Matthews, K., 2003. Are Bt crops safe? Nature Biotechnology 21: 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  • Mohite, P.B., and Uthamasamy, S., 1998. Host-plant resistance and natural enemies interaction in the management of Helicoverpa armigera (Hubner) on cotton. Indian Journal of Agricultural Research 32: 28–30.

    Google Scholar 

  • Monsanto Company, 2003. Safety Assessment ox YieldGard RootwormTM Corn. http://www.monsanto.com/pdf/products/yieldgard_rw_pss.pdf (accessed 8 January 2008).

  • Monsanto Company, 2004. Petition for the Determination of Nonregulated Status for MON 88017 Corn. Monsanto Petition # 04-CR-108U; OECD Unique Identifier: MON-88017–3. http://www.aphis.usda.gov/brs/aphisdocs/04_12501p.pdf (accessed 16 January 2008).

  • Musser, F.R., and Shelton, A.M., 2003. Bt sweet corn and selective insecticides: impacts on pests and predators. Journal of Economic Entomology 96: 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Naranjo, S.E., 2005a. Long-term assessment of the effects of transgenic Bt cotton on the abundance of non-target arthropod natural enemies. Environmental Entomology 34: 1193–1210.

    Article  Google Scholar 

  • Naranjo, S.E., 2005b. Long-term assessment of the effects of transgenic Bt cotton on the function of the natural enemy community. Environmental Entomology 34: 1211–1223.

    Article  CAS  Google Scholar 

  • Obrist, L.B., Klein, H., Dutton, A., and Bigler, F., 2005. Effects of Bt maize on Frankliniella tenuicornis and exposure of thrips predators to prey-mediated Bt toxin. Entomologia Experimentalis et Applicata 115: 409–416.

    Article  Google Scholar 

  • Obrist, L.B., Dutton, A., Albajes, R., and Bigler, F., 2006a. Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecological Entomology 31: 143–154.

    Article  Google Scholar 

  • Obrist, L., Dutton, A., Romeis, J., and Bigler, F., 2006b. Fate of Cry1Ab toxin expressed by Bt maize upon ingestion by herbivorous arthropods and consequences for Chrysoperla carnea. BioControl 51: 31–48.

    Article  CAS  Google Scholar 

  • Obrycki, J.J., 1986. The influence of foliar pubescence on entomophagous insects. In: Interaction of Plant Resistance and Parasitoids and Predators of Insects, D.J. Boethel and R.D. Eikenbarry, eds., Ellis Horwood, Chichester, UK, pp. 61–83.

    Google Scholar 

  • O’Callaghan, M., Glare, T.R., Burgess, E.P.J., and Malone, L.A., 2005. Effects of plants genetically modified for insect resistance on nontarget organisms. Annual Review of Entomology 50: 271–292.

    Article  PubMed  CAS  Google Scholar 

  • OECD (Organisation for Economic Cooperation and Development), 1993. Safety Considerations for Biotechnology: Scale-Up of Crop Plants. Organisation for Economic Cooperation and Development, Paris, France.

    Google Scholar 

  • Olff, H., Brown, V.K., and Drent, R.H., 1999. Herbivores: Between Plants and Predators. Blackwell Science, Oxford, UK.

    Google Scholar 

  • Olsen, K.M., Daly, J.C., Holt, H.E., and Finnegan, E.J., 2005. Season-long variation in expression of the cry1Ac gene and efficacy of Bacillus thuringiensis toxin in transgenic cotton against Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 98: 1007–1017.

    Article  PubMed  CAS  Google Scholar 

  • Painter, R.H., 1951. Insect Resistance in Crop Plants. University of Kansas Press, Lawrence, KS, USA.

    Google Scholar 

  • Pickett, C.H., and Bugg, R.L., eds., 1998. Enhancing Biological Control. University of California Press, Berkeley, CA, USA.

    Google Scholar 

  • Pilcher, C.D., Rice, M.E., and Obrycki, J.J., 2005. Impact of transgenic Bacillus thuringiensis corn and crop phenology on five non-target arthropods. Environmental Entomology 34: 1302–1316.

    Article  Google Scholar 

  • Power, M.E., 1992. Top-down and bottom-up forces in food webs: do plants have primacy? Ecology 73: 733–746.

    Article  Google Scholar 

  • Price, P.W., 1986. Ecological aspects of host plant resistance and biological control: interactions among three trophic levels. In: Interactions of Plant Resistance and Parasitoids and Predators of Insects, D.J. Boethel and R.D. Eikenbarry, eds., Ellis Horwood, Chichester, UK, pp. 11–30.

    Google Scholar 

  • Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N., and Weis, A.E., 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics 11: 41–65.

    Article  Google Scholar 

  • Rahbé, Y., Sauvion, N., Febvay, G., Peumans, W.J., and Gatehouse, A.M.R., 1995. Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomologia Experimentalis et Applicata 76: 143–155.

    Article  Google Scholar 

  • Rahbé, Y., Deraison, C., Bonade-Bottino, M., Girard, C., Nardon, C., and Jouanin, L., 2003. Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Science 164: 441–450.

    Article  CAS  Google Scholar 

  • Raney, T., 2006. Economic impact of transgenic crops in developing countries. Current Opinion in Biotechnology 17: 174–178.

    PubMed  CAS  Google Scholar 

  • Rao, K.V., Rathore, K.S., Hodges, T.K., Fu, X., Stoger, E., Sudhakar, D., Williams, S., Christou, P., Bharathi, M., Bown, D.P., Powell, K.S., Spence, J., Gatehouse, A.M.R., and Gatehouse, J.A., 1998. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant Journal 15: 469–477.

    Article  PubMed  CAS  Google Scholar 

  • Rausher, M.D., 2001. Co-evolution and plant resistance to natural enemies. Nature 411: 857–864.

    Article  PubMed  CAS  Google Scholar 

  • Raybould, A., Stacey, D., Vlachos, D., Graser, G., Li, X., and Joseph, R., 2007. Non-target organisms risk assessment of MIR604 maize expressing mCry3A for control of corn rootworms. Journal of Applied Entomology 131: 391–399.

    Article  CAS  Google Scholar 

  • Reed, G.L., Jensen, A.S., Riebe, J., Head, G., and Duan, J.J., 2001. Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: comparative efficacy and non-target impacts. Entomologia Experimentalis et Applicata 100: 89–100.

    Article  CAS  Google Scholar 

  • Rice, M.E., 2004. Transgenic rootworm corn: assessing potential agronomic, economic, and environmental benefits. Online. Plant Health Progress. doi:10.1094/PHP-2004–0301-01-RV.

    Google Scholar 

  • Riddick, E.W., Dively, G., and Barbosa, P., 1998. Effect of a seed-mix deployment of Cry3A-transgenic and nontransgenic potato on the abundance of Lebia grandis (Coleoptera: Carabidae) and Coleomegilla maculata (Coleoptera: Coccinellidae). Annals of the Entomological Society of America 91: 647–653.

    Google Scholar 

  • Rodrigo-Simón, A., de Maagd, R.A., Avilla, C., Bakker, P.L., Molthoff, J., Gonzalez-Zamora, J.E., and Ferré, J., 2006. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical approach. Applied and Environmental Microbiology 72: 1595–1603.

    Article  PubMed  CAS  Google Scholar 

  • Romeis, J., Shanower, T.G., and Zebitz, C.P.W., 1999. Why Trichogramma (Hymenoptera: Trichogrammatidae) egg parasitoids of Helicoverpa armigera (Lepidoptera: Noctuidae) fail on chickpea. Bulletin of Entomological Research 89: 89–95.

    Article  Google Scholar 

  • Romeis, J., Dutton, A., and Bigler, F., 2004. Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Journal of Insect Physiology 50: 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Romeis, J., Babendreier, D., Wäckers, F.L., and Shanower, T.G., 2005. Habitat and plant specificity of Trichogramma egg parasitoids – underlying mechanisms and implications. Basic and Applied Ecology 6: 215–236.

    Article  Google Scholar 

  • Romeis, J., Meissle, M., and Bigler, F., 2006. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature Biotechnology 24: 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Romeis, J., Meissle, M., Raybould, R., and Hellmich, R.L., 2008a. Impact of insect-resistant genetically modified crops on non-target arthropods. In: Environmental Impact of Genetically Modified/Novel Crops, N. Ferry and A.M.R. Gatehouse, eds., CABI, Wallingford, UK (in press).

    Google Scholar 

  • Romeis, J., Bartsch, D., Bigler, F., Candolfi, M.P., Gielkens, M.M.C., Hartley, S.E., Hellmich, R.L., Huesing, J.E., Jepson, P.C., Layton, R., Quemada, H., Raybould, A., Rose, R.I., Schiemann, J., Sears, M.K., Shelton, A.M., Sweet, J., Vaituzis, Z., and Wolt, J.D., 2008b. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nature Biotechnology 26: 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Rose, R., and Dively, G.P., 2007. Effects of insecticide-treated and lepidopteran-active Bt transgenic sweet corn on the abundance and diversity of arthropods. Environmental Entomology 36: 1254–1268.

    Article  PubMed  CAS  Google Scholar 

  • Rutledge, C.E., Robinson, A.P., and Eigenbrode, S.D., 2003. Effects of a simple plant morphological mutation on the arthropod community and the impact of predators on a principal insect herbivore. Oecologia 135: 39–50.

    PubMed  Google Scholar 

  • Sanvido, O., Romeis, J., and Bigler, F., 2007. Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation. Advances in Biochemical Engineering and Biotechnology 107: 235–278.

    CAS  Google Scholar 

  • Schnee, C., Köllner, T.G., Held, M., Turlings, T.C.J., Gershenzon, J., and Degenhardt, J., 2006. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences of the USA 103: 1129–1134.

    Article  PubMed  CAS  Google Scholar 

  • Schnepf, E., Crickmore, N., van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R., and Dean, D.H., 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62: 775–806.

    PubMed  CAS  Google Scholar 

  • Schroeder, H.E., Gollasch, S., Moore, A., Tabe, L.M., Craig, S., Hardie, D.C., Chrispeels, M.J., Spencer, D., and Higgins, T.J.V., 1995. Bean alpha-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L). Plant Physiology 107: 1233–1239.

    PubMed  CAS  Google Scholar 

  • Schuler, T.H., Denholm, I., Clark, S.J., Stewart, C.N., and Poppy, G.M., 2004. Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Journal of Insect Physiology 50: 435–443.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, A.M., and Sears, M.K., 2001. The monarch butterfly controversy: scientific interpretations of a phenomenon. The Plant Journal 27: 483–488.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Wang, M.B., Powell, K.S., Van Damme, E., Hilder, V.A., Gatehouse, A.M.R., Boulter, D., and Gatehouse, J.A., 1994. Use of the rice sucrose synthase-1 promotor to direct phloem-specific expression of β-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. Journal of Experimental Botany 45: 623–631.

    Article  CAS  Google Scholar 

  • Simmons, A.T., and Gurr, G.M., 2004. Trichome-based host plant resistance of Lycopersicon species and the biocontrol agent Mallada signata: are they compatible? Entomologia Experimentalis et Applicata 113: 95–101.

    Article  Google Scholar 

  • Sisterson, M.S., Biggs, R.W., Manhardt, N.M., Carrière, Y., Dennehy, T.J., and Tabashnik, B.E., 2007. Effects of transgenic Bt cotton on insecticide use and abundance of two generalist predators. Entomologia Experimentalis et Applicata 124: 305–311.

    Article  CAS  Google Scholar 

  • Smith, C.M., 2005. Plant Resistance to Arthropods: Molecular and Conventional Approaches. Springer Science & Business Media, Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Srivastava, P.N., and Auclair, J.L., 1963. Characteristics and nature of proteases from the alimentary canal of the pea aphid, Acyrthosiphon pisum (Harr) (Homoptera, Aphididae). Journal of Insect Physiology 9: 469–474.

    Article  CAS  Google Scholar 

  • Stanley-Horn, D.E., Dively, G.P., Hellmich, R.L., Sears, M.K., Rose, R., Jesse, L.C.H., Losey, J.E., Obrycki, J.J., and Lewis, L.C., 2001. Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proceedings of the National Academy of Sciences of the USA 98: 11931–11936.

    Article  PubMed  CAS  Google Scholar 

  • Talhouk, A.S., 1991. On the management of the date palm and its arthropod enemies in the Arabian Penisula. Journal of Applied Entomology 111: 514–520.

    Article  Google Scholar 

  • Tollrian, R., and Harvell, C.D., 1999. The Ecology and Evolution of Inducible Defences. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Torres, J.B., and Ruberson, J.R., 2005. Canopy- and ground-dwelling predatory arthropods in commercial Bt and non-Bt cotton fields: patterns and mechanisms. Environmental Entomology 34: 1242–1256.

    Article  Google Scholar 

  • Torres, J.B., and Ruberson, J.R., 2006. Spatial and temporal dynamics of oviposition behavior of bollworm and three of its predators in Bt and non-Bt cotton fields. Entomologia Experimentalis et Applicata 120: 11–22.

    Article  Google Scholar 

  • Torres, J.B., and Ruberson, J.R., 2008. Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Transgenic Research 17: 345–354.

    Article  PubMed  CAS  Google Scholar 

  • Torres, J.B., Ruberson, J.R., and Adang, M.J., 2006. Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators: a tritrophic analysis. Agricultural and Forest Entomology 8: 191–202.

    Article  Google Scholar 

  • Toschki, A., Hothorn, L.A., and Ross-Nickoll, M., 2007. Effects of cultivation of genetically modified Bt maize on epigeic arthropods (Araneae; Carabidae). Environmental Entomology 36: 967–981.

    Article  PubMed  CAS  Google Scholar 

  • Traugott, M.S., and Stamp, N.E., 1996. Effects of chlorogenic acid and tomatine-fed caterpillars on the behavior of an insect predator. Journal of Insect Behavior 9: 461–476.

    Article  Google Scholar 

  • Turlings, T.C.J., and Benrey, B., 1998. Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience 5: 321–333.

    Google Scholar 

  • Turlings, T.C.J., and Wäckers, F.L., 2004. Recruitment of predators and parasitoids by herbivore-injured plants. In: Advances in Insect Chemical Ecology, R.T. Cardé and J.G. Millar, Cambridge University Press, Cambridge, UK, pp. 21–75.

    Chapter  Google Scholar 

  • USEPA (United States Environmental Protection Agency), 2001. Biopesticide Registration Action Document. Bacillus thuringiensis (Bt) Plant-Incorporated Protectants. 15 October 2001. http://www.epa.gov/oppbppd1/biopesticides/pips/bt_brad.htm (accessed 15 January 2008).

  • Van Driesche, R.G., and Taub, G., 1983. Impact of parasitoids on Phyllonorycter leafminers infesting apple in Massachusetts, USA. Protection Ecology 5: 303–317.

    Google Scholar 

  • Van Driesche, R.G., Hoddle, M.S., and Center, T.D., 2008. Control of Pests and Weeds by Natural Enemies. Blackwell, Oxford, UK.

    Google Scholar 

  • Van Lenteren, J.C., and de Ponti, O.M.B., 1990. Plant leaf morphology, host-plant resistance and biological control. Symposia Biologica Hungarica, Budapest 39: 365–386.

    Google Scholar 

  • Wäckers, F.L., 2005. Suitability of (extra-) floral nectar, pollen, and honeydew as insect food sources. In: Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and Its Applications, F.L. Wäckers, P.C.J. van Rijn and J. Bruin, Cambridge University Press, Cambridge, UK, pp. 17–74.

    Chapter  Google Scholar 

  • Wäckers, F.L., and Van Rijn, P.C.J., 2005. Food for protection: an introduction. In: Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and Its Applications, F.L. Wäckers, P.C.J. van Rijn and J. Bruin, eds., Cambridge University Press, Cambridge, UK, pp. 11–14.

    Chapter  Google Scholar 

  • Warren, G.W., 1997. Vegetative insecticidal proteins: novel proteins for control of corn pests. In: Advances in Insect Control: The Role of Transgenic Plants, N. Carozzi and M. Koziel, eds., Taylor & Francis, London, UK, pp. 109–121.

    Google Scholar 

  • White, J.A., and Andow, D.A., 2005. Host-parasitoid interactions in a transgenic landscape: spatial proximity effects of host density. Environmental Entomology 34: 1493–1500.

    Article  Google Scholar 

  • White, J.A., and Andow, D.A., 2006. Habitat modification contributes to associational resistance between herbivores. Oecologia 148: 482–490.

    Article  PubMed  Google Scholar 

  • Whitehouse, M.E.A., Wilson, L.J., and Constable, G.A., 2007. Target and non-target effects on the invertebrate community of Vip cotton, a new insecticidal transgenic. Australian Journal of Agricultural Research 58: 273–285.

    Article  CAS  Google Scholar 

  • Wilson, L., Hickman, M., and Deutscher, S., 2006. Research update on IPM and secondary pests. In: Proceedings of the 13th Australian Cotton Research Conference, Broadbeach, Queensland, Australia, pp. 249–258.

    Google Scholar 

  • Wink, M., and Römer, P., 1986. Acquired toxicity–the advantages of spezializing on alkaloid-rich lupins to Macrosiphon albifrons (Aphidae). Naturwissenschaften 73: 210–212.

    Article  CAS  Google Scholar 

  • Wu, K.M., and Guo, Y.Y., 2003. Influences of Bacillus thuringiensis Berliner cotton planting on population dynamics of the cotton aphid, Aphis gossypii Glover, in northern China. Environmental Entomology 32: 312–318.

    Article  Google Scholar 

  • Wu, K., Li, W., Feng, H., and Guo, Y., 2002. Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera: Miridae) on Bt cotton in northern China. Crop Protection 21: 997–1002.

    Article  Google Scholar 

  • Zangerl, A.R., McKenna, D., Wraight, C.L., Carroll, M., Ficarello, P., Warner, R., and Berenbaum, M.R., 2001. Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proceedings of the National Academy of Sciences of the USA 98: 11908–11912.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Romeis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Romeis, J., Van Driesche, R.G., Barratt, B.I.P., Bigler, F. (2008). Insect-Resistant Transgenic Crops and Biological Control. In: Romeis, J., Shelton, A.M., Kennedy, G.G. (eds) Integration of Insect-Resistant Genetically Modified Crops within IPM Programs. Progress in Biological Control, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8373-0_4

Download citation

Publish with us

Policies and ethics