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The psychometric function is central to the theory and 
practice of psychophysics (Falmagne, 1985; Klein, 2001). 
It describes the relationship between the level of a stimulus 
and a subject’s response, usually represented by the proba-
bility of success on a certain number of trials at that stimulus 
level, where success is interpreted broadly—that is, a par-
ticular response out of two possible forms (e.g., “present” 
or “absent,” “longer” or “shorter,” “above” or “below”). 
The actual psychometric function underlying the data is, 
of course, not directly accessible to the experimenter, and 
it needs to be estimated. The most common way of doing 
this is to assume that the true function can be described by a 
specific parametric model and then estimate the parameters 
of that model by maximizing the likelihood.

Figure 1 shows a typical example from an experiment 
on frequency of seeing (Miranda & Henson, 2008). A flash 
of light of variable intensity was presented repeatedly at a 
fixed location in the visual field of a subject who reported 
whether the flash was visible. The symbols show the pro-
portion of responses “seen,” and the solid curve is the es-
timated psychometric function. This curve was modeled 
with a Gaussian cumulative distribution function (cdf), 
Φµ,σ, which has two parameters, the mean µ and the stan-
dard deviation σ, whose values were obtained by maximiz-
ing the likelihood. This function has a long history of usage 
in modeling frequency-of-seeing data, partly on the basis of 
theoretical considerations (Blackwell, 1946; Crozier, 1950). 
The other curves in Figure 1 will be discussed shortly.

From the estimated psychometric function, predictions 
of performance at other stimulus levels can be obtained. 
It is also possible to construct summary measures of per-
formance, such as the threshold value of the stimulus for 

a certain criterion level of performance or the spread or 
slope of successful responses around that threshold value. 
More generally, it may be used to test models of the under-
lying physiological or psychological processes.

All this depends on the correctness of the specified model, 
but, in practice, the correct model is rarely known with cer-
tainty. The curves in Figure 1 illustrate why uncertainty about 
the correct model might be a problem. Each represents a 
plausible model, fitted by maximum likelihood. Along with 
the Gaussian cdf, there are Weibull, reverse Weibull, and 
logistic cdfs, whose formal definitions are given in Table 1. 
All four functions have different shapes; yet it is difficult to 
choose between them on the basis of the goodness of their 
individual fits, all of which are acceptable, given the num-
ber of data points. The small differences in a measure of 
lack of fit—the deviance, which will be defined later—are 
not diagnostic. Estimates of a threshold stimulus level, cor-
responding to a criterion level of performance of 50% see-
ing, indicated by the solid horizontal line in Figure 1, varied 
from 0.946 log cdm22 (Gaussian cdf) to 1.037 log cdm22 
(reverse Weibull cdf)—that is, by 10.1% of the nondeter-
ministic part of the stimulus range. Here and elsewhere, log 
denotes logarithm to the base 10. Whether these differences 
in threshold estimates are important depends on the applica-
tion, but it is clear that in parametric modeling, the choice of 
the model may lead to bias in the estimator.

The difficulty of specifying the best parametric model 
was noted previously by Strasburger (2001), who used 
both Weibull and logistic cdfs to analyze data on char-
acter recognition as a function of character contrast in a 
10-alternative forced choice experiment. The resulting 
estimates of slope and threshold were not the same for 
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may be used (e.g., reaction times), only response propor-
tions are considered. They are treated as being distributed 
binomially, but this assumption can be relaxed.3

Using a local linear method removes the burden of decid-
ing about the parametric model when there is insufficient 
knowledge about the underlying processes. In a statisti-
cal sense, the local linear method also has the important 
property that its consistency, and hence lack of asymptotic 
bias, does not rely on the correctness of the model assumed 
by the experimenter (see, e.g., Fan & Gijbels, 1996, Sec-
tion 5.4). Thus, as the sample size increases, the estimated 
function necessarily approaches the true function.

As will be shown by the examples presented later, local 
linear fitting gives reliable results for a wide range of real 
and simulated data. The requirement that the psychometric 
function be smooth is not really restrictive, and most para-
metric methods assume the same. The local linear method 
can also adjust automatically to unknown upper and lower 
limits on a subject’s performance, including the conven-
tional guessing rate and lapsing rate, but if these limits are 
known, they can be incorporated explicitly in the local lin-
ear fit. Any summary measures, such as the threshold or 
slope, can be readily extracted from the fitted function.

Local linear fitting is not the only nonparametric 
method available for modeling psychometric functions, 
but it does offer several advantages over alternatives such 
as kernel smoothing, smoothing splines, Fourier series es-
timates, and wavelet approximations (see the discussions 
in, e.g., Fan & Gijbels, 1996; Härdle, Müller, Sperlich, & 
Werwatz, 2004; Hart, 1997; Simonoff, 1996).

The organization of this article is as follows. First, the 
essentials of the parametric method and the local linear 
method are described, with particular attention given to the 
role of the bandwidth in determining the local linear fit. 
A measure of goodness of fit is formulated, which is then 
combined with a cross-validation procedure to obtain an 
estimate of the optimum bandwidth. The effects of guess-
ing and lapsing are next analyzed, and their impact on de-
rived statistics, such as the threshold and slope, illustrated. 
Finally, a range of real data sets posing varying difficulty 
in fitting are modeled by the local linear method, and the 
results are compared with those from parametric methods.

Parametric Estimation
By way of preparation, it is useful to summarize the key 

features of the psychometric function and how it is fitted 
in a parametric approach based on maximum likelihood. 
The general form of the psychometric function is typically 
given as

	 P(x) 5 γ 1 (1 2 γ 2 λ)F(x),	 (1)

where P(x) is the probability of a successful response 
at stimulus level x, the function F is a smooth, mono-
tonic function of x taking values between 0 and 1, and 
the constants γ and λ define the lower and upper asymp-
totes (Treutwein & Strasburger, 1999). The independent 
variable x is assumed to be one-dimensional, but this as-
sumption is not essential. The lower asymptote may be 
interpreted as a guessing rate, where, by the design of the 
experiment, performance is expected to be no better than 

the two models, but goodness of fit could not be used to 
decide which model best captured performance over the 
stimulus range (Strasburger, 2001, pp. 1371–1372).

How, then, should a model for a psychometric function 
be chosen? The approach advocated here is to use a non-
parametric method1 that is based on local linear fitting. In 
that no assumption is made about the shape of the true func-
tion underlying the experimental data, except for the basic 
requirement that it should be smooth,2 the approach may 
be considered, for psychophysical purposes, as model free. 
If necessary, the requirement could be added that the func-
tion should depend monotonically on the stimulus level, but 
this is usually satisfied automatically in the present applica-
tions. Although response measures other than quantal ones 

Table 1 
Definitions of Model Cumulative  

Distribution Functions F(x) in Standard Form 

Model cdf F(x)  Definition

Gaussian 1
2

22

π
exp ,−( )

−∞∫ z dz
x

2` , x , `

Weibull* 0, 2` , x # 0
1 2 exp(2xβ), 0 , x , ` and β . 0

Reverse Weibull exp[2(2x)β], 2` , x # 0 and β . 0
1, 0 , x , ` 

Logistic [1 1 exp(2x)]21, 2` , x , `

Note—The general form of each function is obtained by transforming x 
to y 5 a0 1 a1x, where 2` , a0 , ̀  and a1 . 0; then y has the distribu-
tion F[(x 2 a0)/a1]. For example, the standard Gaussian cdf Φ has the 
general form Φµ,σ, where the parameters a0 and a1 are the mean µ and 
standard deviation σ, respectively.  *The Weibull cdf is sometimes writ-
ten as 1 2 exp(2x), with x . 0, after suitable transformation of variables 
(Strasburger, 2001); cdf, cumulative distribution function.

Figure 1. Parametric estimation of a psychometric function for 
frequency of seeing. The proportion of responses “seen” is plot-
ted against log stimulus luminance. Filled circles are data from 
Miranda and Henson (2008) and are based on 3–20 trials at each 
stimulus level. The curves are parametric fits, as identified in 
the key. The horizontal solid line indicates the criterion level for 
a 50% threshold, and the arrows mark the extreme estimated 
thresholds, which were for the Gaussian and reverse Weibull cu-
mulative distribution functions.

Pr
o

p
o

rt
io

n
 “

Se
en

”

0

.2

.4

.6

.8

1.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Log Luminance (log cd�m–2)

Gaussian

Weibull

Reverse Weibull

Logistic



1416        Żychaluk and Foster

in turn, typically converging in just a few iterations. For 
more details, see McCullagh and Nelder (1989, Section 
4.4). A generalized nonlinear framework for modeling psy-
chometric functions has been described by Yssaad-Fesselier 
and Knoblauch (2006), but the approach is still parametric, 
since an appropriate link function needs to be chosen.

The link function g does most of the work of fitting in 
a GLM, but, as was indicated in the introduction, there is 
seldom sufficient information to make a correct choice. If 
the chosen link function is not the true one, the function η(x) 
may not be a polynomial in x of degree 1. A wrongly chosen 
link function can therefore result in a poor fit and mislead-
ing inferences (Czado & Santner, 1992). The problem can-
not be obviated by dealing with a family of link functions in 
some general way, since it is unclear how the family should 
be parameterized, although Aranda-Ordaz (1981) and Mor-
gan (1985) have proposed two particular families that con-
tain the logistic function as a special case. The local linear 
method described in the next section avoids this problem 
and any dependency on a specific parametric model.

Local Linear Estimation
In the local linear method, the work in fitting is shifted 

from the link function g to the function η, assumed in 
Equation 2 to be linear in its parameters.

Suppose, for the moment, that g1 is the correct link func-
tion for a particular psychometric function P so that P(x) 5 
g1

21[η1(x)] with η1(x) 5 a0 1 a1x for all x. Now suppose 
that g1 is replaced by an incorrect link function g2. Then P 
can still be represented as P(x) 5 g2

21[η2(x)], but for some 
other function η2 with η2(x) 5 g2{g1

21[η1(x)]}. Although 
η2(x) cannot, in general, be written as b0 1 b1x, it is safe 
to assume that it is smooth. An alternative approach to the 
problem, therefore, is to accept a given link function g and 
concentrate on estimating the required function η, which 
is generally a nonlinear function of x. The link function g 
is still required, but merely to ensure that the transformed 
value of x—that is, g21[η(x)]—behaves as a probability 
and falls in the interval [0, 1].

One way to estimate the nonlinear function η is by poly-
nomial regression of a suitably high degree, but the difficul-
ties of this approach are well documented. It can introduce 
large biases in the fit; individual observations can have an 
undue influence on remote parts of the curve; the degree of 
the polynomial cannot be controlled continuously; and the 
high value required for a good fit may lead to excessive vari-
ability in the estimated coefficients (Fan & Gijbels, 1996).

The principle of local linear fitting (Fan, Heckman, 
& Wand, 1995) is to approximate the function η locally, 
point by point, with the aid of a Taylor expansion. That 
is, for a given point x, the value η(u) at any point u in a 
neighborhood of x is approximated by

	 η(u) < η(x) 1 (u 2 x)η′(x),	 (3)

where η′ is the first derivative of h. The accuracy of this 
approximation depends on the distance between u and x: 
the smaller |u 2 x|, the better the approximation. The actual 
estimate of the value of η(x) is obtained by fitting this ap-
proximation to the data over the prescribed neighborhood 
of x. The order of the Taylor expansion in Equation 3 could 

chance; and the upper asymptote may be interpreted as a 
lapsing rate, where, because of errors unconnected with 
the task itself (e.g., blinking when the stimulus appears or 
making an error in signaling the response), performance 
is occasionally at chance level. For example, for a two-
alternative forced choice task, γ 5 0.5, and if the subject 
fails to respond on, say, 1% of occasions, λ 5 0.01. Neces-
sarily, P(x) can only take values between γ and 1 2 λ.

As has already been indicated, the most common method 
of estimating a psychometric function is to fit a specific 
parametric model, essentially a generalized linear model 
(GLM; McCullagh & Nelder, 1989). A GLM has three 
components: a random component from the exponential 
family—for example, a binomial distribution with mean µ, 
which depends on the explanatory variables (e.g., x); a sys-
tematic component consisting of a linear predictor η, which 
is a linear transform of the explanatory variables; and a 
monotonic differentiable link function g that relates the 
two [i.e., η 5 g(µ)]. Certain distributions have canonical 
link functions that have some interesting statistical proper-
ties and simplify the calculation of iterative weighted least 
squares; for example, the canonical link for the binomial 
distribution Bi(m, µ), with probability of success m in m tri-
als, is the logit function η 5 ln[µ/(1 2 µ)], although other 
link functions are also used (McCullagh & Nelder, 1989). 
The inverse of each of these link functions is constrained 
to fall in the interval [0, 1], necessary for a probability. The 
parameters of the GLM are estimated by maximizing the 
appropriate likelihood function.

Accordingly, the psychometric function P(x) is mod-
eled as
	 η(x) 5 g[P(x)].	 (2)

By making the link function g a transformed logit or other 
inverse cdf,4 the values of the psychometric function are 
constrained to the interval [γ, 1 2 λ] for known guess-
ing and lapsing rates. The function η is almost always a 
polynomial in x of degree 1, so that η(x) 5 a0 1 a1x. The 
coefficients a0 and a1 are simply related to the threshold 
and slope of the psychometric function.

The experimental data consist of the number ri of suc-
cessful responses out of mi trials at each of n stimulus 
levels xi, with 1 # i # n. For convenience, the responses 
are assumed to have a binomial distribution (see note 3) 
Bi[mi, P(xi)] at each level xi, so that the log-likelihood 
takes the following form (McCullagh & Nelder, 1989):
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where g21 is the inverse of g, so that g21[g (q)] 5 q for 
all q. The coefficients a0 and a1 are then estimated by maxi-
mizing l(a0, a1), usually by iterative weighted least squares, 
which proceeds by adjusting the fitted values and weights 
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The shape of this weight function for the estimate at the 
particular stimulus level x0 5 1.0 log cdm22 is shown 
in the left panel of Figure 3 by the solid curve. The data 
points at the lowest three stimulus levels, x 5 0.1, 0.2, 0.3, 
make a negligible contribution to the fit at x0.

The estimated 50% threshold was 0.974 log cdm22 
(indicated by the arrow in Figure 2), which is similar to 
the value obtained with a parametric Gaussian cdf, but the 
local fit is better than any of the parametric fits in the top 
right part of the curve (cf. Figure 1), and it is no worse in 
the remaining part of the curve.

Kernel and Bandwidth
It is known that the influence of the weight function 

w depends less on the shape of the kernel K than on the 
bandwidth h (see, e.g., Härdle et al., 2004). But for data 
where the levels are widely spaced, it is best if K has un-
bounded support, for then the influence of points as they 
are included or excluded from the fit does not lead to a 
rapidly changing estimate (see, e.g., Simonoff, 1996). 

be higher than 1, but usually (see, e.g., Simonoff, 1996) it 
need not be more than 3. The linear approximation used 
here (i.e., order 1) has the particular merit that, if required, 
it guarantees the monotonicity of the estimated psychomet-
ric function if the neighborhood is large enough, as will be 
explained in the next section. It is emphasized that this local 
linear fit is not a concatenation of straight-line segments, 
but a smooth fit whose value at a particular point is obtained 
by performing a locally weighted linear fit at that point.

In more detail, local linear fitting proceeds as fol-
lows. Suppose that the link function is the canonical one 
for the binomial distribution—that is, the logit, g(q) 5 
ln[q/(1 2 q)], with inverse, the logistic function, g21( y) 5 
[1 1 exp(2x)]21. Although the logistic function has some 
advantages, the choice, as already indicated, is not criti-
cal. For a given point x, set α0 5 η(x) and α1 5 η′(x) in 
Equation 3. Then the values of the coefficients α0 and α1 
can be estimated by maximizing the local log-likelihood 
l(α0, α1; x),5 which is similar to the log-likelihood defined 
earlier but now includes a neighborhood weight function 
w(x, xi). The local log-likelihood takes the form of Equa-
tion 4, above. If ̂α0 is the estimated value of α0, the estimate 
of the function η at x is ̂η(x) 5 ̂α0. The estimate of the psy-
chometric function P at x is ̂P(x) 5 g21(̂α0). This process is 
repeated at sufficiently many values of x that the estimates 
P̂(x) provide the required level of detail in the description 
of P for the task in hand. The logit function was used as the 
link in all the examples of local linear fitting in this work.

The weight function w assigns a weight to each stimu-
lus level xi according to its distance from the point x, the 
points closest to x having the greatest influence on the 
estimate. It has the general form

	
w x x

h
K

x x

hi
i, ,( ) =

−





1

	
where K is the kernel and h is the bandwidth characterizing 
the size of the neighborhood. The kernel is a function usu-
ally assumed to be symmetric about zero and compactly 
supported, but this is not necessary for the validity of the 
method. How the kernel is chosen and the bandwidth is 
estimated will be considered in the next section.

Figure 2 shows a local linear fit to the frequency-of-
seeing data shown in Figure 1. The weight function was 
based on a Gaussian density function, with bandwidth h 5 
0.296 log cdm22 chosen by a cross-validation method. 
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(4)

Figure 2. Local linear estimation of a psychometric function for 
frequency of seeing. The proportion of responses “seen” is plot-
ted against log stimulus luminance. Filled circles are data from 
Miranda and Henson (2008), based on 3–20 trials at each stimulus 
level (as in Figure 1), and the curve is a local linear fit with Gauss-
ian kernel and cross-validation bandwidth hCV 5 0.296 log cdm−2. 
The horizontal solid line shows the criterion level for a 50% thresh-
old, and the arrow marks the estimated threshold.
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which is twice the difference between the maximum 
achievable log-likelihood and the log-likelihood under the 
fitted model—that is,

	
D r

r

m P x
m r

m r

m mi
i

i ii

n

i i
i i

i i

=
( )

+ −( ) −
−=

∑2
1

ln
ˆ

ln
P̂P xi( )

,
	

(5)

where P̂ is the estimate of the psychometric function P. 
When the deviance is defined for responses that have a 
normal, rather than a binomial, distribution at each level 
xi, it coincides with the residual sum of squares. An alter-
native measure of goodness of fit is Pearson’s X 2 statistic, 
which for the binomial distribution is given by

	
X

r m P x

m P x P x

i i i

i i ii

n
2

2

1 1
=

− ( ) 
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ˆ

ˆ ˆ∑∑ .
	

Other measures of goodness of fit are described in Read 
and Cressie (1988), Hart (1997), and Collett (2003).

Large values of D indicate a discrepancy between the 
fitted model and the data. But the significance of these 
differences can be interpreted only in relation to the distri-
bution of the statistic. Asymptotically, D is distributed as 
χ2(n 2 k), where k is the number of fitted parameters, but 
the justification for this result relies on assumptions (Mc-
Cullagh & Nelder, 1989) that, in practice, may be uncer-
tain for many psychophysical experiments. In particular, 
if the model has a nonlinear part, as with the Weibull cdf 
or when the guessing and lapsing rates are estimated, the 
asymptotic distribution may also depend on the unknown 
parameters (see, e.g., Hart, 1997).

These uncertainties are greater still for nonparamet-
ric models, where the definition of the number of fitted 
parameters—the degrees of freedom of the fit—has to be 
adjusted for local linear fitting, with the result that k is 

This may be achieved with a Gaussian kernel—that is, 
K(u) 5 exp(2u2/2)—as in the local linear fit shown in 
Figure 2. A Gaussian kernel was used in all the examples 
of local linear fitting in this work.

Deciding on the bandwidth h is more problematic.6 The 
choice is crucial, since h controls the domain of influ-
ence of w and, hence, the smoothness of the local linear 
estimate of the function η in Equation 2. For small h, the 
estimate of η at each x is based on a linear fit to just a few 
neighboring points of x, with the result that the estimate 
follows the data very closely and is therefore susceptible to 
the random variations in the data. For large h, the estimate 
of η at each x is based on a linear fit with most points in 
the data set receiving nearly equal weight, with the result 
that the estimate is very smooth, close to that obtained by 
a parametric method and, therefore, potentially biased.

Figure 3 illustrates how the bandwidth influences the 
weights assigned to each point in arriving at the local lin-
ear estimate. The dotted and dashed curves in the left panel 
are Gaussian weight functions with very small and very 
large bandwidths, respectively. The corresponding fits are 
shown in the right panel: The dotted curve, obtained with 
the very small bandwidth, almost interpolates between 
points, and the dashed curve, obtained with the very large 
bandwidth, almost coincides with the parametric fit with 
a logistic cdf (cf. Figure 1).

Ideally, the bandwidth should be chosen so that the re-
sulting estimate is neither too variable nor too biased. A 
measure of the goodness of fit is thus needed to establish 
what constitutes an optimum bandwidth.

Goodness of Fit
The goodness of fit of an estimated psychometric func-

tion can be measured in several ways. One measure is the 
deviance D (McCullagh & Nelder, 1989, Section 4.4), 

Figure 3. Effect of the weight function on a local linear estimate. The proportion of responses “seen” is plotted against log stimulus 
luminance. Filled circles are data from Miranda and Henson (2008), as in Figures 1 and 2. In the left panel, the dotted and dashed 
curves are (scaled) Gaussian weight functions with, respectively, very small and very large bandwidths h 5 0.12 log cdm22 and h 5 
0.6 log cdm22, centered at the point x0 5 1.0 log cdm22, indicated by the vertical line. In the right panel, the dotted and dashed curves 
are the corresponding fits obtained at x0, where they almost coincide, and over the rest of the stimulus range. The solid curve in the left 
panel shows for comparison the weight function at x0 with the cross-validation bandwidth hCV 5 0.296 log cdm22 used in Figure 2.
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The value of the cross-validation bandwidth hCV that min-
imizes DCV(h) is the estimate of the optimum bandwidth.

Note that the cross-validated deviance is not being used 
to decide between different models but to estimate the best 
possible bandwidth, much as in the parametric method, 
where the parameter values are estimated by maximizing 
the likelihood.

In practice, the values of the cross-validated deviance 
DCV are calculated for a finite number of values of the 
bandwidth h. A plausible lower limit for these values is the 
maximum distance between neighboring stimulus levels, 
and an upper limit is a multiple of the data range. Figure 4 
shows the cross-validated deviance plotted against the 
bandwidth h for the data in Figure 2. The location of the 
minimum hCV 5 0.296 log cdm22, used to estimate the 
optimum bandwidth, is indicated by the arrow.

It is possible to allow the bandwidth h to vary with x, 
so that it adapts to the density of the data points (Fan & 
Gijbels, 1992), but in the examples analyzed here, it is 
constant over the whole data range; that is, the estimation 
is performed in the same way at each data point. This con-
trasts with the parametric method where the asymptotes 
need special treatment.

Asymptotes
The guessing rate γ and lapsing rate λ (Equation 1) have 

decisive roles in the parametric fitting of a psychometric 
function (Treutwein & Strasburger, 1999; Wichmann & 
Hill, 2001). Typically, in an M-alternative forced choice 
task, the guessing rate γ 5 1/M, and, in a yes–no task, 
γ 5 0. But, depending on the response choices available, 

no longer integer (see, e.g., Hastie & Tibshirani, 1990, 
Appendix B). Notwithstanding these caveats, the χ2 dis-
tribution can still be used as a rule-of-thumb reference 
distribution for the deviance (Hastie & Tibshirani, 1990, 
Section 6.8). That is, the value of D obtained for the fit 
is compared with χ2(n − k), and if D falls sufficiently far 
into the tail, it is concluded that the fit is unacceptable. It 
is emphasized that the reported values of D and estimated 
p values are not intended to decide between a local linear 
fit and the corresponding parametric fits, but simply to 
indicate the conventional plausibility of the fits.

For the local linear fit to the data in Figure 2, the value 
of D was 3.91, for which p 5 .78. For the parametric fits 
to the same data in Figure 1, the values of D ranged from 
6.58 for the Gaussian to 4.52 for the reverse Weibull cdf, 
for which p 5 .58 and p 5 .72, respectively.

Cross-Validation
The bandwidth that yields the fitted curve closest to 

the true one depends on the unknown function being 
estimated; hence, it cannot be found explicitly. Instead, 
it can be chosen by one of several automatic methods. 
The three most popular ones are the plug-in (Ruppert, 
Sheather, & Wand, 1995), cross-validation (Xia & Li, 
2002), and the bootstrap (Faraway, 1990). Only cross-
validation was used here. Although no method can be 
guaranteed always to work, cross-validation generally 
estimates the optimum bandwidth well (Loader, 1999), 
and it is not as computationally intensive as the boot-
strap. A detailed discussion of the advantages and disad-
vantages of different approaches to bandwidth selection 
can be found in Loader. As a preliminary to this analysis, 
all three methods were tested in large-scale simulations 
with symmetric and asymmetric synthetic psychometric 
functions. Cross-validation performed no worse than ei-
ther of the other methods.

Motivation for using cross-validation comes from con-
sidering a superficially simpler approach. Suppose that 
the deviance in Equation 5 were used directly as a crite-
rion for bandwidth selection. Then the bandwidth h for 
which the deviance reaches its minimum is h 5 0, where 
the fitted values are exactly the same as the observed ones. 
Thus, the deviance is zero, and the solution is degenerate. 
Cross-validation overcomes this problem in the follow-
ing way (see, e.g., Silverman, 1986). Suppose that there 
were another independent sample drawn from a distribu-
tion identical to that of the original data. Then this second 
sample could be used to create an independent estimate 
P
,

h of the psychometric function P (the dependence of 
estimators on the bandwidth h is made explicit for em-
phasis). This independent estimate can now replace P̂h 
in the deviance (Equation 5), since it estimates the same 
psychometric function P. Because the estimate P

,

h does 
not depend on the original observations, minimizing this 
modified deviance does not lead to a degenerate solution. 
In general, however, additional independent samples are 
not available. Instead, cross-validation employs a leave-
one-out estimator, in which the fit P̂2i,h(xi) at each xi is 
calculated with the ith observation omitted to define the 
cross-validated deviance:

Figure 4. Estimation of the optimum bandwidth. The cross-
validated deviance DCV for the data in Figure 2 is plotted against 
the bandwidth h. The location of the minimum defining the cross-
validation bandwidth hCV 5 0.296 log cdm22 is indicated by an 
arrow. The function is plotted on a log-log scale for clarity.
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2.5]. Three parametric models with fixed guessing and laps-
ing rates were fitted each with the correctly assumed Gauss-
ian cdf and guessing rate γ 5 0.2, but with incorrectly as-
sumed lapsing rates λ 5 0 (dots), λ 5 0.01 (dashes), and λ 5 
0.05 (dashes–dots). All three fitted curves depart noticeably 
from the true curve, not only in the regions where the psy-
chometric function reaches its asymptotes, but importantly 
also in the main body of the curve.

The right panel of Figure 6 shows the fitted curves for 
a correctly assumed Gaussian cdf with estimated guess-
ing and lapsing rates (dots) and for a local linear fit with 
cross-validation bandwidth hCV 5 0.930 (dashes). Both 
methods estimated the guessing and lapsing rates well, and 
the local fit fell reasonably close to the true psychometric 
function (solid curve) in the remaining part of the stimulus 
range. The departure of the parametric estimate from the 
true psychometric function over the interval [21.5, 0.5] 
was presumably due to all the data in this interval falling 
below the true curve.

As an exercise, parametric fits to the frequency-of-
seeing data of Figure 1 were repeated, but with guessing 
and lapsing rates estimated using an optimization routine. 
The deviances were D 5 3.52 for the logit link and D 5 
3.55 for the probit link; for both, p 5 .74. These deviances 
are considerably lower than those for fits with fixed guess-
ing and lapsing rates, but this is to be expected with the in-
crease in the number of parameters from two to four (with 
more sparse data sets still, the fits can become degenerate). 
The estimated guessing rates were γ 5 0.115 for the logit 
link and γ 5 0.117 for the probit link. Yet, on inspection 
of the data (Figure 1), it is obvious that these asymptotes 
are inconsistent with the zero scores obtained at the low-
est three stimulus levels, x 5 0.1, 0.2, 0.3. For most of the 

the guessing rate may deviate from the nominal value, and 
the form of the component F in the psychometric function 
(Equation 1) may change with changes in γ (Klein, 2001). 
Worse still, the lapsing rate λ cannot be predicted unless 
trials are specifically conducted to target this asymptote. 
It is often set arbitrarily to a small value (between 0 and 
0.05) (Harvey, 1986; Strassburger, 2001; Treutwein & 
Strasburger, 1999), but, in fact, there is no reason to be-
lieve that it is equal to any prescribed value. The value of 
λ can strongly influence the estimated function F (Klein, 
2001; Strasburger, 2001; Wichmann & Hill, 2001).

Both guessing and lapsing rates need to be either forced 
in parametric fitting or estimated by maximizing the likeli-
hood. The latter approach is safer, in that it is free from 
bias due to incorrectly assumed values, but it increases the 
number of parameters in the fit, with the potential for dete-
rioration in convergence (Treutwein & Strasburger, 1999). 
It also complicates the calculations, for the asymptotes ap-
pear in the log-likelihood in a nonlinear way, with the result 
that the model then falls outside the GLM framework. Non-
linearity also implies that the solution cannot be found by 
iterative weighted least squares (Treutwein & Strasburger, 
1999). By contrast, the local linear method estimates the as-
ymptotic values automatically, without the need to specify 
them explicitly in the likelihood, providing that there are 
sufficient data available in the required regions.

As an example, Figure 5 shows parametric and local lin-
ear fits to synthetic data generated from a model psycho-
metric function (Equation 1) with the function F set to the 
standard Gaussian cdf Φ0,1 (solid curve). The guessing rate 
γ 5 0.2 corresponds to a five-alternative forced choice par-
adigm. The stimulus levels were 15 equally spaced points in 
the interval [26, 2], and there were 50 trials at each stimu-
lus level. About half of the data points are in the region 
where the function reaches the guessing rate. Two paramet-
ric models were fitted, each with the (correct) Gaussian 
cdf: one with guessing rate fixed at the true value 0.2 (dots, 
largely obscured), and the other in which the guessing rate 
was estimated by maximizing the log-likelihood function 
(dashes). Both functions were quite close to the true func-
tion (solid curve), although the second parametric model 
slightly underestimated the guessing rate. The local linear 
fit, with cross-validation bandwidth hCV 5 1.032 (dashes–
dots), stabilizes around the same value of the guessing rate 
as the global model with explicitly estimated guessing 
rate. Although the underlying psychometric function in the 
guessing region is essentially a horizontal line, the local 
linear fit has no prior knowledge of this behavior, so that 
some variation in the fit is to be expected, possibly leading 
to a departure from monotonicity. If more accurate model-
ing in this region is needed, the bandwidth could be varied 
adaptively with location (Fan & Gijbels, 1992), but this ap-
proach will not be taken further.

Figure 6 illustrates the risks of attempting to force a 
lapsing rate onto a parametric fit without knowing the cor-
rect rate. In the left panel, synthetic data were taken from a 
model psychometric function (Equation 1) with the function 
F again set to the standard Gaussian cdf Φ0,1 with guessing 
rate γ 5 0.2 and lapsing rate 0.02 (solid curve). The stimulus 
levels were 15 equally spaced points in the interval [22.5, 

Figure 5. Effect of known and estimated guessing rates. Filled 
circles are synthetic data from a model psychometric function 
Φ0,1 (solid curve). The other curves are for parametric fits of a 
correctly assumed Gaussian cumulative distribution function 
with correctly assumed guessing rate γ 5 0.2 (dots) and esti-
mated guessing rate (dashes), and for a local linear fit with cross-
validation bandwidth hCV 5 1.032 (dashes–dots).
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slope, whose estimates may be obtained by plugging the 
estimated parameters into these expressions. In local linear 
modeling, the psychometric function is estimated at each 
point of interest x, but there is no closed-form expression. 
Nevertheless, these statistics can easily be obtained from 
the fitted curve.

For example, for a criterion level of performance of 
50%, the corresponding threshold stimulus level x0.5 can 
be approximated by the value ˆx0.5 at which the estimated 
psychometric function P̂  takes a value closest to 0.5. Sim-
ilarly, if the slope is defined as the first derivative P ′(x0.5) 
of P at x 5 x0.5, it can be approximated by the discrete 
first derivative P̂ ′( ˆx0.5) at x 5 ˆx0.5. Standard errors for 
each may be estimated by a bootstrap method (Efron & 
Tibshirani, 1993; Foster & Bischof, 1991).

To illustrate how this method works in practice, values 
of the 60% threshold and the slopes corresponding to these 
thresholds were obtained from the synthetic data in Fig-
ure 5. The estimates, along with their standard errors esti-
mated by a bootstrap, are given in Table 2. For comparison, 
the true values of the threshold and slope are also shown.

Examples
Six data sets, taken from studies of vision and hear-

ing, were fitted by the local linear method, with cross-
validation bandwidth, and, for comparison, by the four 
parametric models considered earlier (see Table 1). In 
the figures, the parametric fits are shown by interrupted 
curves: the Gaussian cdf by dots, the Weibull by dashes, 
the reverse Weibull by dashes–dots, and, when different 
from the Gaussian, the logistic cdf by short dashes. The 
local linear fit is shown by a solid curve.

The first two examples demonstrate that the local fit 
behaves much as parametric models do when they fit the 

other data sets considered here, parametric estimates of 
guessing and lapsing rates were very sensitive to the choice 
of initial values in the optimization, often leading to degen-
erate results, and they will not be considered further.

From a psychophysical standpoint, the particular roles 
of the guessing rate γ and lapsing rate λ are treated more 
coherently within the context of a specific theory of per-
formance, such as signal detection theory (Macmillan & 
Creelman, 2005).

Signal Detection Theory
The importance of signal detection theory in estimating 

the psychometric function has been emphasized by Klein 
(2001). In signal detection theory, the guessing rate is in-
corporated into a discrimination measure d ′, defined as the 
difference at each x between the linearized hit rate pH(x) 
and the linearized false alarm rate pFA. The latter is, in the 
theory, independent of x; that is, d ′ 5 g[ pH(x)] 2 g( pFA), 
where g 5 Φ0,1

21 is the inverse of the standard Gaussian 
cdf. The symbol z is often used for Φ0,1

21, and the discrimi-
nation index is accordingly written d ′ 5 z[ pH(x)] 2 z( pFA). 
The link function g need not be restricted to Φ0,1

21 and 
may be replaced by the logit or any other function in the 
GLM family (DeCarlo, 1998). With the correct link func-
tion, d ′ is a polynomial in x of degree 1. Transforming the 
data in this way does not, of course, change the nature of 
the problem—namely, finding the correct link function.

Estimating Threshold and Slope
Recall that in parametric modeling, the psychometric 

function is uniquely determined by the link function and 
the parameters a0 and a1 through the relationship P(x) 5 
g21(a0 1 a1x) (Equation 2). Therefore, there exist closed-
form expressions for statistics, such as the threshold and 

Figure 6. Effect of incorrectly assumed and estimated lapsing rates. In both panels, the filled circles are synthetic data from a model 
psychometric function Φ0,1 with guessing rate γ 5 0.2 and lapsing rate λ 5 0.02 (solid curve). The other curves in the left panel are 
for parametric fits of a correctly assumed Gaussian cumulative distribution function (cdf) with correctly assumed guessing rate γ 5 
0.2 and lapsing rate fixed at λ 5 0 (dots), λ 5 0.01 (dashes), and λ 5 0.05 (dashes–dots). The other curves in the right panel are for 
a parametric fit of a correctly assumed Gaussian cdf with estimated guessing and lapsing rates (dots), and for a local linear fit with 
cross-validation bandwidth hCV 5 0.930 (dashes).

Pr
o

p
o

rt
io

n
 C

o
rr

ec
t

0

.2

.4

.6

.8

1.0

–3 –2 –1 0 1 2 3

Stimulus Level

–3 –2 –1 0 1 2 3

Stimulus Level

0

.2

.4

.6

.8

1.0

Model

λ = 0

λ = 0.01

λ = 0.05

Model

λ, γ estimated

Local linear



1422        Żychaluk and Foster

Table 2 
True and Estimated Thresholds and Slopes for the Synthetic Data of Figure 5

Psychometric Function  Threshold  SE  Slope  SE

Model 0 0.319
Gaussian cdf with known guessing rate 0.166 0.100 0.386 0.053
Gaussian cdf with estimated guessing rate 0.150 0.101 0.381 0.054
Local linear fit 0.070 0.115 0.328 0.032

Note—Criterion level of performance was 60%; cdf, cumulative distribution function.

data well. The second example also illustrates the ability 
of the local linear method to adjust automatically to the 
guessing rate. The remaining examples reveal the distinct 
strengths of the local fit when parametric fits are poor.

Visual detection of path deviation. Figure 7 shows 
results from a study of path deviation of a moving visual 
stimulus (Levi & Tripathy, 2006). The subject was pre-
sented with the image of a dot moving rightward on a lin-
ear path until it reached the midline of the display, when it 
changed direction either upward or downward. The subject 
had to indicate the direction. The symbols in Figure 7 show 
the proportion of correct responses on 30 trials as the devi-
ation varied from 23 to 3 units (Levi & Tripathy, 2006).

All the parametric models gave acceptable fits, with the 
deviance ranging from D 5 0.894 for the Weibull cdf to 
D 5 3.57 for the Gaussian cdf. For all the parametric mod-
els, p . .61. As with the parametric fits in Figure 1, there 
were variations in the estimated 50% threshold, which 
ranged from 20.568 for the Weibull cdf to 20.0751 for 
the Gaussian cdf. The deviance for the local linear fit, with 
cross-validation bandwidth hCV 5 2.22, was D 5 2.06, 
p 5 .77, and the estimated 50% threshold was 20.220.

Discrimination of pitch. Figure 8 shows data from a 
three-alternative forced choice experiment on pitch dis-
crimination (unpublished data from S. Carcagno, Lan-
caster University, July 2008). The subject had to identify 
the interval containing a tone whose fundamental fre-
quency was different from that in the other two intervals. 
The symbols in Figure 8 show the proportion of correct re-
sponses as the difference between the tones varied. There 
were 3–49 trials at each stimulus level.

With the assumed guessing rate of 1/3, all the paramet-
ric models gave acceptable fits. The deviance ranged from 
D 5 2.82 for the logistic cdf to D 5 2.98 for the Gaussian 
cdf (for all the parametric models, p . .7). The deviance 
for the local linear fit, with cross-validation bandwidth 
hCV 5 0.562, was similar, with D 5 2.64, p 5 .72, but the 
local method required no assumption about the guessing 
rate. It also provided a less biased fit at small frequency 
differences (x 5 2.0 to x 5 3.0).

Discrimination of “porthole” views of natural 
scenes. Figure 9 shows data from an experiment on the visual 
perception of fragmented images (unpublished data from Xie 
& Griffin, 2007). The subject was presented with a display 
split into two parts, one containing a pair of patches from the 
same image, the other a pair from different images, and the 
subject had to judge which pair came from the same image. 
The symbols in Figure 9 show the proportion of correct re-
sponses on 200 trials as a function of patch separation.

Of the four parametric models, only the Weibull cdf 
gave an acceptable fit, with deviance D 5 12.6, p 5 .084. 

Figure 8. Discrimination of pitch. The proportion of correct 
responses in identifying the interval containing a tone whose fun-
damental frequency was different from that in two other intervals 
is plotted against the logarithm of the percentage difference in 
frequency. Filled circles are unpublished data from S. Carcagno 
(Lancaster University) and are based on 3–49 trials at each level.  
The curves are parametric and nonparametric fits, as identified 
in the key.
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Figure 7. Visual detection of path deviation. The proportion of 
correct responses in detecting the path deviation of a moving dot 
is plotted against the size of the deviation. Filled circles are data 
from Levi and Tripathy (2006) and are based on 30 trials at each 
stimulus level. The curves are parametric and nonparametric fits, 
as identified in the key.
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a principal component analysis. The task was to distinguish 
between the images. The symbols show the proportion of 
correct responses as a function of the number of compo-
nents in the approximation. There were 200 trials at each 
level, pooled over a range of natural scenes.

Again, none of the parametric models fitted the data 
well: The deviance ranged from D 5 18.8, p 5 .002, for 
the Weibull cdf to D 5 33.1, p ,, .0001, for the logis-
tic cdf. The local linear fit with cross-validation bandwidth 
hCV 5 1.13 was better, with deviance D 5 16.7, p 5 .003, 
although still not conventionally acceptable. Nevertheless, 
it was obviously less biased over the region x 5 5 to x 5 8 
and had slightly more of an inflection at x 5 3. Similar 
conclusions were drawn in Foster and Żychaluk (2007), 
where the same data were fitted by a local linear estimator 
with bandwidth chosen by a bootstrap method.

Auditory detection of a gap in noise. Figure 12 shows 
results from a study of auditory detection of a gap in noise 
(Baker, Jayewardene, Sayle, & Saeed, 2008). A 300-msec 
noise burst containing either a gap of 2–8 msec duration or 
no gap was presented to one ear of a subject. The symbols 
in Figure 12 show the proportion of “gap” responses as a 
function of gap duration. There were 12 trials with each 
gap duration and 84 trials with no gap.

None of the parametric models gave an acceptable fit, 
with the deviance ranging from D 5 11.5, p 5 .042, 
for the reverse Weibull cdf to D 5 17.2, p 5 .009, for 
the Gaussian cdf. The estimated 50% threshold ranged 
from 2.87 msec for the Weibull cdf to 3.51 msec for the 
Gaussian cdf.

The local linear fit with cross-validation bandwidth 
hCV 5 2.06 msec was clearly better, with deviance D 5 7.5, 
p 5 .15. The estimated 50% threshold was 3.11 msec.

For the other parametric models, D . 18, p , .012. For 
the local linear fit with cross-validation bandwidth hCV 5 
2.44 log2 pixels, D 5 9.28, p 5 .23.

Induction of a visual motion aftereffect. Figure 10 
shows results from a study of a dynamic visual motion after-
effect (Schofield, Ledgeway, & Hutchinson, 2007). The sub-
ject was presented with a moving adaptation stimulus, fol-
lowed by a test stimulus. The symbols in Figure 10 show the 
proportion of responses in which the subject indicated mo-
tion of the test stimulus in the same direction as the adapting 
stimulus, either up or down, as a function of relative modula-
tion depth. There were 10 trials at each stimulus level.

None of the parametric models gave an acceptable fit, 
with the deviance ranging from D 5 10.6, p 5 .031, for the 
Weibull cdf to D 5 17.3, p 5 .004, for the Gaussian cdf. The 
local linear fit with cross-validation bandwidth hCV 5 23.2% 
was evidently better, with deviance D 5 4.75, p 5 .24.

Note that the proportions of “same” responses all take 
either very low (#.1) or high ($0.7) values, and therefore, 
the model curve has to be very steep to fit well. This was 
impossible with the constraints on the forms of the para-
metric models, but the local linear fit was able to adapt bet-
ter. It did exhibit a slight variation from monotonicity near 
the lower asymptote, but, as was noted earlier, deviations 
of this kind are often present in the guessing region where, 
ideally, the psychometric function would be constant. The 
local fit may be improved in this region by constraining the 
function to be monotonic.

Discrimination of image approximations. Figure 11 
shows data from a two-alternative forced choice visual dis-
crimination task (unpublished data from Nascimento, Fos-
ter, & Amano, 2005). The subject was shown an image of a 
natural scene and an approximation of this image based on 

 Figure 9. Discrimination of “porthole” views of natural scenes. 
The proportion of correct same–different judgments of patches 
of images from natural scenes is plotted against the logarithm of 
the separation of the patches in pixels. Filled circles are unpub-
lished data from Xie and Griffin (2007) and are based on 200 
trials at each stimulus level. The curves are parametric and non-
parametric fits, as identified in the key.
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Figure 10. Induction of a visual motion aftereffect. The propor-
tion of responses in which motion of the test stimulus appeared in 
the same direction as the adapting stimulus is plotted against the 
relative modulation depth. Filled circles are data from Schofield, 
Ledgeway, and Hutchinson (2007) and are based on 10 trials at 
each stimulus level. The curves are parametric and nonparamet-
ric fits, as identified in the key.
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Conclusion
Fitting a wrong model function to a set of data can 

clearly give misleading inferences. But the problem of 
model uncertainty cannot be properly resolved by fitting 
several different parametric models, with or without esti-
mates of the guessing and lapsing rates, and then appeal-
ing to a goodness-of-fit measure to decide between them. 
Differences in goodness of fit may be difficult to interpret, 
and systematic biases may still persist in the best-fitting 
parametric curve, as has been illustrated in the examples 
analyzed here. As a consequence, derived statistics, such 
as the threshold and slope, may also be biased away from 
the true value.

By contrast with parametric modeling, the local linear 
method needs no assumption about the true model, ex-
cept its smoothness. The method adjusts automatically to 
unknown guessing and lapsing rates, which need not be 
treated specially, thereby avoiding the risk of misspecifi-
cation, which, in a parametric model, may have a dispro-
portionate impact on the rest of the curve. The threshold 
and slope may be readily extracted from the locally fit-
ted function, along with estimates of their standard er-
rors, which may be used to test the equality or otherwise 
of these parameters from multiple data sets. Critically, as 
the size of the data set increases, the locally fitted func-
tion necessarily approaches the true, albeit unknown, 
function.

The success of the local linear method does depend on 
the choice of bandwidth, but fortunately, there are several 
methods of estimation, and the cross-validation method 
used in this work led to good estimates. The local linear 
method may be extended to sets of data in which there 
are several independent variables—for example, within 
the framework of a generalized additive model (Hastie & 
Tibshirani, 1990).

As a matter of principle, a correct parametric model 
will always do better than a nonparametric one, simply 
because the parametric model assumes more about the 
data, but given an experimenter’s ignorance of the correct 
model, the local linear method provides an impartial and 
consistent way of addressing this uncertainty.
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There is evidence of a nonzero lapsing rate with the 
longer gaps, x . 4 msec, which was estimated automati-
cally by the local linear method but ignored by the global 
models. The local method was also less biased at interme-
diate and shorter gaps.

Figure 11. Discrimination of image approximations. The pro-
portion of correct discriminations of an image of a natural scene 
and an approximation of this image based on principal compo-
nent analysis is plotted against the number of components in the 
approximation. Filled circles are unpublished data from Nasci-
mento, Foster, and Amano (2005) and are based on 200 trials at 
each level. The curves are parametric and nonparametric fits, as 
identified in the key.
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Figure 12. Auditory detection of a gap in noise. The proportion 
of responses indicating the presence of a gap is plotted against 
the duration of the gap. Filled circles are unpublished data from 
Baker, Jayewardene, Sayle, and Saeed (2008) and are based on 12 
trials at each nonzero stimulus level and 84 trials at zero stimu-
lus level. The curves are parametric and nonparametric fits, as 
identified in the key.
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bandwidth selector for local least squares regression. Journal of the 
American Statistical Association, 90, 1257-1270.

Schofield, A. J., Ledgeway, T., & Hutchinson, C. V. (2007). Asym-
metric transfer of the dynamic motion aftereffect between first- and 
second-order cues and among different second-order cues. Journal of 
Vision, 7, 1-12. doi:10.1167/7.8.1

Silverman, B. W. (1986). Density estimation for statistics and data 
analysis. London: Chapman & Hall.

Simonoff, J. S. (1996). Smoothing methods in statistics. New York: 
Springer.

Strasburger, H. (2001). Invariance of the psychometric function for 
character recognition across the visual field. Perception & Psycho
physics, 63, 1356-1376.

Treutwein, B., & Strasburger, H. (1999). Fitting the psychometric 
function. Perception & Psychophysics, 61, 87-106.

Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: 
I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 
63, 1293-1313.

Wolfowitz, J. (1942). Additive partition functions and a class of statis-
tical hypotheses. Annals of Mathematical Statistics, 13, 247-279.

Xia, Y., & Li, W. K. (2002). Asymptotic behavior of bandwidth selected 
by the cross-validation method for local polynomial fitting. Journal of 
Multivariate Analysis, 83, 265-287. doi:10.1006/jmva.2001.2048

Xie, Y., & Griffin, L. D. (2007). A “portholes” experiment for probing 
perception of small patches of natural images. Perception, 36, 315. 
doi:10.1068/ava06

Yssaad-Fesselier, R., & Knoblauch, K. (2006). Modeling psycho-
metric functions in R. Behavior Research Methods, 38, 28-41.

Notes

1. A nonparametric approach, by definition, does not need knowledge 
of the parametric form of the distribution from which the observations 
are drawn (Wolfowitz, 1942). Its application here refers only to the psy-
chometric function, not the distribution of quantal responses at each 
stimulus level, which may or may not be binomial.

2. Smoothness here means that the function should be continuous and 
have derivatives up to order 2, so that a Taylor expansion of order 1 may 
be made at each point.

3. If the binary responses at the same stimulus level are independent, 
their sum necessarily follows a binomial distribution. If responses are 
dependent or response probabilities vary, a binomial distribution may 
still be used, but with an allowance for overdispersion (Collett, 2003). 
Alternatively, a quasi-likelihood method can be used, although it leads 
to a similar result (McCullagh & Nelder, 1989).

4. The transformation is defined by Equation 1.
5. As in a parametric setting, the likelihood function can be replaced 

by quasi-likelihood allowing for overdispersion; compare note 3.
6. The bandwidth h is sometimes called a smoothing parameter (Fan & 

Gijbels, 1996; Simonoff, 1996), but its role in nonparametric estimation 
is very different from the role of the parameters in conventional paramet-
ric estimation. In parametric estimation, the parameters a0 and a1 and the 
link function g uniquely define the psychometric function P. The data are 
used only to estimate a0 and a1, after which P is fixed. In nonparametric 
estimation, however, the smoothing parameter h does not uniquely de-
fine P. Although the data are used to estimate h, it is only after they are 
actually smoothed that P is fixed. The same h can thus be used to estimate 
different psychometric functions from different sets of data.

Supplemental Materials

The raw data used in the seven examples discussed in this article 
may be downloaded from app.psychonomic-journals.org/content/
supplemental. In addition, software packages for performing local linear 
fitting of psychometric functions are available at the authors’ Web sites, 
http://personalpages.manchester.ac.uk/staff /david.foster, www.liv.ac.uk/
maths/SP/HOME/K_Zychaluk.html, and www.eee.manchester.ac.uk/
research/groups/sisp/software.

(Manuscript received September 16, 2008; 
revision accepted for publication March 23, 2009.)
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