Skip to main content

Biology of Wood Deteriogens

  • Chapter
  • First Online:
Biodeterioration of Wooden Cultural Heritage
  • 573 Accesses

Abstract

Elements of evolution, taxonomy, morphology and physiology of wood deteriogens are discussed in this chapter, aiming to enlighten readers on their biology and enable the understanding of wood decay mechanisms.

Wood deteriogens such as bacteria, archaea, fungi, insects and marine borers, utilizing wooden Cultural Heritage as a source of nutrients or as a physical substrate for their development, are presented. Bacteria and archaea are first addressed and their taxonomy, phylogenetic relationships and main morphological types are examined. Similarly, the ambiguous systematics and taxonomy of fungi are shown via a 9-phylum classification. Filamentous fungi features such as hyphae, mycelium, reproductive units and fruit bodies are defined along with their sexual and asexual life cycle. Based on the micromorphology and patterns of wood decay, bacteria are classified into erosion, tunnelling and cavitation bacteria, whereas the dikaryotic wood-decaying fungi are categorized into white-, soft- and brown-rot fungi.

Marine wood borers, belonging to Mollusca and Crustacea are then recognized as major wood deteriogens encountered in marine ecosystems. Basics on their phylogeny, taxonomy morphological characters, physiology, feeding modes and life histories are presented. The molluscan bivalves attacking wooden Cultural Heritage are further mentioned and description of their body, reproduction modes, along with growth stages from the trochophore larva to the juvenile is made. Similarly, for wood-decaying crustacean orders, Amphipoda and Isopoda, their distribution, habitat, foraging behaviours and body features are discussed.

Finally, insects, the most speciose group of animals of the planet is introduced and taxonomically classified. Their body segmentation is described and their life cycles from the egg to imago are explained, including the different modes of their post-embryonic development. Their feeding habits are also explicated for herbivorous, carnivorous and omnivores insects. General information on the biology and ecology of all wood-damaging orders are provided at last with special reference on wooden Cultural Heritage deteriogens, Coleoptera and Blattodea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Parasitism is a form of two organisms symbiosis, where one, (the parasite) benefits and the other, (the host), is negatively affected. In mutualism both organisms benefit, whereas in commensalism one organism (the commensal) benefits from the other which is neither benefited nor harmed.

  2. 2.

    Eukaryotes are organism whose cells have a cell nucleus and other organelles enclosed within membranes (from eu (εὖ) in Greek: well, and karyon (κάρυον) in Greek: nucleus). Organisms without nuclear envelopes, are termed prokaryotes (from pro (προ) in Greek: before and karyon means) (Nelson and Cox 2005, Black 2008).

  3. 3.

    Gram staining method distinguishes bacterial species into Gram-positive and Gram-negative (Hucker and Conn 1923). Gram-positive bacteria are stained violet in the presence of alcohol with iodine-fixed crystal violet, due to their cell wall content in peptidoglycan (PGN) (Trüper and K.-H. Schleifer 2006; Zinder and Dworkin 2006). Gram-positive bacteria cell wall is made of many PGN layers (40–80 nm thick) corresponding to 90% of their dry weight, in contrast to Gram-negative cell wall, which has a single PGN layer (7–8 nm thick) that corresponds to only 10% of their dry weight (Malanovic and Lohner 2016) and thus it is stained red.

  4. 4.

    During wood storage in water, the so-called “ponding” (Sect. 4.2), timber waterlogging allows bacteria to attack non-lignified tissues of wood, such as pit membranes which results in a considerable improvement in wood permeability in all orientations, particularly the radial (Daniel 2003, 2014).

  5. 5.

    Coenocytic from coenos (κοινός) in Greek: shared in common and cytos (κύτος) in Greek: a hollow vessel, here meaning cell (Webster and Weber 2007).

  6. 6.

    In some fungi, reproduction can be also parasexual where recombination of hereditary properties occurs outside the sexual cycle (Pontecorvo 1956).

  7. 7.

    Dikarya from (δι- κάρυα) in Greek: two nuclei.

  8. 8.

    Sporangium (sporange) is an organ enclosing endogenously generated spore(s) of which the walls have not being derived from the supporting or containing structure (Kirk et al. 2008).

  9. 9.

    Resting spores have thickly encysted (thick cell wall) in order to survive through unfavourable developmental conditions.

  10. 10.

    Biotroph is an obligate symbiont growing on a host without killing it as it relies on in to stay alive.

  11. 11.

    Mycorrhiza is a symbiosis between a plant and a fungus, a term derived from the word myces (μύκης) in Greek: fungus and rhiza (ρίζα) in Greek: root.

  12. 12.

    Peroxisome is a type of organelle known as a microbody found in all eukaryotic cells.

  13. 13.

    Lignicolous means living on or in wood (Kirk et al. 2008).

  14. 14.

    Ascomyctes from ascos (ασκός) in Greek: a leather bag or sac, and mycetes (μύκητες) in Greek: fungi (Webster and Weber 2007).

  15. 15.

    A structure of eukaryotic cells, forming during cell division to separate sister chromatids between daughter cells.

  16. 16.

    Bivalves have shells composed of two valves.

  17. 17.

    The original spelling of the name Xylophagidae, Purchon, 1941 (Mollusca, Bivalvia) has been emended in 2018, to Xylophagaidae (Sect. 5.1).

  18. 18.

    Synonymous to Solenogastres.

  19. 19.

    Synonymous to Caudofoveata.

  20. 20.

    The name “Bivalve” was first coined by Linnaeus in 1758, however, later terms of “Pelecypoda” and “Lamellibranchia” were also used (Jain 2017).

  21. 21.

    In many species the head and thorax may be fused together forming the cephalothorax, whereas is some taxa, the thorax and abdomen are fused forming the trunk.

  22. 22.

    All free-swimming pre-adult forms can be categorized into three basic types: nauplius, zoea and post-larva (Waterman 1960).

  23. 23.

    Doecious organisms have separate sexes, in opposed to hermaphrodites having both male and female reproductive organs. Individual organisms having just one of at least two distinct sexes are termed gonochorous or unisexual.

  24. 24.

    Protandrous, opposed to protogynous, are hermaphrodites which develop male sexual organs before female ones.

  25. 25.

    Hexapoda means six-legged arthropods, from hexa (ἕξ) in Greek: six and poda (πόδᾰ) in Greek: legs.

  26. 26.

    Ocelli are simple light detecting organs, consisting of a single lens. Dissimilarly to compound eyes, they do not form a complex image of the environment, but are used to detect movement.

  27. 27.

    Some taxa i.e. Hymenoptera or Diptera can be parasitic as a larva and parasitoids as pupae or adults (Gullan and Cranston 2014).

  28. 28.

    Eusocial insects are defined by (a) cooperative brood care, (b) overlap of two or more generations with offspring assisting with brood care and (c) reproductive division of labour (Zablotny 2009).

  29. 29.

    Fat body (Corpus adiposum) is a large diffuse multifunctional organ usually found in the abdomen (Beteul et al. 2014).

  30. 30.

    An epifamily is intermediate in rank between family and superfamily.

  31. 31.

    Parasitoids, always kill their host and treat them as a source of nourishment in contrast to true parasites that seldom kill their hosts. If a parasitoid wasp has taken all of the host useful content, then the host is no longer of use and so there is no need to leave it, to recover (Quicke 2009).

  32. 32.

    Galls are a kind of abnormal outgrowths of plant, fungi, or animals tissues.

  33. 33.

    The four hyperdiverse or megadiverse orders of insects, are Coleoptera, Lepidoptera, Hymenoptera and Diptera (Grimaldi and Engel 2005; Gullan and Granston 2014).

  34. 34.

    Halter (sing), halteres (pl.) is a wing reduced to small, clublike structure.

References

  • Allsopp, D., Seal, K. J., & Gaylarde, C. C. (2004). Introduction to biodeterioration. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Anderson, N. H. (1989). Xylophagous chironomidae from oregon streams. Aquatic Insects, 11(1), 33–45.

    Article  Google Scholar 

  • Atkinson, R. J. A., & Eastman, L. B. (2015). Burrow dwelling in Crustacea. The Natural History of the Crustacea, 2, 100–140.

    Google Scholar 

  • Balasubramanian, M. K., Bi, E., & Glotzer, M. (2004). Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cells. Current Biology, 14(18), R806–R818.

    Article  CAS  Google Scholar 

  • Barcoto, M. de O. (2017). Fungus-growing insects host a convergent microbiome with functional similarities to other lignocellulose-feeding insects. MSc Dissertation, Universidade Estadual Paulista, Rio Claro.

    Google Scholar 

  • Beccaloni, G., & Eggleton, P. (2013). Order blattodea. Zootaxa, 3703(1), 046–048.

    Article  Google Scholar 

  • Belanger, J. (2013). Appendage diversity and modes of locomotion: Walking. In L. Watling & M. Thiel (Eds.), Functional morphology and diversity (Vol. 1, p. 261). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Bell, W. J., Roth, L. M., & Nalepa, C. A. (2007). Cockroaches: Ecology, behavior, and natural history. Baltimore, MD: JHU Press.

    Google Scholar 

  • Benny, G. L., Humber, R. A., & Voigt, K. (2014). 8 Zygomycetous fungi: Phylum entomophthoromycota and subphyla kickxellomycotina, mortierellomycotina, mucoromycotina, and zoopagomycotina. In D. McLaughlin & J. Spatafora (Eds.), Systematics and evolution (pp. 209–250). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Benvenuto, C., Knott, B., & Weeks, S. (2015). Crustaceans of extreme environments. In M. Thiel & L. Watling (Eds.), Natural history of Crustacea: Lifestyles and feeding biology (pp. 379–417). Oxford: Oxford University Press.

    Google Scholar 

  • Berbee, M. L., James, T. Y., & Strullu-Derrien, C. (2017). Early diverging fungi: Diversity and impact at the dawn of terrestrial life. Annual Review of Microbiology, 71, 41–59.

    Article  CAS  Google Scholar 

  • Bessette, S., Fagervold, S. K., Romano, C., Martin, D., Le Bris, N., & Galand, P. E. (2014). Diversity of bacterial communities on sunken woods in the Mediterranean Sea. Journal of Marine Science and Technology, 22(1), 60–66.

    Google Scholar 

  • Beutel, R. G., Friedrich, F., Yang, X. K., & Ge, S. Q. (2014). Insect morphology and phylogeny: A textbook for students of entomology. Berlin: Walter de Gruyter.

    Google Scholar 

  • Beutel, R. G., Yavorskaya, M. I., Mashimo, Y., Fukui, M., & Meusemann, K. (2017). The phylogeny of Hexapoda (Arthropoda) and the evolution of megadiversity. Proceedings of the Arthropodan Embryological Society of Japan, 51, 1–15.

    Google Scholar 

  • Bhattacharya, D., Friedl, T., & Schmidt, H. (1999). The phylogeny of thermophiles and hyperthermophiles and the three domains of life. In J. Seckbach (Ed.), Enigmatic microorganisms and life in extreme environments (pp. 291–304). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Bignell, D. E. (2011). Morphology, physiology, biochemistry and functional design of the termite gut: An evolutionary wonderland. In Biology of termites: A modern synthesis (pp. 375–412). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bignell, D. E., & Jones, D. T. (2014). A taxonomic index, with names of descriptive authorities of termite genera and species: An accompaniment to biology of termites: A modern synthesis (Bignell DE, Roisin Y, Lo N, Editors. 2011. Springer, Dordrecht. 576 pp.). Journal of Insect Science, 14, 81.

    Article  CAS  Google Scholar 

  • Björdal, C. G., Daniel, G., & Nilsson, T. (2000). Depth of burial, an important factor in controlling bacterial decay of waterlogged archaeological poles. International Biodeterioration & Biodegradation, 45(1–2), 15–26.

    Article  Google Scholar 

  • Black, J. G. (2008). Microbiology: Principles and explorations. Hoboken, NJ: Wiley.

    Google Scholar 

  • Blackstone, N. W. (2001). Crustacea (Crustaceans). In N. W. Blackstone (Ed.), eLS. Chichester: Wiley.

    Google Scholar 

  • Blackwell, M. (2010). Fungal evolution and taxonomy. BioControl, 55(1), 7–16.

    Article  Google Scholar 

  • Blackwell, M. (2011). The Fungi: 1, 2, 3… 5.1 million species? American Journal of Botany, 98(3), 426–438.

    Article  Google Scholar 

  • Blanchette, R. A. (1995). Degradation of the lignocellulose complex in wood. Canadian Journal of Botany, 73(S1), 999–1010.

    Article  Google Scholar 

  • Blanchette, R. A. (2000). A review of microbial deterioration found in archaeological wood from different environments. International Biodeterioration & Biodegradation, 46(3), 189–204.

    Article  Google Scholar 

  • Blanchette, R. A., Nilsson, T., Daniel, G., & Abad, A. (1989). Biological degradation of wood. In R. M. Rowell & R. J. Barbour (Eds.), Advances in chemistry. Washington DC: American Chemical Society.

    Google Scholar 

  • Blanchette, R. A., Iiyama, K., Abad, A. R., & Cease, K. R. (1991). Ultrastructure of ancient buried wood from Japan. Holzforschung, 45(3), 161–168.

    Article  CAS  Google Scholar 

  • Boddy, L. (2016). Interactions between fungi and other microbes. In S. C. Watkinson, L. Boddy, & N. Money (Eds.), The fungi (3rd ed., pp. 337–360). London: Academic Press.

    Chapter  Google Scholar 

  • Borges, L. M. S. (2014). Biodegradation of wood exposed in the marine environment: Evaluation of the hazard posed by marine wood-borers in fifteen European sites. International Biodeterioration & Biodegradation, 96, 97–104.

    Article  CAS  Google Scholar 

  • Bravery, A. F., Berry, R. W., Carey, J. K., & Cooper, D. E. (2010). Recognising wood rot and insect damage in buildings (3rd ed., p. 126). Watford: Building Research Establishment.

    Google Scholar 

  • Brittain, J. E., & Sartori, M. (2009). Ephemeroptera:(Mayflies). In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 328–334). Burlington: Academic Press.

    Google Scholar 

  • Brune, A., & Ohkuma, M. (2011). Role of the termite gut microbiota in symbiotic digestion. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 439–475). Dordrecht: Springer.

    Google Scholar 

  • Busvine, J. R. (1980). Insects and hygiene. In J. R. Busvine (Ed.), Insects and hygiene (pp. 1–20). Boston, MA: Springer.

    Chapter  Google Scholar 

  • Cali, A., & Takvorian, P. M. (2014). Developmental morphology and life cycles of the microsporidia. In L. M. Weiss & J. J. Becnel (Eds.), Microsporidia: Pathogens of opportunity (1st ed., pp. 71–133). Chichester: Wiley.

    Google Scholar 

  • Capinera, J. L. (Ed.). (2008). Encyclopedia of entomology. London: Springer Science & Business Media.

    Google Scholar 

  • Carapelli, A., Frati, F., Nardi, F., Dallai, R., & Simon, C. (2000). Molecular phylogeny of the apterygotan insects based on nuclear and mitochondrial genes. Pedobiologia, 44(3–4), 361–373.

    Article  CAS  Google Scholar 

  • Chapman, R. F. (1998). The insects: Structure and function. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Che, Y., Wang, D., Shi, Y., Du, X., Zhao, Y., Lo, N., & Wang, Z. (2016). A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. Molecular Phylogenetics and Evolution, 98, 201–209.

    Article  Google Scholar 

  • Cheng, L. (2009). Marine insects. In V. Resh & R. Carde (Eds.), Encyclopedia of insects (2nd ed., pp. 600–604). Burlington: Academic Press.

    Google Scholar 

  • Cheng, X. F., Zhang, L. P., Yu, D. N., Storey, K. B., & Zhang, J. Y. (2016). The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phylogenetic analyses within cockroaches. Gene, 586(1), 115–122.

    Article  CAS  Google Scholar 

  • Clausen, C. A. (1996). Bacterial associations with decaying wood: A review. International Biodeterioration & Biodegradation, 37(1–2), 101–107.

    Article  Google Scholar 

  • Clausen, C. A. (2010). Biodeterioration of wood. In Wood Handbook: Wood as an Engineering Material, (Chap. 14, 16 pp.). Forest Products Laboratory, General Technical Report FPL–GTR–190,  Madison: USDA.

    Google Scholar 

  • Cookson, L. J. (1997). Additions to the taxonomy of the Limnoriidae. Memoirs of the Museum of Victoria, 56(1), 129–143.

    Article  Google Scholar 

  • Cookson, L. J., Cragg, S. M., & Hendy, I. W. (2012). Wood-boring limnoriids (Crustacea, Isopoda) including a new species from mangrove forests of the Tukang Besi Archipelago, Indonesia. Zootaxa, 3248(1), 25–34.

    Article  Google Scholar 

  • Cochran, D. G. (2009). Blattodea:(Cockroaches). In V. Resh & R. Carde (Eds.), Encyclopedia of insects (2nd ed., pp. 108–112). Burlington: Academic Press.

    Google Scholar 

  • Cohn, F. (1870). Beiträge zur Biologie der Pflanzen. Breslau: U. Kern's Verlag (Max Müller).

    Google Scholar 

  • Conn, D. B., Lutz, R. A., Hu, Y. P., & Kennedy, V. S. (1993). Guide to the identification of larval and postlarval stages of zebra mussels Dreissena spp. and the dark false mussel, Mytilopsis leucophaeata. Stony Brook: New York Sea Grant.

    Google Scholar 

  • Coulson, R. N., & Lund, A. E. (1982). The degradation of wood by insects. In D. D. Nicholas (Ed.), Wood deterioration and its prevention by preservative treatments: Degradation and protection of wood (Vol. 1, 2nd ed., pp. 277–305). Syracuse: Syracuse University Press.

    Google Scholar 

  • Courtois, H. (1966). Über den Zellwandabbau durch Bakterien im Nadelholz. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 20(5), 148–154.

    CAS  Google Scholar 

  • Covich, A. P. (2015). Freshwater crustaceans: Adaptations to complex inland habitats and species interactions. In M. Thiel & L. Watling (Eds.), Natural history of crustacea: Life styles and feeding biology of the crustacea (Vol. 2, pp. 337–378). Oxford: Oxford University Press.

    Google Scholar 

  • Covich, A. P., Thorp, J. H., & Rogers, D. C. (2010). Introduction to the subphylum Crustacea. In J. H. Thorp & A. P. Covich (Eds.), Ecology and classification of North American freshwater invertebrates (3rd ed., pp. 695–723). London: Academic Press.

    Chapter  Google Scholar 

  • Cranston, P. S., & McKie, B. (2006). Aquatic wood-an insect perspective, In Insect Biodiversity and Dead Wood: Proceedings of a Symposium for the 22nd International Congress of Entomology pp. 9-14). US Department of Agriculture, Forest Service, Southern Research Station.

    Google Scholar 

  • Cranston, P. S., & Gullan, P. J. (2009). Phylogeny of insects. In V. H. Resh & R. T. Carde (Eds.), Encyclopedia of insects (2nd ed., pp. 780–793). Burlington: Academic Press.

    Chapter  Google Scholar 

  • Cundell, A. M., & Mitchell, R. (1977). Microbial succession on a wooden surface exposed to the sea. International Biodeterioration Bulletin, 13(3), 67–73.

    Google Scholar 

  • Dame, R. F. (2012). Ecology of marine bivalves: An ecosystem approach (2nd ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Daniel, G. (2003). Microview of wood under degradation by bacteria and fungi. In B. Goodell et al. (Eds.), Wood deterioration and preservation, ACS Symposium Series (Chapter 4, pp. 34–72). Washington, DC: American Chemical Society.

    Google Scholar 

  • Daniel, G. (2014). Fungal and bacterial biodegradation: White rots, brown rots, soft rots, and bacteria. In T. P. Schultz, B. Goodell, & D. D. Nicholas (Eds.), Deterioration and protection of sustainable biomaterials. ACS Symposium Series (pp. 23–54). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Daniel, G., & Nilsson, T. H. O. M. A. S. (1998). Developments in the study of soft rot and bacterial decay. In A. Bruce & J. Palfreyman (Eds.), Forest products biotechnology (pp. 37–62). London: Taylor & Francis.

    Google Scholar 

  • Didier, E. S., Becnel, J. J., Kent, M. L., Sanders, J. L., & Weiss, L. M. (2014). Microsporidia. In D. McLaughlin & J. Spatafora (Eds.), Systematics and evolution (pp. 115–140). Heidelberg: Springer.

    Google Scholar 

  • Distel, D. L. (2003). The biology of marine wood boring bivalves and their bacterial endosymbionts. In B. Goodell, D. D. Nicholas, & T. P. Schultz (Eds.), Wood deterioration and preservation. Washington, DC: American Chemical Society.

    Google Scholar 

  • Distel, D. L., Amin, M., Burgoyne, A., Linton, E., Mamangkey, G., Morrill, W., et al. (2011). Molecular phylogeny of Pholadoidea Lamarck, 1809 supports a single origin for xylotrophy (wood feeding) and xylotrophic bacterial endosymbiosis in Bivalvia. Molecular Phylogenetics and Evolution, 61(2), 245–254.

    Article  Google Scholar 

  • Dorchin, N. (2008). Gall midges (Diptera: Cecidomyiidae). In J. L. Capinera (Ed.), Encyclopedia of entomology (pp. 1576–1580). Dordrecht: Springer.

    Google Scholar 

  • Dudley, T., & Anderson, N. H. (1982). A survey of invertebrates associated with wood debris in aquatic habitats. Corvallis: Washington State Entomological Society.

    Google Scholar 

  • Eastman, L. B., & Thiel, M. (2015). Foraging behavior of crustacean predators and scavengers. In M. Thiel & L. Watling (Eds.), Natural history of crustacea: Life styles and feeding biology of the crustacea (Vol. 2, pp. 535–556). Oxford: Oxford University Press.

    Google Scholar 

  • Eastwood, D. C. (2014). Evolution of fungal wood decay. In T. P. Schultz, B. Goodell, & D. D. Nicholas (Eds.), Deterioration and protection of sustainable biomaterials. Washington, DC: American Chemical Society.

    Google Scholar 

  • Eaton, R. A. (1985). Preservation of marine timbers. In W. P. K. Findlay (Ed.), Preservation of timber in the tropics (Forestry sciences) (Vol. 17). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Eaton, R. A., & Cragg, S. M. (1995). Evaluation of creosote fortified with synthetic pyrethroids as wood preservatives for use in the sea. Pt. 1: Efficacy against marine wood-boring molluscs and crustaceans. Material und Organismen (Germany).

    Google Scholar 

  • Eaton, R. A., & Hale, M. D. (1993). Wood: Decay, pests and protection. London: Chapman and Hall.

    Google Scholar 

  • Eggleton, P. (2011). An introduction to termites: Biology, taxonomy and functional morphology. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 1–26). Dordrecht: Springer.

    Google Scholar 

  • Eggleton, P., Beccaloni, G., & Inward, D. (2007). Response to Lo et al. Biology Letters, 3(5), 564–565.

    Article  Google Scholar 

  • Ehrenberg, C. G. (1838). Die Infusionsthierchen als vollkommene Organismen: Ein Blick in das tiefere organische Leben der Natur.[1].[Hauptband]. Voss.

    Google Scholar 

  • Elkins, J. G., Podar, M., Graham, D. E., Makarova, K. S., Wolf, Y., Randau, L., et al. (2008). A korarchaeal genome reveals insights into the evolution of the Archaea. Proceedings of the National Academy of Sciences, 105(23), 8102–8107.

    Article  CAS  Google Scholar 

  • Eme, L., Spang, A., Lombard, J., Stairs, C. W., & Ettema, T. J. (2017). Archaea and the origin of eukaryotes. Nature Reviews Microbiology, 15(12), 711.

    Article  CAS  Google Scholar 

  • Engel, M. S., Grimaldi, D. A., & Krishna, K. (2009). Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. American Museum Novitates, 3650, 1–27.

    Google Scholar 

  • Eriksson, K. E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood and wood components. Berlin, Germany. (CrossRef, Google Scholar).

    Google Scholar 

  • Esser, K. (2007). Series preface. In C. P. Kubicek & I. S. Druzhinina (Eds.), Environmental and microbial relationships (Vol. 4). Cham: Springer Science & Business Media. The mycota: A comprehensive treatise on fungi as experimental systems for basic and applied research.

    Google Scholar 

  • Falkiewicz-Dulik, M., Janda, K., & Wypych, G. (2010). Handbook of biodegradation, biodeterioration, and biostablization. Scarborough: Elsevier.

    Google Scholar 

  • Feng, Z., Wang, J., Rößler, R., Ślipiński, A., & Labandeira, C. (2017). Late Permian wood-borings reveal an intricate network of ecological relationships. Nature Communications, 8(1), 556.

    Article  CAS  Google Scholar 

  • Gelbrich, J. (2009). Bacterial wood degradation: A study of chemical changes in wood and growth conditions of bacteria. Göttingen: Sierke Verlag.

    Google Scholar 

  • Giribet, G. (2008). Chapter 6: Bivalvia. In W. F. Ponder & D. R. Lindberg (Eds.), Phylogeny and evolution of the mollusca (pp. 105–141). Berkeley, CA: University of California Press.

    Chapter  Google Scholar 

  • Giribet, G., Richter, S., Edgecombe, G. D., & Wheeler, W. C. (2005). The position of crustaceans within Arthropoda-Evidence from nine molecular loci and morphology. Crustacea and Arthropod Relationships, 16, 307–352.

    Google Scholar 

  • Godfrey, A. (2003). A review of the invertebrate interest of coarse woody debris in England. English Nature.

    Google Scholar 

  • Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., et al. (1996). Life with 6000 genes. Science, 274(5287), 546–567.

    Article  CAS  Google Scholar 

  • González, V. L., Andrade, S. C., Bieler, R., Collins, T. M., Dunn, C. W., Mikkelsen, P. M., et al. (2015). A phylogenetic backbone for Bivalvia: An RNA-seq approach. Proceedings of the Royal Society B, 282(1801), 20142332.

    Article  CAS  Google Scholar 

  • Gosling, E. (2015). Marine bivalve molluscs. Oxford: Wiley.

    Book  Google Scholar 

  • Gouy, R., Baurain, D., & Philippe, H. (2015). Rooting the tree of life: The phylogenetic jury is still out. Proceedings of the Royal Society B, 370(1678), 20140329.

    Google Scholar 

  • Greaves, H. (1966). New concepts of the decay of timber by micro. Doctoral dissertation, University of London.

    Google Scholar 

  • Greaves, H. (1969). Micromorphology of the bacterial attack of wood. Wood Science and Technology, 3(2), 150–166.

    Article  Google Scholar 

  • Greaves, H. (1971). The bacterial factor in wood decay. Wood Science and Technology, 5(1), 6–16.

    Article  Google Scholar 

  • Grimaldi, D., & Engel, M. S. (2005). Evolution of the insects. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gruninger, R. J., Puniya, A. K., Callaghan, T. M., Edwards, J. E., Youssef, N., Dagar, S. S., et al. (2014). Anaerobic fungi (phylum Neocallimastigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology, 90(1), 1–17.

    Article  CAS  Google Scholar 

  • Gullan, P. J., & Cranston, P. S. (2014). The insects: an outline of entomology. Hoboken, NJ: Wiley.

    Google Scholar 

  • Haga, T., & Kase, T. (2013). Progenetic dwarf males in the deep-sea wood-boring genus Xylophaga (Bivalvia: Pholadoidea). Journal of Molluscan Studies, 79(1), 90–94.

    Article  Google Scholar 

  • Hammann, S., & Zimmer, M. (2015). Lifestyles of detritus-feeding Crustaceans. In M. Thiel & L. Watling (Eds.), Natural history of Crustacea: Lifestyles and feeding biology (Vol. 2, pp. 478–501). Oxford: Oxford University Press.

    Google Scholar 

  • Harmon, M. E., Franklin, J. F., Swanson, F. J., & Sollins, P. (2004). Ecology of coarse woody debris in temperate ecosystems. In A. MacFadyen & E. D. Ford (Eds.), Advances in ecological research (Vol. 34). London: Academic Press.

    Google Scholar 

  • Haszprunar, G., Schander, C., & Halanych, K. M. (2008). Relationships of higher miolluscan taxa. In W. Ponder & D. R. Lindberg (Eds.), Phylogeny and Evolution of the Mollusca (pp. 19–32). Berkeley, CA: University of California Press.

    Google Scholar 

  • Haszprunar, G., & Wanninger, A. (2012). Molluscs. Current Biology, 22(13), R510–R514.

    Article  CAS  Google Scholar 

  • Haug, J. T., & Haug, C. (2015). “Crustacea”: Comparative aspects of larval development. In A. Wanninger (Ed.), Evolutionary developmental biology of invertebrates 4 (pp. 1–37). Vienna: Springer.

    Google Scholar 

  • Headrick, D. H., & Gordh, G. (2009). Anatomy: Head, thorax, abdomen, and genitalia. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 11–21). Burlington: Academic Press.

    Google Scholar 

  • Helms, A. C., Martiny, A. C., Hofman-Bang, J., Ahring, B. K., & Kilstrup, M. (2004). Identification of bacterial cultures from archaeological wood using molecular biological techniques. International Biodeterioration & Biodegradation, 53(2), 79–88.

    Article  CAS  Google Scholar 

  • Henningsson, B. O. (1988). The importance of microfungi and bacteria in the deterioration of timber. In D. R. Houghton, R. N. Smith, & H. O. W. Eggins (Eds.), Biodeterioration 7 (pp. 703–708). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Heppner, J. B. (2008). Butterflies and moths (Lepidoptera). In J. B. Heppner (Ed.), Encyclopedia of entomology (pp. 626–672). Dordrecht: Springer.

    Google Scholar 

  • Heraty, J. (2017). Parasitoid biodiversity and insect pest management. In R. G. Foottit & P. H. Adler (Eds.), Insect biodiversity: Science and society (pp. 603–625). Hoboken, NJ: Wiley.

    Chapter  Google Scholar 

  • Herzog, B., & Wirth, R. (2012). Swimming behavior of selected species of Archaea. Applied and Environmental Microbiology, 78, 1670–1674.

    Article  CAS  Google Scholar 

  • Hibbett, D., Abarenkov, K., Kõljalg, U., Öpik, M., Chai, B., Cole, J., et al. (2016). Sequence-based classification and identification of Fungi. Mycologia, 108(6), 1049–1068.

    Google Scholar 

  • Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E., et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111(5), 509–547.

    Article  Google Scholar 

  • Hirt, R. P., Logsdon, J. M., Healy, B., Dorey, M. W., Doolittle, W. F., & Embley, T. M. (1999). Microsporidia are related to Fungi: Evidence from the largest subunit of RNA polymerase II and other proteins. Proceedings of the National Academy of Sciences, 96(2), 580–585.

    Article  CAS  Google Scholar 

  • Holt, D. M. (1981). Bacterial breakdown of timber in aquatic habitats and their relationship with wood degrading fungi, Ph.D Thesis, Portsmouth Polytechnic.

    Google Scholar 

  • Holt, D. M. (1983). Bacterial degradation of lignified wood cell walls in aerobic aquatic habitats: Decay patterns and mechanism proposed to account for their formation. Journal of the Institute of Wood Science, 9(5), 212–223.

    Google Scholar 

  • Holt, D. M., & Jones, E. B. (1983). Bacterial degradation of lignified wood cell walls in anaerobic aquatic habitats. Applied and Environmental Microbiology, 46(3), 722–727.

    Article  CAS  Google Scholar 

  • Horikoshi, K., Aono, R., & Nakamura, S. (1993). The triangular halophilic archaebacterium Haloarcula japonica strain TR-1. Experientia, 49(6–7), 497–502.

    Article  Google Scholar 

  • Hrycaj, S., & Popadic, A. (2005). Resolving arthropod relationships: Present and future insights from evo-devo studies. Crustacean Issues, 16, 167.

    Article  Google Scholar 

  • Huber, H., & Rachel, R. (2007). Nanoarchaeota. In R. A. Garrett & H. P. Klenk (Eds.), Archaea: Evolution, physiology, and molecular biology (pp. 51–57). New York: Wiley.

    Google Scholar 

  • Hucker, G. J., & Conn, H. J. (1923). Methods of gram staining. Geneva, NY: Agr. Experiment Station.

    Google Scholar 

  • Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., et al. (2016). A new view of the tree of life. Nature Microbiology, 1, 16048.

    Article  CAS  Google Scholar 

  • Hunter W. R. (1964). Physiological aspects of ecology in nonmarine molluscs  In K. M. Wilbur & C. M. Yonge, (Eds.) Physiology of mollusca (Vol. 1 86–126). New York: Academic Press.

    Google Scholar 

  • Ibach, R. E. (2005). Biological properties. In R. M. Rowell (Ed.), Handbook of wood chemistry and wood composites (pp. 99–120). Florida: CRC Press.

    Google Scholar 

  • Inward, D., Beccaloni, G., & Eggleton, P. (2007a). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3(3), 331–335.

    Article  CAS  Google Scholar 

  • Inward, D. J., Vogler, A. P., & Eggleton, P. (2007b). A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution, 44(3), 953–967.

    Article  CAS  Google Scholar 

  • Jain, S. (2017). Pelecypoda. In S. Jain (Ed.), Fundamentals of invertebrate palaeontology (pp. 103–135). New Delhi: Springer.

    Chapter  Google Scholar 

  • James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., et al. (2006). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 443, 818–822.

    Google Scholar 

  • James, T. Y., Pelin, A., Bonen, L., Ahrendt, S., Sain, D., Corradi, N., & Stajich, J. E. (2013). Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Current Biology, 23(16), 1548–1553.

    Article  CAS  Google Scholar 

  • James, T. Y., Porter, T. M., & Martin, W. W. (2014). 7 Blastocladiomycota. In D. McLaughlin & J. W. Spatafora (Eds.), Systematics and evolution (pp. 177–207). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Jones, D. T., & Eggleton, P. (2011). Global biogeography of termites: A compilation of sources. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 477–498). Dordrecht: Springer.

    Google Scholar 

  • Jones, M. D., Richards, T. A., Hawksworth, D. L., & Bass, D. (2011a). Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus, 2(2), 173–175.

    Article  Google Scholar 

  • Jones, M. D., Forn, I., Gadelha, C., Egan, M. J., Bass, D., Massana, R., & Richards, T. A. (2011b). Discovery of novel intermediate forms redefines the fungal tree of life. Nature, 474(7350), 200.

    Article  CAS  Google Scholar 

  • Jones, E. G., Suetrong, S., Sakayaroj, J., Bahkali, A. H., Abdel-Wahab, M. A., Boekhout, T., & Pang, K. L. (2015). Classification of marine ascomycota, basidiomycota, blastocladiomycota and chytridiomycota. Fungal Diversity, 73(1), 1–72.

    Article  Google Scholar 

  • Jormalainen, V. (2015). Grazers of macroalgae and higher plants. In M. Thiel & L. Watling (Eds.), Natural history of crustacea: Life styles and feeding biology of the crustacea (Vol. 2, pp. 502–534). Oxford: Oxford University Press.

    Google Scholar 

  • Käärik, A. A. (1974). Decomposition of wood. In C. H. Dickinson & G. J. F. Pugh (Eds.), Biology of plant litter decomposition, 1 (pp. 129–174). London: Academic Press.

    Chapter  Google Scholar 

  • Kaufman, M. G., & King, R. H. (1987). Colonization of wood substrates by the aquatic xylophage Xylotopus par (Diptera: Chironomidae) and a description of its life history. Canadian Journal of Zoology, 65(9), 2280–2286.

    Article  Google Scholar 

  • Keeling, P. J. (2014). Phylogenetic place of Microsporidia in the tree of eukaryotes. In L. M. Weiss & J. J. Becnel (Eds.), Microsporidia: Pathogens of opportunity (1st ed., pp. 195–202).

    Google Scholar 

  • Kendrick, B. (2017). The fifth kingdom. Indianapolis, IN: Hackett Publishing.

    Google Scholar 

  • Kendrick, B., & Carmichael, J. W. (1973). Hyphomycetes. In G. C. Ainsworth, F. K. Sparrow, & A. S. Sussman (Eds.), The fungi (pp. 323–509). New York: Academic Press.

    Google Scholar 

  • Khanna, D. R., & Yadav, P. R. (2004). Biology of mollusca. New Delhi: Discovery Publishing House.

    Google Scholar 

  • Kim, Y. S., & Singh, A. (1994). Ultrastructural aspects of bacterial attacks on a submerged ancient wood. Mokuzai Gakkaishi, 40(5), 554–562.

    Google Scholar 

  • Kim, Y. S., & Singh, A. P. (2000). Micromorphological characteristics of wood biodegradation in wet environments: A review. Iawa Journal, 21(2), 135–155.

    Article  Google Scholar 

  • Kim, Y. S., Singh, A. P., & Nilsson, T. (1996). Bacteria as important degraders in waterlogged archaeological woods. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 50(5), 389–392.

    CAS  Google Scholar 

  • Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008). Ainsworth & Bisby’s dictionary of the fungi (10th ed.). Wallingford: Cab International.

    Book  Google Scholar 

  • Kjer, K. M., Simon, C., Yavorskaya, M., & Beutel, R. G. (2016). Progress, pitfalls and parallel universes: A history of insect phylogenetics. Journal of the Royal Society Interface, 13(121), 2016.0363.

    Google Scholar 

  • Klaassen, R. K. (2008). Bacterial decay in wooden foundation piles—Patterns and causes: A study of historical pile foundations in the Netherlands. International Biodeterioration & Biodegradation, 61(1), 45–60.

    Article  CAS  Google Scholar 

  • Koch, A. L. (2006). The bacteria: Their origin, structure, function and antibiosis. Dordrecht: Springer Science & Business Media.

    Book  Google Scholar 

  • Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., et al. (2011). Phylogenomics reveals deep molluscan relationships. Nature, 477(7365), 452.

    Article  CAS  Google Scholar 

  • Kondratieff, B. (2008). Mayflies (Ephemeroptera). In J. L. Capinera (Ed.), Encyclopedia of entomology (pp. 2307–2312). Dordrecht: Springer.

    Google Scholar 

  • Korb, J., & Aanen, D. K. (2003). The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behavioral Ecology and Sociobiology, 53(2), 65–71.

    Article  Google Scholar 

  • Krenn, H. W. (2010). Feeding mechanisms of adult Lepidoptera: Structure, function, and evolution of the mouthparts. Annual Review of Entomology, 55, 307–327.

    Article  CAS  Google Scholar 

  • Kretschmar, E. I., Gelbrich, J., Militz, H., & Lamersdorf, N. (2008). Studying bacterial wood decay under low oxygen conditions—results of microcosm experiments. International Biodeterioration & Biodegradation, 61(1), 69–84.

    Article  CAS  Google Scholar 

  • Krishna, K., Grimaldi, D. A., Krishna, V., & Engel, M. S. (2013). Treatise on the isoptera of the world: Volume 4 Termitidae (Part One). Bulletin of the American Museum of Natural History, 377(4), 973–1495.

    Article  Google Scholar 

  • Kubicek, C. P., & Druzhinina, I. S. (Eds.). (2007). Environmental and microbial relationships (Vol. 4). Cham: Springer Science & Business Media.

    Google Scholar 

  • Kühne, H. (1971). The identification of wood boring crustaceans. In E. B. G. Jones & S. K. Eltringham (Eds.), Marine borers, fungi and fouling organisms of wood, (pp. 66–83.). Paris: OCDE. 

    Google Scholar 

  • Kumar, S. (2012). Textbook of microbiology. New Delhi: JP Medical.

    Book  Google Scholar 

  • La Fage, J. P. (1988). Termite control: Changing attitudes and technologies. In D. R. Houghton, R. N. Smith, & H. O. Eggins (Eds.), Biodeterioration 7 (pp. 721–726). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Landy, E. T., Mitchell, J. I., Hotchkiss, S., & Eaton, R. A. (2008). Bacterial diversity associated with archaeological waterlogged wood: Ribosomal RNA clone libraries and denaturing gradient gel electrophoresis (DGGE). International Biodeterioration & Biodegradation, 61(1), 106–116.

    Article  CAS  Google Scholar 

  • Letcher, P. M., Longcore, J. E., James, T. Y., Leite, D. S., Simmons, D. R., & Powell, M. J. (2017a). Morphology, ultrastructure, and molecular phylogeny of Rozella multimorpha, a new species in cryptomycota. Journal of Eukaryotic Microbiology, 65(2), 12452.

    Google Scholar 

  • Letcher, P. M., Longcore, J. E., Quandt, C. A., da Silva Leite, D., James, T. Y., & Powell, M. J. (2017b). Morphological, molecular, and ultrastructural characterization of Rozella rhizoclosmatii, a new species in Cryptomycota. Fungal Biology, 121(1), 1–10.

    Article  CAS  Google Scholar 

  • Lewis, V. R. (2009). Isoptera:(Termites). In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 535–538). Burlington: Academic Press.

    Google Scholar 

  • Li, W., Wang, Z., & Che, Y. (2017). The complete mitogenome of the wood-feeding cockroach cryptocercus meridianus (blattodea: cryptocercidae) and its phylogenetic relationship among cockroach families. International Journal of Molecular Sciences, 18(11), 2397.

    Article  CAS  Google Scholar 

  • Liese, J. (1950). Handbuch der holzkonservierung. Berlin: Springer.

    Google Scholar 

  • Liese, W. (1970). Ultrastructural aspects of woody tissue disintegration. Annual Review of Phytopathology, 8(1), 231–258.

    Article  Google Scholar 

  • Liese, W., & Greaves, H. (1975). Micromorphological of bacterial attack. In W. Liese (Ed.), Biological transformation of wood by microorganisms (pp. 74–88). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Liggenstoffer, A. S., Youssef, N. H., Couger, M. B., & Elshahed, M. S. (2010). Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. The ISME Journal, 4(10), 1225.

    Article  Google Scholar 

  • Lo, N., & Eggleton, P. (2011). Termite phylogenetics and co-cladogenesis with symbionts. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 27–50). Dordrecht: Springer.

    Google Scholar 

  • Lo, N., Engel, M. S., Cameron, S., Nalepa, C. A., Tokuda, G., Grimaldi, D., et al. (2007). Save Isoptera: A comment on Inward et al. Biology Letters, 3(5), 562–563.

    Article  Google Scholar 

  • Lo, N., Luykx, P., Santoni, R., Beninati, T., Bandi, C., Casiraghi, M., et al. (2006). Molecular phylogeny of Cryptocercus wood-roaches based on mitochondrial COII and 16S sequences, and chromosome numbers in Palearctic representatives. Zoological Science, 23(4), 393–398.

    Article  CAS  Google Scholar 

  • Longcore, J. E., & Simmons, D. R. (2012). Chytridiomycota. In D. R. Simmons (Ed.), eLS. Chichester: Wiley.

    Google Scholar 

  • Maas, A., Braun, A., Dong, X. P., Donoghue, P. C., Müller, K. J., Olempska, E., et al. (2006). The ‘Orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld, 15(3–4), 266–282.

    Article  Google Scholar 

  • Madigan, M. T., Martinko, J. M., & Parker, J. (2015). Brock biology of microorganisms (Vol. 13). Boston, MA: Pearson.

    Google Scholar 

  • Malanovic, N., & Lohner, K. (2016). Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(5), 936–946.

    Article  CAS  Google Scholar 

  • Mandrioli, P., Caneva, G., & Sabbioni, C. (2003). Cultural heritage and aerobiology: Methods and measurement techniques for biodeterioration monitoring. London: Springer.

    Book  Google Scholar 

  • Manoharachary, C., Tilak, K. V. B. R., Mallaiah, K. V., & Kunwar, I. K. (2016). Mycology and microbiology (A textbook for UG & PG courses). Jodhpur: Scientific Publishers.

    Google Scholar 

  • Martin, J. W., & Davis, G. E. (2001). An updated classification of the recent crustacea. Los Angeles, CA: Natural History Museum of Los Angeles.

    Google Scholar 

  • Martin, J. W., & Davis, G. E. (2006). Historical trends in crustacean systematics. Crustaceana, 79(11), 1347–1368.

    Article  Google Scholar 

  • McHugh, J. V., & Liebherr, J. K. (2009). Coleoptera: (beetles, weevils, fireflies). In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 183–201). Burlington: Academic Press.

    Google Scholar 

  • McKenna, D. D. (2016). Molecular systematics of Coleoptera. In R. G. Beutel & R. A. Leschen (Eds.), Coleoptera, beetles. Morphology and systematics (pp. 23–34). Berlin: Walter de Gruyter.

    Google Scholar 

  • Mckenna, D. D., Wild, A. L., Kanda, K., Bellamy, C. L., Beutel, R. G., Caterino, M. S., et al. (2015). The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology, 40(4), 835–880.

    Article  Google Scholar 

  • McLaughlin, P. A. (2015). Crustaceans in mobile homes. In M. Thiel & L. Watling (Eds.), Natural history of Crustacea: Life styles and feeding biology of the Crustacea (Vol. 2, pp. 145–162). New York: Oxford University Press.

    Google Scholar 

  • Merritt, R. W., & Wallace, J. B. (2009). Aquatic habitats. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 38–48). Burlington: Academic Press

    Google Scholar 

  • Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346(6210), 763–767.

    Article  CAS  Google Scholar 

  • Money, N. P. (2016). Fungal diversity. In S. C. Watkinson, L. Boddy, & N. Money (Eds.), The fungi (3rd ed., pp. 1–36). New York: Academic Press.

    Google Scholar 

  • Moore, P. G., & Eastman, L. B. (2015). The tube-dwelling lifestyle in crustaceans and its relation to feeding. The Natural History of the Crustacea, 2, 35–77.

    Google Scholar 

  • MolluscaBase. (2020). Pholadoidea Lamarck, 1809. Accessed through: World Register of Marine Species https://www.molluscabase.org/aphia.php?p=taxdetails&id=14625

  • Mouzouras, R. (1986). Decay of wood by microorganisms in marine environments. In British Wood Preserving and Damp Proofing Association; Annual Convention (pp. 1–18).

    Google Scholar 

  • Muller, F., Brissac, T., Le Bris, N., Felbeck, H., & Gros, O. (2010). First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat. Environmental Microbiology, 12(8), 2371–2383.

    Article  CAS  Google Scholar 

  • Mullins, D. E. (2015). Physiology of environmental adaptations and resource acquisition in cockroaches. Annual Review of Entomology, 60, 473–492.

    Article  CAS  Google Scholar 

  • Nalepa, C. A. (1984). Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behavioral Ecology and Sociobiology, 14(4), 273–279.

    Article  Google Scholar 

  • Nalepa, C. A. (2011). Altricial development in wood-feeding cockroaches: The key antecedent of termite eusociality. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 69–95). Dordrecht: Springer.

    Google Scholar 

  • Nelson, D. L., & Cox, M. M. (2005). Lehninger, Principles of biochemistry (4th ed., p. 1216). New York: Freeman and Company.

    Google Scholar 

  • Newell, G. E. (1964). Physiological aspects of the ecology of intertidal molluscs. In K. M. Wilbur & C. M. Yonge (Eds.), Physiology of mollusca (Vol. I, pp. 59–81). New York: Academic Press.

    Chapter  Google Scholar 

  • NHMLAC. (2018). Crustacea glossary complete list, Natural History Museum of Los Angeles County. https://research.nhm.org/glossary/all.html. Retrieved 16/1/2018

  • Nieuwenhuis, B. P., & James, T. Y. (2016). The frequency of sex in fungi. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1706), 20150540.

    Article  CAS  Google Scholar 

  • Nikolouli, K., Pournou, A., McConnachie, G., Tsiamis, G., & Mossialos, D. (2016). Prokaryotic diversity in biodeteriorated wood coming from the Bükkábrány fossil forest. International Biodeterioration & Biodegradation, 108, 181–190.

    Article  CAS  Google Scholar 

  • Nilsson, T., & Björdal, C. (2008). Culturing wood-degrading erosion bacteria. International Biodeterioration & Biodegradation, 61(1), 3–10.

    Article  CAS  Google Scholar 

  • Nilsson, T., & Daniel, G. F. (1983). Tunnelling bacteria. The International Research Group on Wood Preservation. Document No. IRG/WP/1186.

    Google Scholar 

  • Nilsson, T., & Daniel, G. (1988). Bacterial attack of wood cell walls. In D. R. Houghton, R. N. Smith, & H. O. Eggins (Eds.), Biodeterioration 7 (pp. 739–742). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Nobre, T., Rouland-Lefèvre, C., & Aanen, D. K. (2011). Comparative biology of fungus cultivation in termites and ants. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 193–210). Dordrecht: Springer.

    Google Scholar 

  • O’Donnell, S. (2009). Caste. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects, (2nd ed., pp. 133–135). Burlington: Academic Press.

    Google Scholar 

  • Ohkuma, M., & Brune, A. (2011). Diversity, structure, and evolution of the termite gut microbial community. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 413–438). Dordrecht: Springer.

    Google Scholar 

  • Öpik, M., Zobel, M., Cantero, J. J., Davison, J., Facelli, J. M., Hiiesalu, I., et al. (2013). Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 23(5), 411–430.

    Article  Google Scholar 

  • Oren, A. (1999). The enigma of square and triangular halophilic Archaea. In  J. Seckbach (Ed.) Enigmatic Microorganisms and Life in Extreme Environments (pp. 337–355). Springer, Dordrecht.

    Google Scholar 

  • Orpin, C. G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Microbiology, 91(2), 249–262.

    CAS  Google Scholar 

  • Parkhaev, P. Y. (2008). The early Cambrian radiation of Mollusca. In W. E. Ponder, W. Ponder, & D. R. Lindberg (Eds.), Phylogeny and evolution of the mollusca (Vol. 33). Berkeley, CA: University of California Press.

    Google Scholar 

  • Pedersen, N. B., Björdal, C. G., Jensen, P., & Felby, C. (2012). Bacterial degradation of archaeological wood in anoxic waterlogged environments. In S. E. Harding (Ed.), Stability of complex carbohydrate structures (pp. 160–187). Cambridge: RSC Publishing.

    Chapter  Google Scholar 

  • Peraza-Reyes, L., & Berteaux-Lecellier, V. (2013). Peroxisomes and sexual development in fungi. Frontiers in Physiology, 4, 244.

    Google Scholar 

  • Pinna, D., & Salvadori, O. (2008). Processes of biodeterioration: General mechanism. In G. Caneva, M. P. Nugari, & O. Salvadori (Eds.), Plant biology for cultural heritage: Biodeterioration and conservation (pp. 15–34). Los Angeles, CA: Getty Publications.

    Google Scholar 

  • Pommerville, J. C. (2018). Fundamentals of microbiology. (11th ed., 944 pp. ) Burlington: Jones & Bartlett Learning.

    Google Scholar 

  • Pontecorvo, G. (1956). The parasexual cycle in fungi. Annual Reviews in Microbiology, 10(1), 393–400.

    Article  CAS  Google Scholar 

  • Poore, G. C. B. (2005). Peracarida: Monophyly, relationships and evolutionary success. Nauplius, 13(1), 1–27.

    Google Scholar 

  • Poore, A. G., Ahyong, S. T., Lowry, J. K., & Sotka, E. E. (2017). Plant feeding promotes diversification in the Crustacea. Proceedings of the National Academy of Sciences, 114(33), 8829–8834.

    Article  CAS  Google Scholar 

  • Powell, J. A. (2009). Lepidoptera: Moths, butterflies. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 559–587). Burlington: Academic Press.

    Google Scholar 

  • Powell, M. J. (2016). Chytridiomycota. In J. M. Archibald, A. G. B. Simpson, & C. H. Slamovits (Eds.), Handbook of the protists (pp. 1–36). Cham: Springer.

    Google Scholar 

  • Powell, M. J., & Letcher, P. M. (2014). Chytridiomycota, monoblepharidomycota, and neocallimastigomycota. In D. McLaughlin & J. W. Spatafora (Eds.), Mycota VII, Part A, Systematics and evolution (pp. 141–175).

    Chapter  Google Scholar 

  • Price, P. W., Denno, R. F., Eubanks, M. D., Finke, D. L., & Kaplan, I. (2011). Insect ecology: Behavior, populations and communities. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Purchon, R. D. (1977). The biology of the Mollusca. London: Elsevier.

    Google Scholar 

  • Quicke, D. L. (2009). Hymenoptera: Ants, bees, wasps. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 473–484). Burlington: Academic Press.

    Google Scholar 

  • Raghukumar, S. (2017). Fungi in coastal and oceanic marine ecosystems. Cham: Springer.

    Book  Google Scholar 

  • Rasnitsyn, A. P., & Quicke, D. L. (Eds.). (2002). History of insects. Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  • Redecker, D., & Raab, P. (2006). Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): Recent developments and new gene markers. Mycologia, 98(6), 885–895.

    Article  Google Scholar 

  • Redecker, D., & Schüßler, A. (2014). 9 Glomeromycota. In D. McLaughlin & J. Spatafora (Eds.), Systematics and evolution (pp. 251–269). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Rehbein, M., Koch, G., Schmitt, U., & Huckfeldt, T. (2013). Topochemical and transmission electron microscopic studies of bacterial decay in pine (Pinus sylvestris L.) harbour foundation piles. Micron, 44, 150–158.

    Article  CAS  Google Scholar 

  • Reinprecht, L. (2016). Wood deterioration, protection and maintenance. Newark: Wiley.

    Book  Google Scholar 

  • Resh, V. H., & Cardé, R. T. (2009). Insecta, overview. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 501–502). Burlington: Academic Press.

    Google Scholar 

  • Richardson, A., & Araujo, P. B. (2015). Lifestyles of terrestrial crustaceans. The natural history of the Crustacea. In M. Thiel & L. Watling (Eds.), Natural history of Crustacea: Lifestyles and feeding biology (pp. 299–336). Oxford: Oxford University Press.

    Google Scholar 

  • Richter, S., & Scholtz. (2001). Phylogenetic analyses of the Malacostraca (Crustacea). Journal of Zoological Systematics and Evolutionary Research, 39, 113–136. https://doi.org/10.1046/j.1439-0469.2001.00164.x.

    Article  Google Scholar 

  • Riisgård, H. U. (2015). Filter-feeding mechanisms in crustaceans. In M. Thiel & L. Watling (Eds.), Natural history of Crustacea: Lifestyles and feeding biology (Vol. 2, pp. 418–463). London: Oxford University Press.

    Google Scholar 

  • Rinta-Kanto, J. M., Sinkko, H., Rajala, T., Al-Soud, W. A., Sørensen, S. J., Tamminen, M. V., & Timonen, S. (2016). Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. FEMS Microbiology Ecology, 92(7). https://doi.org/10.1093/femsec/fiw087.

  • Rosenberg, G. (2014). A new critical estimate of named species-level diversity of the recent Mollusca. American Malacological Bulletin, 32(2), 308–322.

    Article  Google Scholar 

  • Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., et al. (2015). A higher level classification of all living organisms. PloS One, 10(4), e0119248.

    Article  CAS  Google Scholar 

  • Rust, M. K., & Su, N. Y. (2012). Managing social insects of urban importance. Annual Review of Entomology, 57, 355–375.

    Article  CAS  Google Scholar 

  • Santhakumaran, L. N. (2003). Wood-borers. UNU-INWEH Course, pp. 425–437.

    Google Scholar 

  • Sasaki, G., Ishiwata, K., Machida, R., Miyata, T., & Su, Z. H. (2013). Molecular phylogenetic analyses support the monophyly of Hexapoda and suggest the paraphyly of Entognatha. BMC Evolutionary Biology, 13(1), 236.

    Article  Google Scholar 

  • Savory, J. G. (1954). Damage to wood caused by micro-organisms. Journal of Applied Microbiology, 17(2), 213–218.

    Google Scholar 

  • Schmidt, O., & Liese, W. (1994). Occurrence and significance of bacteria in wood. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 48(4), 271–277.

    Google Scholar 

  • Schmidt, O., Nagashima, Y., Liese, W., & Schmitt, U. (1987). Bacterial wood degradation studies under laboratory conditions and in lakes. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 41(3), 137–140.

    Google Scholar 

  • Schmitz, H. (1919). Studies in the physiology of the fungi. VI. The relation of bacteria to cellulose fermentation induced by fungi, with special reference to the decay of wood. Annals of the Missouri Botanical Garden, 6(2), 93–136.

    Article  CAS  Google Scholar 

  • Schowalter, T. D. (2011). Insect ecology: An ecosystem approach. (3rd ed. 633pp.) London: Academic Press.

    Google Scholar 

  • Schram, F. R. (2013). Comments on crustacean biodiversity and disparity of body plans. In L. Watling & M. Thiel (Eds.), Functional morphology and diversity. The natural history of the Crustacea (Vol. 1, pp. 1–33). London: Oxford University Press.

    Google Scholar 

  • Scott, M. P. (2009). Parental care. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 751–753). Burlington: Academic Press.

    Google Scholar 

  • Serment, M. M. (1988). Wood preservative efficacy against dry wood insects. In D. R. Houghton, R. N. Smith, & H. O. W. Eggins (Eds.), Biodeterioration 7 (pp. 762–767). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Sharkey, M. J., Carpenter, J. M., Vilhelmsen, L., Heraty, J., Liljeblad, J., Dowling, A. P., et al. (2011). Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics, 27(1), 1–33.

    Google Scholar 

  • Shipway, J. R., O’Connor, R., Stein, D., Cragg, S. M., Korshunova, T., Martynov, A., et al. (2016). Zachsia zenkewitschi (Teredinidae), a rare and unusual seagrass boring bivalve revisited and redescribed. PloS One, 11(5), e0155269.

    Article  CAS  Google Scholar 

  • Simpson, A. G., & Roger, A. J. (2004). The real ‘kingdoms’ of eukaryotes. Current Biology, 14(17), R693–R696.

    Article  CAS  Google Scholar 

  • Singh, A. P. (1997). The ultrastructure of the attack of Pinus radiata mild compression wood by erosion and tunnelling bacteria. Canadian Journal of Botany, 75(7), 1095–1102.

    Article  Google Scholar 

  • Singh, A. P. (2012). A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. Journal of Cultural Heritage, 13(3), S16–S20.

    Article  Google Scholar 

  • Singh, A. P., & Butcher, J. A. (1991). Bacterial degradation of wood cell walls: A review of degradation patterns. Journal of the Institute of Wood Science, 12(3), 143–157.

    Google Scholar 

  • Singh, A. P., & Kim, Y. S. (1997). Biodegradation of wood in wet environments: a review. The International Research Group on Wood Preservation. Document No. IRG/WP/97-10217.

    Google Scholar 

  • Singh, A. P., Nilsson, T., & Daniel, G. F. (1987). Attack of pulped fibres by erosion bacteria. Material und Organismen, 22, 257–269.

    Google Scholar 

  • Singh, A. P., Nilsson, T., & Daniel, G. F. (1990). Bacterial attack of Pinus sylvestris wood under near anaerobic conditions. Journal of the Institute of Wood Science, 11(6), 237–249.

    Google Scholar 

  • Singh, A. P., Nilsson, T., & Daniel, G. F. (1990b). Ultrastructure of the attack of a natural durable timber by tunnelling bacteria. The International Research Group on Wood Preservation, Document No. IRG/WP/1462. 

    Google Scholar 

  • Singh, A. & Wakeling, R. (1996). Bacterial degradation of Pinus radiata compression wood. The International Research Group on Wood Preservation, Document No. IRG/WP 96–10153.

    Google Scholar 

  • Slaytor, M. (1992). Cellulose digestion in termites and cockroaches: What role do symbionts play? Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 103(4), 775–784.

    Article  Google Scholar 

  • Smith, K. T. (1989). Dynamics of decay in trees and timber. In C. E. O’Rear & G. C. Llewellyn (Eds.), Biodeterioration research 2 (pp. 435–450). Boston, MA: Springer.

    Chapter  Google Scholar 

  • Smith, D. R. (1993). Systematics, life history, and distribution of sawflies. In K. F. Raffa & M. R. Wagner (Eds.), Sawfly life history adaptations to woody plants (pp. 3–32). San Diego, CA: Academic Press.

    Google Scholar 

  • Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C., Rouse, G. W., et al. (2011). Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature, 480(7377), 364.

    Article  CAS  Google Scholar 

  • Spang, A., Saw, J. H., Jørgensen, S. L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A. E., et al. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature, 521(7551), 173–179.

    Article  CAS  Google Scholar 

  • Spatafora, J. W., Aime, M. C., Grigoriev, I. V., Martin, F., Stajich, J. E., & Blackwell, M. (2017). The fungal tree of life: From molecular systematics to genome-scale phylogenies. Microbiology Spectrum, 5(5), FUNK-0053-2016.

    Google Scholar 

  • Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., et al. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108(5), 1028–1046.

    Article  CAS  Google Scholar 

  • Steffen, K. T. & Montonen, L. (2016). Current state of the 18th century shipwreck Vrouw Maria: Analysis of microbial diversity in partly degraded wood samples. In Proceeding of the 12th ICOM-CC on Wet Organic Archaeological Materials, International Conference, Instabul 2013, pp. 85–93.

    Google Scholar 

  • Stetter, K. O. (1999). Smallest cell sizes within hyperthermophilic archaea (“Archaebacteria”). Size limits of very small microorganisms (NCR steering group for astrobiology and space studies, ed.) (pp. 68–73). Washington, DC: National Academy.

    Google Scholar 

  • Stork, N. E. (2018). How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology, 63, 31–45.

    Article  CAS  Google Scholar 

  • Stork, N. E., McBroom, J., Gely, C., & Hamilton, A. J. (2015). New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proceedings of the National Academy of Sciences, 112(24), 7519–7523.

    Article  CAS  Google Scholar 

  • Strullu-Derrien, C., Spencer, A. R., Goral, T., Dee, J., Honegger, R., Kenrick, P., et al. (2018). New insights into the evolutionary history of Fungi from a 407 Ma Blastocladiomycota fossil showing a complex hyphal thallus. Philosophical Transactions of the Royal Society B, 373(1739), 20160502.

    Google Scholar 

  • Subramoniam, T. (2017). Sexual biology and reproduction in crustaceans. Amsterdam: Academic Press.

    Google Scholar 

  • Taylor, J. W. (1995). Making the Deuteromycota redundant: A practical integration of mitosporic and meiosporic fungi. Canadian Journal of Botany, 73(S1), 754–759.

    Article  Google Scholar 

  • Taylor, R. B. (2015). Small free-living crustaceans. In M. Thiel & L. Watling (Eds.), Natural history of Crustacea: Lifestyles and feeding biology (Vol. 2, pp. 229–261). Oxford: Oxford University Press.

    Google Scholar 

  • Taylor, J. W., & Berbee, M. L. (2014). 1 Fungi from PCR to genomics: The spreading revolution in evolutionary biology. In D. McLaughlin & J. Spatafora (Eds.), Systematics and evolution (pp. 1–18). Heidelberg: Springer.

    Google Scholar 

  • Taylor, D. L., Hollingsworth, T. N., McFarland, J. W., Lennon, N. J., Nusbaum, C., & Ruess, R. W. (2014). A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecological Monographs, 84(1), 3–20.

    Article  Google Scholar 

  • Thiel, M., & Hinojosa, I. (2009). Peracarida-aamphipods, isopods, tanaidaceans & cumaceans. In V. Häussermann & G. Försterra (Eds.), Marine benthic fauna of Chilean Patagonia (pp. 671–738). Chile: Nature in Focus.

    Google Scholar 

  • Thomas, M. C. (2008). Beetles (Coleoptera). In J. L. Capinera (Ed.), Encyclopedia of entomology (pp. 437–447). Dordrecht: Springer.

    Google Scholar 

  • Tirithel (2010). Clamp connection formation between two nuclei. Wikiwand. Accessed at https://www.wikiwand.com/en/Clamp_connection

  • Trüper, H. G., & Schleifer, K. H. (2006). Prokaryote characterization and identification. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes (pp. 58–79). New York: Springer.

    Chapter  Google Scholar 

  • Turner, R. D., & Johnson, A. C. (1971). Biology of marine wood-boring molluscs. In E. B. G. Jones & S. K. Eltringham (Eds.), Marine borers, fungi and fouling organisms of wood (pp. 259–301). Paris: OECD.

    Google Scholar 

  • Ulyshen, M. D. (2016). Wood decomposition as influenced by invertebrates. Biological Reviews, 91(1), 70–85.

    Article  Google Scholar 

  • Unger, A., Schniewind, A., & Unger, W. (2001). Conservation of wood artifacts: A handbook. London: Springer Science & Business Media.

    Book  Google Scholar 

  • Vasanthakumari, R. (2007). Textbook of microbiology. New Delhi: BI Publications.

    Google Scholar 

  • Vávra, J., & Larsson, R. (2014). Structure of microsporidia. In L. M. Weiss & J. J. Becnel (Eds.), Microsporidia: Pathogens of opportunity (1st ed., pp. 1–70). Ames: John Wiley & Sons.

    Google Scholar 

  • Villesen, P., Mueller, U. G., Schultz, T. R., Adams, R. M., & Bouck, A. C. (2004). Evolution of ant-cultivar specialization and cultivar switching in Apterostigma fungus-growing ants. Evolution, 58(10), 2252–2265.

    Article  CAS  Google Scholar 

  • Voight, J. R. (2015). Xylotrophic bivalves: Aspects of their biology and the impacts of humans. Journal of Molluscan Studies, 81(2), 175–186.

    Article  Google Scholar 

  • Wade, S., Corbin, T., & McDowell, L.-M. (2004). Class Crustacea. Critter catalogue. A guide to the aquatic invertebrates of South Australian inland waters (PDF). Waterwatch South Australia. ISBN 1-876562-67-6.

    Google Scholar 

  • Walossek, D., & Müller, K. J. (1998). Cambrian ‘Orsten’-type arthropods and the phylogeny of Crustacea. In R. A. Fortey & R. H. Thomas (Eds.), Arthropod relationships (pp. 139–153). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Waloszek, D. (2003a). Cambrian ‘Orsten’-type preserved arthropods and the phylogeny of Crustacea. In A. Legakis, S. Sfenthourakis, R. Polymeni, & M. Thessalou-Legakis (Eds.), The new panorama of animal evolution (pp. 69–87). Sofia: Pensoft.

    Google Scholar 

  • Waloszek, D. (2003b). The ‘Orsten’window—a three-dimensionally preserved Upper Cambrian meiofauna and its contribution to our understanding of the evolution of Arthropoda. Paleontological Research, 7(1), 71–88.

    Article  Google Scholar 

  • Wang, H., Xu, Z., Gao, L., & Hao, B. (2009). A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evolutionary Biology, 9(1), 195.

    Article  CAS  Google Scholar 

  • Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., et al. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(7169), 560.

    Article  CAS  Google Scholar 

  • Waterman, T. H. (1960). The physiology of crustacea: Vol I: metabolism and growth. New York: Academic Press.

    Google Scholar 

  • Watkinson, S. C. (2016). Mutualistic symbiosis between fungi and autotrophs. In S. C. Watkinson, L. Boddy, & N. Money (Eds.), The fungi (3rd ed., pp. 205–243). Amsterdam: Academic Press.

    Google Scholar 

  • Watkinson, S. C., Boddy, L., & Money, N. (Eds.). (2016). The fungi. Amsterdam: Academic Press.

    Google Scholar 

  • Watling, L. (2013). Feeding and digestive system. In The natural history of Crustacea (Functional morphology and diversity) (Vol. 1, pp. 237–260). New York: Oxford University Press.

    Google Scholar 

  • Watling, L. (2015). Deposit feeding: Obtaining nutrition from sediment. In M. Thiel & L. Watling (Eds.), Natural history of Crustacea: Life styles and feeding biology of the crustacea (Vol. 2, pp. 464–478). Oxford: Oxford University Press.

    Google Scholar 

  • Watling, L., & Thiel, M. (2015). The role of natural history in understanding the diversity of lifestyles in Crustaceans. In M. Thiel & L. Watling (Eds.), Natural history of Crustacea: Life styles and feeding biology of the Crustacea (Vol. 2, pp. 1–13). Oxford: Oxford University Press.

    Google Scholar 

  • Webster, J., & Weber, R. (2007). Introduction to fungi. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Weisser, W. W., & Siemann, E. (2008). The various effects of insects on ecosystem functioning. In W. W. Weisser & E. Siemann (Eds.), Insects and ecosystem function (pp. 3–24). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Wernegreen, J. J. (2012). Endosymbiosis. Current Biology, 22(14), R555–R561.

    Google Scholar 

  • Wheeler, W. C., Whiting, M., Wheeler, Q. D., & Carpenter, J. M. (2001). The phylogeny of the extant hexapod orders. Cladistics, 17(2), 113–169.

    Article  Google Scholar 

  • Wilder, S. M., Rypstra, A. L., & Elgar, M. A. (2009). The importance of ecological and phylogenetic conditions for the occurrence and frequency of sexual cannibalism. Annual Review of Ecology, Evolution, and Systematics, 40, 21–39.

    Article  Google Scholar 

  • Williams, T. A., Szöllősi, G. J., Spang, A., Foster, P. G., Heaps, S. E., Boussau, B., et al. (2017). Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proceedings of the National Academy of Sciences, 114(23), E4602–E4611.

    Article  CAS  Google Scholar 

  • Willis, J. H., & Willis, J. S. (2008). Metamorphosis. In J. L. Capinera (Ed.), Encyclopedia of Entomology (pp. 2350–2354). Dordrecht: Springer.

    Google Scholar 

  • Woese, C. R. (2006). How we do, don’t and should look at bacteria and bacteriology. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes: A handbook on the biology of bacteria (pp. 3–23). New York: Springer.

    Chapter  Google Scholar 

  • Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences, 74(11), 5088–5090.

    Article  CAS  Google Scholar 

  • Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, 87(12), 4576–4579.

    Article  CAS  Google Scholar 

  • Woese, C. R., Magrum, L. J., & Fox, G. E. (1978). Archaebacteria. Journal of Molecular Evolution, 11(3), 245–252.

    Article  CAS  Google Scholar 

  • Wolfe, R. S. (2014). The Archaea: A personal overview of the formative years. In E. Rosenberg E. F. DeLong, S.Lory, E.Stackebrandt and F.Thompson (Eds.), The Prokaryotes (4th ed., pp. 3–9). New York: Springer.

    Google Scholar 

  • Wolff, C., & Gerberding, M. (2015). “Crustacea”: Comparative aspects of early development. In A. Wanninger (Ed.), Evolutionary developmental biology of invertebrates 4 (pp. 39–61). Vienna: Springer.

    Chapter  Google Scholar 

  • Wood, D. L., & Storer, A. J. (2009). Forest habitats. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 386–396). Burlington: Academic Press

    Google Scholar 

  • Worrall, J. J., Anagnost, S. E., & Zabel, R. A. (1997). Comparison of wood decay among diverse lignicolous fungi. Mycologia, 89(2), 199–219.

    Article  Google Scholar 

  • Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K. H., et al. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9), 635.

    Article  CAS  Google Scholar 

  • Zabel, R. A., & Morrell, J. J. (1992). Wood microbiology: Decay and its prevention. London: Academic Press.

    Google Scholar 

  • Zablotny, J. E. (2009). Sociality. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (2nd ed., pp. 928–935). Burlington: Academic Press

    Google Scholar 

  • Zhang, Z. Q. (2011). Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Auckland: Magnolia Press.

    Google Scholar 

  • Zhang, N., Luo, J., & Bhattacharya, D. (2017). Advances in fungal phylogenomics and their impact on fungal systematics. Advances in Genetics, 100, 309–328.

    Article  CAS  Google Scholar 

  • Zinder, S. H., & Dworkin, M. (2006). Morphological and physiological diversity. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes (pp. 185–220). New York: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pournou, A. (2020). Biology of Wood Deteriogens. In: Biodeterioration of Wooden Cultural Heritage. Springer, Cham. https://doi.org/10.1007/978-3-030-46504-9_3

Download citation

Publish with us

Policies and ethics