Skip to main content

Advertisement

Log in

Low-Cost Method to Monitor Patient Adherence to HIV Antiretroviral Therapy Using Multiplex Cathepsin Zymography

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Monitoring patient adherence to HIV antiretroviral therapy (ART) by patient survey is inherently error prone, justifying a need for objective, biological measures affordable in low-resource settings where HIV/AIDS epidemic is highest. In preliminary studies conducted in Ethiopia and South Africa, we observed loss of cysteine cathepsin activity in peripheral blood mononuclear cells of HIV-positive patients on ART. We optimized a rapid protocol for multiplex cathepsin zymography to quantify cysteine cathepsins, and prospectively enrolled 350 HIV-positive, ART-naïve adults attending the Themba Lethu Clinic, Johannesburg, South Africa, to test if suppressed cathepsin activity could be a biomarker of ART adherence (103 patients were included in final analysis). Poor adherence was defined as detectable viral load (>400 copies/ml) or simplified medication adherence questionnaire, 4–6 months after ART initiation. 86 % of patients with undetectable viral loads after 6 months were cathepsin negative, and cathepsin-positive patients were twice as likely to have detectable viral loads (RR 2.32 95 % CI 1.26–4.29). Together, this demonstrates proof of concept that multiplex cathepsin zymography may be an inexpensive, objective method to monitor patient adherence to ART. Low cost of this electrophoresis-based assay makes it a prime candidate for implementation in resource-limited settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3TC:

Lamivudine

ART:

Antiretroviral therapy

ARV:

Antiretrovirals

CI:

Confidence interval

EFV:

Efavirenz

HIV:

Human Immunodeficiency Virus

cART:

Combination active antiretroviral therapy

LC/MS:

Liquid chromatography–tandem mass spectroscopy

LPV/r:

Lopinavir boosted with ritonavir

NNRTI:

Non-nucleoside reverse transcriptase inhibitors

NRTI:

Nucleoside reverse transcriptase inhibitors

NVP:

Nevirapine

PBMC:

Peripheral blood mononuclear cells

PI:

Protease inhibitors

PrEP:

Pre-exposure prophylaxis

RR:

Risk ratio

SMAQ:

Simplified medication adherence questionnaire

TDF:

Tenofovir disoproxil fumarate

WHO:

World Health Organization

References

  1. World Health Organization. (2015). Global health observatory (GHO) data. http://www.who.int/gho/hiv/en/.

  2. Bendavid, E., Holmes, C. B., Bhattacharya, J., & Miller, G. (2012). HIV development assistance and adult mortality in Africa. JAMA, 307, 2060–2067.

    Article  CAS  Google Scholar 

  3. Lima, V. D., Harrigan, R., Murray, M., Moore, D. M., Wood, E., Hogg, R. S., & Montaner, J. S. (2008). Differential impact of adherence on long-term treatment response among naive HIV-infected individuals. Aids, 22, 2371–2380.

    Article  Google Scholar 

  4. Goldman, J. D., Cantrell, R. A., Mulenga, L. B., Tambatamba, B. C., Reid, S. E., Levy, J. W., et al. (2008). Simple adherence assessments to predict virologic failure among HIV-infected adults with discordant immunologic and clinical responses to antiretroviral therapy. AIDS Research and Human Retroviruses, 24, 1031–1035.

    Article  CAS  Google Scholar 

  5. Chesney, M. A. (2006). The elusive gold standard. Future perspectives for HIV adherence assessment and intervention. Journal of acquired immune deficiency syndromes, 43(Suppl 1), S149–155.

    Article  Google Scholar 

  6. Ajose, O., Mookerjee, S., Mills, E. J., Boulle, A., & Ford, N. (2012). Treatment outcomes of patients on second-line antiretroviral therapy in resource-limited settings: A systematic review and meta-analysis. Aids, 26, 929–938.

    Article  CAS  Google Scholar 

  7. Liu, H., Miller, L. G., Hays, R. D., Wagner, G., Golin, C. E., Hu, W., et al. (2006). A practical method to calibrate self-reported adherence to antiretroviral therapy. Journal of Acquired Immune Deficiency Syndromes, 43(Suppl 1), S104–112.

    Article  Google Scholar 

  8. Grant, R. M., Lama, J. R., Anderson, P. L., McMahan, V., Liu, A. Y., Vargas, L., Goicochea, P., Casapia, M., Guanira-Carranza, J. V., Ramirez-Cardich, M. E., Montoya-Herrera, O., Fernandez, T., Veloso, V. G., Buchbinder, S. P., Chariyalertsak, S., Schechter, M., Bekker, L. G., Mayer, K. H., Kallas, E. G., Amico, K. R., Mulligan, K., Bushman, L. R., Hance, R. J., Ganoza, C., Defechereux, P., Postle, B., Wang, F., McConnell, J. J., Zheng, J. H., Lee, J., Rooney, J. F., Jaffe, H. S., Martinez, A. I., Burns, D. N., Glidden, D. V., & T. iPrEx Study. (2010). Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. The New England Journal of Medicine, 363, 2587–2599.

  9. Karim, Q. A., Karim, S. S. A., Frohlich, J. A., Grobler, A. C., Baxter, C., Mansoor, L. E., et al. (2010). Effectiveness and Safety of Tenofovir Gel, an Antiretroviral Microbicide, for the Prevention of HIV Infection in Women. Science, 329, 1168–1174.

    Article  Google Scholar 

  10. Evans, D., & Fox, M. P. (2013). When and how should we be measuring adherence to antiretroviral therapy in resource-limited settings? Journal of Clinical Research in HIV AIDS and Prevention. doi:10.14302/issn.2324-7339.jcrhap-13-edt.1.2.

    Google Scholar 

  11. Brix, K., Dunkhorst, A., Mayer, K., & Jordans, S. (2008). Cysteine cathepsins: Cellular roadmap to different functions. Biochimie, 90, 194–207.

    Article  CAS  Google Scholar 

  12. Chapman, H. A., Riese, R. J., & Shi, G. P. (1997). Emerging roles for cysteine proteases in human biology. Annual Review of Physiology, 59, 63–88.

    Article  CAS  Google Scholar 

  13. Duncan, E. M., Muratore-Schroeder, T. L., Cook, R. G., Garcia, B. A., Shabanowitz, J., Hunt, D. F., & Allis, C. D. (2008). Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell, 135, 284–294.

    Article  CAS  Google Scholar 

  14. de Nooijer, R., Bot, I., von der Thusen, J. H., Leeuwenburgh, M. A., Overkleeft, H. S., Kraaijeveld, A. O., et al. (2009). Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 188–194.

    Article  Google Scholar 

  15. Kitamoto, S., Sukhova, G. K., Sun, J., Yang, M., Libby, P., Love, V., et al. (2007). Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation, 115, 2065–2075.

    Article  CAS  Google Scholar 

  16. Liu, J., Ma, L., Yang, J., Ren, A., Sun, Z., Yan, G., et al. (2006). Increased serum cathepsin S in patients with atherosclerosis and diabetes. Atherosclerosis, 186, 411–419.

    Article  CAS  Google Scholar 

  17. Liu, J., Sukhova, G. K., Sun, J.-S., Xu, W.-H., Libby, P., & Shi, G.-P. (2004). Lysosomal cysteine proteases in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1359–1366.

    Article  CAS  Google Scholar 

  18. Lutgens, E., Lutgens, S. P., Faber, B. C., Heeneman, S., Gijbels, M. M., de Winther, M. P., et al. (2006). Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation, 113, 98–107.

    Article  CAS  Google Scholar 

  19. Sukhova, G. K., Zhang, Y., Pan, J. H., Wada, Y., Yamamoto, T., Naito, M., et al. (2003). Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest, 111, 897–906.

    Article  CAS  Google Scholar 

  20. Sukhova, G. K., Shi, G. P., Simon, D. I., Chapman, H. A., & Libby, P. (1998). Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. The Journal of Clinical Investigation, 102, 576–583.

    Article  CAS  Google Scholar 

  21. Hansen, L., Parker, I., Sutliff, R. L., Platt, M. O., & Gleason, R. L., Jr. (2012). Endothelial dysfunction, arterial stiffening, and intima-media thickening in large arteries from HIV-1 transgenic mice. Annals of Biomedical Engineering, 41, 682–693.

    Article  Google Scholar 

  22. Hansen, L., Parker, I., Roberts, L. M., Sutliff, R. L., Platt, M. O., & Gleason, R. L, Jr. (2013). Azidothymidine (AZT) leads to arterial stiffening and intima-media thickening in mice. Journal of Biomechanics, 46, 1540–1547.

    Article  Google Scholar 

  23. Parker, I. K., Roberts, L. M., Hansen, L., Gleason, R. L, Jr, Sutliff, R. L., & Platt, M. O. (2014). Pro-atherogenic shear stress and HIV proteins synergistically upregulate cathepsin K in endothelial cells. Annals of Biomedical Engineering, 42, 1185–1194.

    Article  Google Scholar 

  24. Keegan, P. M., Wilder, C. L., & Platt, M. O. (2012). Tumor necrosis factor alpha stimulates cathepsin K and V activity via juxtacrine monocyte-endothelial cell signaling and JNK activation. Molecular and Cellular Biochemistry, 367, 65–72.

    Article  CAS  Google Scholar 

  25. Bromme, D., Li, Z., Barnes, M., & Mehler, E. (1999). Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry, 38, 2377–2385.

    Article  CAS  Google Scholar 

  26. Yasuda, Y., Li, Z., Greenbaum, D., Bogyo, M., Weber, E., & Bromme, D. (2004). Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. Journal of Biological Chemistry, 279, 36761–36770.

    Article  CAS  Google Scholar 

  27. Punturieri, A., Filippov, S., Allen, E., Caras, I., Murray, R., Reddy, V., & Weiss, S. J. (2000). Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K-deficient human macrophages. Journal of Experimental Medicine, 192, 789–799.

    Article  CAS  Google Scholar 

  28. Wilson, S., Hashamiyan, S., Clarke, L., Saftig, P., Mort, J., Dejica, V. M., & Bromme, D. (2009). Glycosaminoglycan-mediated loss of cathepsin K collagenolytic activity in MPS I contributes to osteoclast and growth plate abnormalities. American Journal of Pathology, 175, 2053–2062.

    Article  CAS  Google Scholar 

  29. Li, W. A., Barry, Z. T., Cohen, J. D., Wilder, C. L., Deeds, R. J., Keegan, P. M., & Platt, M. O. (2010). Detection of femtomole quantities of mature cathepsin K with zymography. Analytical Biochemistry, 401, 91–98.

    Article  CAS  Google Scholar 

  30. Dumas, J. E., & Platt, M. O. (2013). Systematic optimization of multiplex zymography protocol to detect active cathepsins K, L, S, and V in healthy and diseased tissue: Compromise among limits of detection, reduced time, and resources. Molecular Biotechnology, 54, 1038–1047.

    Article  CAS  Google Scholar 

  31. Fox, M. P., Maskew, M., MacPhail, A. P., Long, L., Brennan, A. T., Westreich, D., et al. (2013). Cohort profile: The Themba Lethu Clinical Cohort, Johannesburg, South Africa. International Journal of Epidemiology, 42, 430–439.

    Article  Google Scholar 

  32. R. O. S. A. Department of Health (2010). The South African Antiretroviral treatment guidelines 2010, http://www.uj.ac.za/EN/CorporateServices/ioha/Documentation/Documents/ART%20Guideline.pdf.

  33. Nieuwkerk, P. T., & Oort, F. J. (2005). Self-reported adherence to antiretroviral therapy for HIV-1 infection and virologic treatment response: A meta-analysis. Journal of Acquired Immune Deficiency Syndromes, 38, 445–448.

    Article  Google Scholar 

  34. Truax, R. E., Powell, M. D., Dietrich, M. A., French, D. D., Ellis, J. A., & Newman, M. J. (1993). Cryopreservation of bovine buffy coat leukocytes for use in immunologic studies. American Journal of Veterinary Research, 54, 862–866.

    CAS  Google Scholar 

  35. Wilder, C. L., Park, K. Y., Keegan, P. M., & Platt, M. O. (2011). Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues. Archives of Biochemistry and Biophysics, 516, 52–57.

    Article  CAS  Google Scholar 

  36. South African National Department of Health. (2010). South African National Department of Health Antiretroviral Therapy Guidelines 2010. www.sahivsoc.org/upload/documents/Summary_The_South_African_Antiretroviral_Treatment_2010.pdf.

  37. Cohen, M. S., & Baden, L. R. (2012). Preexposure prophylaxis for HIV–where do we go from here? New England Journal of Medicine, 367, 459–461.

    Article  CAS  Google Scholar 

  38. Hamers, R. L., Sigaloff, K. C., Wensing, A. M., Wallis, C. L., Kityo, C., Siwale, M. et al. (2012). Patterns of HIV-1 drug resistance after first-line antiretroviral therapy (ART) failure in 6 sub-Saharan African countries: Implications for second-line ART strategies. Clinical Infectious Diseases, 54, 1660–1669.

    Article  CAS  Google Scholar 

  39. Wallis, C. L., Papathanasopolous, M. A., Fox, M., Conradie, F., Ive, P., Orrell, C., et al. (2012). Low rates of nucleoside reverse transcriptase inhibitor (NRTI) resistance detected in a well monitored cohort in South Africa accessing antiretroviral therapy. Antiviral Therapy, 17, 313.

    Article  CAS  Google Scholar 

  40. Rigsby, M. O., Rosen, M. I., Beauvais, J. E., Cramer, J. A., Rainey, P. M., O’Malley, S. S., et al. (2000). Cue-dose Training with Monetary Reinforcement: Pilot Study of an Antiretroviral Adherence Intervention. Journal of General Internal Medicine, 15, 841–847.

    Article  CAS  Google Scholar 

  41. Orrell, C., Harling, G., Lawn, S. D., Kaplan, R., McNally, M., Bekker, L. G., & Wood, R. (2007). Conservation of first-line antiretroviral treatment regimen where therapeutic options are limited. Antivir Ther, 12, 83–88.

    CAS  Google Scholar 

  42. Hoffmann, C. J., Charalambous, S., Sim, J., Ledwaba, J., Schwikkard, G., Chaisson, R. E., et al. (2009). Viremia, resuppression, and time to resistance in human immunodeficiency virus (HIV) subtype C during first-line antiretroviral therapy in South Africa. Clinical Infectious Diseases, 49, 1928–1935.

    Article  Google Scholar 

  43. Baeten, J. M., Donnell, D., Ndase, P., Mugo, N. R., Campbell, J. D., Wangisi, J., et al. (2012). Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. New England Journal of Medicine, 367, 399–410.

    Article  CAS  Google Scholar 

  44. Van Damme, L., Corneli, A., Ahmed, K., Agot, K., Lombaard, J., Kapiga, S., Malahleha, M., Owino, F., Manongi, R., Onyango, J., Temu, L., Monedi, M. C., Mak’Oketch, P., Makanda, M., Reblin, I., Makatu, S. E., Saylor, L., Kiernan, H., Kirkendale, S., Wong, C., Grant, R., Kashuba, A., Nanda, K., Mandala, J., Fransen, K., Deese, J., Crucitti, T., Mastro, T. D., Taylor, D., & F. E.-P. S. Group. (2012). Preexposure prophylaxis for HIV infection among African women. The New England Journal of Medicine, 367, 411–422.

Download references

Acknowledgments

This work was completed partially with funding from a Creative and Novel Ideas in HIV Research (CNIHR) grant sponsored by the National Institutes of Health and The University of Alabama at Birmingham Center for AIDS Research (CFAR) program (5P30A1027767) (MOP and DE), and funding from NIH Award Number DP2OD007433 from the Office of the Director, National Institutes of Health (MOP), American Heart Association (RLG), and United States Agency for International Development (USAID) (DE). This study is made possible by the generous support of the American people through Cooperative Agreement AID 674-A-12-00029 from the United States Agency for International Development (USAID). The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government and do not necessarily represent the official views of the Office of the Director, National Institutes of Health or the National Institutes of Health. We would like to extend our gratitude to Hazel Molefe and Anna Segoneco from CHRU and Keshendre Moodley and Lindi Coetzee from the University of the Witwatersrand. We would like to thank Hannah Song from University of Toronto for assistance. We would like to acknowledge the directors and staff of Themba Lethu Clinic (TLC), CHRU, HE2RO, and Right to Care (RTC)—a PEPFAR (US President’s Emergency Plan for AIDS Relief)-funded NGO. We would like to acknowledge the Gauteng Provincial and National Department of Health for providing care for the patients at TLC as part of the National Comprehensive Care, Management and Treatment (CCMT) of HIV and AIDS program. Lastly, we would like to sincerely thank the patients attending the Themba Lethu Clinic for their continued trust in the treatment and care provided at the clinic.

Authors’ contributions

MOP and DE conceived the project, conducted experiments, performed analysis, and wrote the paper. PMK, IKP, LMR, AWK, and RLG conducted experiments and performed analysis; LM, DS, WA, and CP helped recruit patient populations and design low-resource considerations to conduct these studies in these environments. All authors have edited and approved final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu O. Platt.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Manu O. Platt and Denise Evans have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platt, M.O., Evans, D., Keegan, P.M. et al. Low-Cost Method to Monitor Patient Adherence to HIV Antiretroviral Therapy Using Multiplex Cathepsin Zymography. Mol Biotechnol 58, 56–64 (2016). https://doi.org/10.1007/s12033-015-9903-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9903-0

Keywords

Navigation