
International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

DOI : 10.5121/ijsea.2011.2302 22

IMPACT OF SOFTWARE REQUIREMENT
VOLATILITY PATTERN ON PROJECT DYNAMICS:

EVIDENCES FROM A CASE STUDY

Rahul Thakurta

Information Systems, Xavier Institute of Management, Bhubaneswar, India
rahul@ximb.ac.in

Subhajit Dasgupta
Business Application Services – JDEdwards practice, Wipro Technologies, India

 subhajit.dasgupta@wipro.com

ABSTRACT

Requirements are found to change in various ways during the course of a project. This can affect the

process in widely different manner and extent. Here we present a case study where-in we investigate the

impact of requirement volatility pattern on project performance. The project setting described in the case

is emulated on a validated system dynamics model representing the waterfall model. The findings indicate

deviations in project outcome from the estimated thereby corroborating to previous findings. The results

reinforce the applicability of system dynamics approach to analyze project performance under

requirement volatility, which is expected to speed up adoption of the same in organizations and in the

process contribute to more project successes.

KEYWORDS

Requirement Volatility, Software Development, Project Performance, System Dynamics, Case Study

1. INTRODUCTION

Software developers nowadays have reconciled to the fact that requirements will change during

the development of software [1, 2]. Such change in requirements during software project

lifecycle referred to as requirement volatility has been found to adversely impact project

outcomes like effort, time and residual errors [3, 4, 5]. Requirement change has also been

observed to take place in different patterns (for example exponential rise (NASA case study:

[6]), exponential decay [7], triangular [8], etc) where a pattern indicates the geometrical shape

to which the change orders/requests generating during project development can be

approximated. For a given amount of requirement change, the results showed disproportional

variation in project parameters like effort, schedule, manpower and error generation with the

pattern of requirement volatility [9], and the findings were in contradiction to the COCOMO

estimates (Constructive Cost Model [10]). However the findings were based on data of a

medium-scale project under hiring and in presence of schedule penalty. Given the findings of

the study, can we expect similar results in live-project settings? How well does the simulation

findings portray and explain the project dynamics in organizations? To facilitate investigation,

we adopt a case-study approach here where-in a validated model of software project dynamics is

calibrated to the project environment.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

23

The paper is organized in the following sections. The description of the case is provided in the

next section. Then we provide the methodology where we present the model that has been used

here, and outline the experiment design. The following section presents the study results.

Finally in conclusion we summarize the key findings and also present the future research

opportunities.

2. CASE EXAMPLE

The case study was conducted at a leading information technology services organization with

headquarter in USA, and offices worldwide. The IT service is organized as an onsite/offshore

delivery model and uses industry standard frameworks for providing solutions to the business.

The projects are executed using project management methodologies like the waterfall, the

iterative, and the agile frameworks. The teams caters to the organizational capabilities for

performing the various project related activities like planning, scheduling and tracking, review

and audit, requirements management, test management, defect and issue management. Detailed

data about the process is regularly captured and stored in the software environment.

This particular project is based on the waterfall model and was found to be endangered because

of requirement volatility. The project’s data consists of estimates of project size, effort, duration

and manpower, number and type of the change requests raised and the associated effort, and

specific values of parameters needed to synchronize the model with the project environment.

The data were collected from available project metrics and based on discussions with project

members.

2.1. Project overview

The project involved updating the “Advanced Commercial Banking System (ACBS)” of a

leading bank based in US. The lending department of the bank used a lower version of the

ACBS which needed to be upgraded to version 4.05. The project was estimated to be of

medium-sized (< 10,000 Lines of Code (LOC) for which the waterfall process model was

chosen as appropriate. The project was initially planned for a one-release cycle of 34 weeks

(170 working days) starting from 02-April-2002 (onsite requirements analysis), with the

implementation tentatively ending on 30-October-2002. The representatives of the lending

department group serves both as the user and the business side contact to the project. The

project was executed on the IBM AS400 platform and used 3rd party tools for development. The

project team comprised of developers, quality assurance engineer, and the project manager.

Personnel from support and other areas are involved in the project, but are not treated as

members of the development team. The project characteristic is summarized in Table 1.

Table 1. Project characteristics

Parameter Value / Description

Project Name Advanced commercial Banking System Upgrade

Brief Project Description Commercial Lending department of a leading Bank in US

uses ACBS. Needs upgrade from a lower version to ACBS

4.05

Project Type Conversion / Application Upgrade

Development Platform IBM AS400, LANSA AD CASE tool

Programming Language RPG/400, CL/400 LANSA Rapid Development

Maintenance Language

Application Type Banking Application to Handle Commercial Loans

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

24

Project Life Cycle Model Waterfall

Because of some start up delays, the project ultimately started on 01-June-2002, 2 months

behind the planned starting date. The initial project manpower was 3 persons. The project

spanned 65 calendar weeks (325 working days) ending finally on 31-Aug-2003. The delay was

primarily because of issue of change requests during project execution, which introduced

difficulties in project management. The project was also holdup for a month to synchronize

implementation with other modules, which contributed to the delay. The final delivered project

size was approximately 9985 LOC which led to a total expenditure of 2452 man-days of effort

on development, quality assurance (QA), rework, and testing activities.

2.2. Change Requests

Several change requests were raised by the users during project development. The changes

requested were of nominal complexity. Table 2 lists the type of change requests raised, its

priority, the start and end dates, the effort expended, and the final status of the change requests.

Table 2. Change requests

CR

No

Priority Change

Type

Status Actual Estimate

 Start Date End Date Actual Effort

1 Urgent Add Completed Sept 2002 Dec 2002 20 man-days

2 Urgent Add Completed Sept 2002 Dec 2002 27 man-days

3 Desirable Add Completed Dec 2002 Dec 2002 3 man-days

4 Desirable Query Completed Feb 2003 Feb 2003 6 man-days

5 Desirable Report Completed Feb 2003 Feb 2003 3 man-days

6 Desirable Modify Completed Feb 2003 Aug 2003 28 man-days

7 Desirable Report Completed March 2003 March 2003 5 man-days

8 Desirable Query Completed March 2003 March 2003 4 man-days

9 Desirable Modify Completed March 2003 March 2003 6 man-days

10 Urgent Impact

analysis

Completed April 2003 May 2003 21 man-days

The cumulative total effort expended in these 10 change requests was 123 Person-Days. The

changes were raised during a span of 11 months (between September, 2002 and August, 2003

with the exclusion of January in which no new change requests were raised or resolved). All the

change requests were resolved successfully and incorporated in the project. This resulted in a

further increase in project size by 2414 LOC from the original estimate.

3. METHODOLOGY

System dynamics (SD) [11] has been used increasingly in software development [12] to model

different problems and conduct what-if type analysis to assist various stakeholders. The basic

premise in SD is that system behavior results from interaction among its feedback loops. Model

building begins with development of a causal loop diagram that consists of a collection of

causal links, each having a certain polarity. A positive (negative) link implies a reinforcing

(balancing) relation where a positive change in the cause results in a positive (negative) change

in the effect. The causal loop graph can be mapped to a mathematical model consisting of a

system of difference equations, which can be simulated under different parametric conditions.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

25

Figure 1. Model causal-loop diagram

Our starting point is Abdel-Hamid’s [6] SD model based on the waterfall methodology that

integrates all relevant processes of software development. The model causal loop diagram is

shown in Figure 1. The arrows in the diagram represent cause-effect relationship e.g. Schedule

Pressure affects Error Rate. Perceived Project Size culminates in Project Tasks Perceived

Completed as Workforce at Actual Productivity level work on the project at Software

Development Rate. Workforce size changes as a result of Adjustments to Workforce and

Schedule decision of the management and the resulting Hiring rate. Actual Productivity of

workforce is affected by Potential Productivity, Process Losses and Learning. Rookies in the

team affect Workforce Experience Mix unfavorably and lower Actual Productivity. Increase in

Workforce size increases Process Losses and deteriorates Actual Productivity. Increase in

Forecasted Completion Date increases Schedule Pressure and, in turn, increases Actual

Productivity.

In reality the change in dynamics due to change in Perceived Project Size is far more complex

because of delays in various cause-effect links. For example, organizations take time to find

right people and allocate them to projects. Rookies also take time to get trained and become

fully productive. This introduces delay between Adjustments to Workforce and Schedule

decision and Workforce. The increase in Effort Perceived Still Needed caused by increase in

Perceived Project Size thus takes time to affect increase in Project Tasks Perceived Completed

and subsequent downward adjustment of Effort Perceived Still Needed.

The model was simulated in order to investigate the impact of the change order generation

pattern based on data of change requests (refer to Table 2) using the commercially available

iThink software. Given below are the estimates of some of the key parameters required for

simulation

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

26

• Perceived Project Size

At the beginning of the project, the project size was estimated at 7572 Lines of Code. There

were subsequent additions and modifications because of requirements volatility

• Estimated Project Effort

The initial estimate of project effort from beginning of requirements analysis till the end of

big fixing was 780 man-days. Our model excludes requirements analysis & prototyping,

implementation & acceptance testing phases, and subsequent maintenance support phases.

For this we had to deduct the following:

o 75 man-days (for requirements analysis & prototyping)

o 65 man-days (for implementation & acceptance testing phases)

o 10 man-days (for maintenance support phase)

Hence the final estimate of project effort for our simulation model came out as 630 man-days

• Estimated Project Schedule

The project was initially estimated to be 34 weeks (170 working days) starting from 02-

April-2002. Since our model excludes requirements analysis & prototyping, offshore

infrastructure set-up, implementation & acceptance testing and subsequent support phase, we

subtracted the following from the estimate:

o 20 working days (for requirements analysis & prototyping)

o 5 working days (for offshore infrastructure set-up)

o 45 working days (for implementation & acceptance testing)

o 10 working days (for offshore support)

Thus the effective schedule estimate for our model was arrived at 90 working days (18

weeks)

• Nominal Potential Productivity

This parameter represents the set of productivity determinants that distinguish different

development environments, such as availability of software tools, languages used, computer

hardware characteristics, and product complexity [6]. This nominal potential productivity

remains invariant during the development process of a single project. The nominal potential

productivity for this project was estimated based on the actual effort expended on project

development. This includes effort expended on development, QA, and rework activities. As

stated above, the total effort expended to develop 9985 Lines-of-Code was approximately

2452 man-days (excluding effort spend on requirements gathering, implementation and

support). The person day expenditure on QA, rework were not recorded separately. Testing

accounted for about 30% of the above calculated effort based on the initial

specification. Therefore, the effort expended solely on project development activities

accounted for about 70%* 2452 = 1716 man-days.

Based on the above, the software development productivity came out as 9985/1716 = 5.82

LOC/man-day. In our model, the nominal productivity is the productivity, considering the

multiplier due to motivation and communication loss, and multiplier due to project

complexity. Multiplier due to project complexity was estimated at 0.75 based on the data

provided. Multiplier due to user involvement came out at 0.58. The nominal fraction of man-

day on the project was 0.7 and the project on average used 5 full-time personnel. These two

led to the derivation of multiplier due to motivation and communication loss as (0.7*(1 -

0.03)) = 0.679. The nominal potential productivity was thus estimated as

5.82/(0.679*0.75*0.58) = 19.7 LOC/man-day.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

27

• Initial Staffing Level

The project began with three full time employees (FTE) who were experienced in the project

domain.

4. RESULTS

The model was run to simulate the project outcome. Here we analyze how the change order

generation pattern impacts the project dynamics, and in the process compare the simulation

results with the actual behavior. The discussion on the key parameters is provided below

Change Order Generation Rate

Figure 2 depicts the pattern of change order generation during project execution based on the

simulation results. The actual project values are shown as red squares. The actual values were

arrived by assuming that the effort expended on each of the completed change requests were

expended uniformly over the prescribed duration. This was then converted into appropriate units

(Tasks/Day) which then represented the average rate of change of requirements. The X-axis

represents time in working days.

Figure 2. Change order generation rate

Results depict striking similarities in the pattern of change order generation between the actual

and the simulated output. The change requests raised during the initial stages of the project were

comparatively large and involved long processing duration. In the middle stages a high priority

change request was raised which also needed immediate attention. Some small change requests

were raised towards the end of the project. Such behavior was also reproduced by the simulation

model. The simulation model output indicated a final delivery of precisely 504.3 tasks (9935

LOC) which is very close to the actual result (9985 LOC)

Total Workforce

Figure 3 depicts the workforce augmentation pattern in both the simulation model, and the

actual project. The red curve indicates the actual project workforce at any point of time. The

simulated outcome is provided by the blue curve.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

28

0

5

10

15

20

25

1 21 41 61 81 101 121 141 161 181 201 221

Days

T
o

ta
l

P
ro

je
c
t

W
o

rk
fo

rc
e

Simulated Project Workforce Actual Project Workforce

Figure 3. Total workforce

In the real project, the workforce augmentation followed a discrete pattern. Project hiring was

based on a workforce allocation matrix developed at the start of the project. Some deviations

from the planned matrix did take place because of workforce availability issues, and

management decisions.

The simulation model represents workforce augmentation in a continuous manner. The upfront

uniform rate of change order generation (Figure 2) led to some initial hiring after which the

workforce stabilized. Another phase of hiring was triggered from day 60 onwards driven by an

increase in the rate of change order generation (Figure 2). The workforce was gradually released

in the last stages when the rate of change order generation also dropped down. This continuous

pattern of workforce adjustments led to a higher peak of total workforce compared to the real

scenario in which the hiring and release were in discrete intervals. Results indicate the simulated

workforce pattern to exceed the actual result. The project workforce was decided in agreement

with the business side and was billed accordingly. Hence it was not possible for the project

management to change the project workforce at will.

Software Development Productivity

Figure 4 plot the simulated software development productivity over time together with actual

project results (red squares).

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

29

0.20

0.40

0.60

0.80

1.00

1 21 41 61 81 101 121 141 161 181 201 221

Days

S
o

ft
w

a
re

 D
e

v
e

lo
p

m
e

n
t

P
ro

d
u

c
ti

v
it

y

Simulated Development Productivity Actual Development Productivity

Figure 4. Software development productivity

The variation of productivity in the simulation model can be explained as follows. The

workforce stability attained during the initial portion of the project (Figure 3) led to a gradual

rise in productivity. Some dip occurs at a later instance triggered by the phase of hiring (Figure

3) and the resultant communication and training overheads. The schedule pressure (not shown)

increases towards the later stages of the project, and it causes the productivity to peak which

then continues till project completion.

Now under the actual scenario, the productivity data was collected at discrete points, roughly at

intervals of two weeks. The productivity was low to start with as a new technology was used in

the project with which the project members were not very competent. There were not much

observed fluctuations in productivity during the initial stages of the project and the pattern was

pretty uniform. Productivity rapidly increased towards the later stages of the project as the

workforce became experienced with the technology, and they were also working long hours per

day. The pattern of increase closely matched the simulation result.

Schedule Completion Date

Figure 5 depicts how the project estimated completion date, measured in terms of number of

working days, changed during the project. The actual project values are shown as red squares.

The X-axis represents time in working days.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

30

0

50

100

150

200

250

1 21 41 61 81 101 121 141 161 181 201

Days

S
c
h

e
d

u
le

d
 C

o
m

p
le

ti
o

n
 D

a
te

Simulated Project Completion Date Actual Project Completion Date

Figure 5. Schedule completion date

The model portrays variation of the expected date of completion of the simulated project

activities pertaining to project development, quality assurance and rework, and testing and

correction. A continuous adjustment could be noted in response to the on-going status. Initially

with change order generation happening at a nearly uniform rate, the project is perceived to on

schedule and hence no adjustment is made to the project completion date. With progress, delays

are perceived in project status. Coupled with that, the temporal increase in change order

generation also resulted in an increase in schedule pressure (not shown). This higher workload

necessitated elongation of project schedule which is adjusted accordingly. The simulation

output indicated the final completion date of the above mentioned project activities at 218

working days.

In the actual project, adjustments to the schedule were made twice in negotiation with the

business user representatives. The first adjustment was made after about four months (80

working days) from the start of project development where the unit testing was postponed by

about two-and-half months (50 working days). The final adjustment to project schedule took

place when about 75% of the added working days have been expended. The project organization

faced situations when some features had to be included in the planned release, and this was only

possible by extending the completion date. The actual completion date of the project as derived

from the project metrics came out as 65 calendar weeks (325 working days). This also included

requirements analysis & prototyping, offshore infrastructure set-up, implementation &

acceptance testing and subsequent support phase, which are outside the model boundary. The

total estimate of these was found to be 80 working days made at the start of the project. In

absence of the actual estimates of these, subtracting the figure leads to equivalent working days

of 245, very close to the model outcome. The deviation explained by the absence of related

information from the collected project metrics.

Cumulative Effort Expended

The simulation model indicated an effort expenditure of 2566 man-days broken up into the

following components as given in Table 3. From the table, the testing effort could be observed

to be 27% higher than the estimate (736 man-days). The difference is contributed by the

elongation of the project’s schedule (Figure 5), which meant that the project workforce had to

spend more time on the last phases of the project i.e. testing and associated corrections.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

31

Table 3. Effort breakup (simulation output)

Effort Components Value

Development Effort 1281 man-days

Quality Assurance (QA) Effort 275 man-days

Rework Effort 10 man-days

Training Effort 65 man-days

Testing Effort 935 man-days

Total 2566 man-days

The actual effort that was expected on the real project on these activities was found to be 2452

man-days which is close to the simulation results. The slight variation in these two results can

be explained based on the differences in the QA effort. In the real project the quality assurance

activities were carried out by a fixed number of personnel irrespective of the team size. The

simulation model assumed that the QA team size is a fraction of the project manpower, and

hence varied with the team size. The resulting difference contributed to the said variation.

Number of Errors

Finally, Figure 6 depicts the number of errors generated during the simulation run. The red

squares represent the actual number of errors that were committed.

0.00

0.10

0.20

0.30

0.40

1 21 41 61 81 101 121 141 161 181 201 221

Days

E
rr

o
r

G
e
n

e
ra

ti
o

n
 R

a
te

Simulated Error Generation Rate Actual Error Generation Rate

Figure 6. Error generation rate

In the model, the error generation rate is measured as the proportion of the task development

rate (number of tasks developed) and the multiplier for quality. The task development rate

depends on productivity (as shown in Figure 4) and the workforce committed to development.

The multiplier is a factor that combines the impacts of schedule pressure, work force mix and an

estimate of the possible number of errors per job size. The pattern of error generation closely

follows the software development rate (not shown), which increases after a delay driven by the

increase in project workforce size. With time as fewer tasks remains to be processed, the

software development rate falls identically affecting the error generation rate (Figure 6).

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

32

The actual scenario of error generation is found to resemble the simulated outcome very closely.

Most of the errors were caused during the coding stages of the project when the error generation

rate increased. A couple of important change requests were also raised in this period which

contributed to the effect. In the later stages, as most of the work was already accomplished the

error rate died down.

5. CONCLUSIONS AND FUTURE RESEARCH

The objective of the case study is to understand and explain the dynamics that influence

software project development under uncontrolled change order generation. The project

dynamics model of Abdel-Hamid and Madnick [6] was used, and the model parameters were

calibrated to the real-project environment. Results indicated how change order generation

following a nearly uniform pattern influenced project performance. Both schedule and effort

overrun could be noticed which also contributed to an increase in error generation. The results

are also in accordance with a related study [9], where the uniform change order generation rate

contributed to maximum effort and schedule overruns. The result also facilitates making the

following observation: despite the differences between the simulated and the actual project

workforce pattern, the total effort expenditure was found to be extremely close (4.6% variation).

In the project there were many instances where the project workforce under management

pressure had to work for six or seven days a week. Since the calculations in our simulation

model is based on a fixed five day per week working mode, the higher man-day per day effort

because of larger project workforce in this case is somewhat balanced by the extra working days

with comparatively reduced workforce under the actual case.

The following limitations are worth mentioning at this point. While the model was quite

accurate in reproducing the project’s patterns of dynamic behavior, the deviations from actual

values of the variables were caused by the following important differences between the model

structure and the project environment:

• The model doesn’t capture the holdup event that happened in the real project thereby

disrupting the usual flow of work

• The model overestimates the workforce level. The workforce augmentation took place

at discrete intervals in whole numbers in the real project, but the model allows for even

fractional changes and following a continuous curve.

• The incorporation of change requests also happened as discrete events in the project, but

in the model they vary continuously, leading to changes in project progress rates

between the real scenario and the simulated output.

• The initial effort allocation policy in the model is a function of the project size, and thus

varies accordingly.

Suitable extensions of this work could be to investigate through simulation the different

management policies that could lead to improvement in project performance, and investigating

their feasibility in a real project environment. Additionally, multiple case studies can also be

conducted in order to analyze how different project environment influences the overall

dynamics. In would be interesting to see how this method influences design of change

management strategies in organizations.

REFERENCES

[1] Nurmuliani, N., Zowghi, D. & Fowell, S., (2004) “Analysis of Requirements Volatility during

Software Development Life Cycle”, Proceedings of the 2004 Australian Software Engineering

Conference, Innsbruck, Austria.

International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011

33

[2] Ferreira, S., Collofello, J., Shunk, D. & Mackulak, G., (2009) “Understanding the effects of

requirements volatility in software engineering by using analytical modeling and software

process simulation”, Journal of Systems and Software, Vol. 82, No. 10, pp 1568-1577.

[3] Davis, A.M., Nurmuliani, N., Park, S. & Zowghi, D., (2008) “Requirements Change: What’s the

Alternative?”, Proceedings of the 32nd Annual IEEE International Computer Software and

Applications Conference.

[4] Ebert, C. & Man, J., (2005), “Requirements uncertainty: influencing factors and concrete

improvements”, Proceedings of the ICSE.

[5] Liu, D., Wang, Q., Xiao, J., Li, J. & Li, H., (2008) “RVSim: a simulation approach to predict the

impact of requirements volatility on software project plans”, Proceedings of the International

Conference on Software Process, Berlin, Heidelberg.

[6] Abdel-Hamid, T. & Madnick, S., (1991) Software Project Dynamics: An Integrated Approach,

Englewood Cliffs, Prentice-Hall.

[7] Zowghi, D. & Nurmuliani, N., (2002) “A Study on the Impact of Requirements Volatility on

Software Project Performance”, Proceedings of Ninth Asia-Pacific SE Conference.

[8] Houston, D.X., Mackulak, G.T. & Collofello, J.S., (2001) “Stochastic simulation of risk factor

potential effects for software development risk management”, Journal of Systems and Software,

Vol. 59, No. 3, pp 283-298.

[9] Thakurta, R., Roy, R. & Bhattacharya, S., (2009) “Impact of requirements discovery pattern on

software project outcome: preliminary results”, Proceedings of the 42nd Annual Hawaii

International Conference on System Sciences, Hawaii, USA.

[10] Boehm, B.W., Clark, B., Horowitz, E, Christopher J., Madachy, R. & Selby, R., (1995) “Cost

Models for Future Software Life Cycle Processes: COCOMO 2.0”, Annals of Software

Engineering, Vol. 1, pp 57-94.

[11] Sterman, J., (2000) Business Dynamics: Systems Thinking and Modeling for a Complex World,

Irwin/McGraw-Hill, New York.

[12] Madachy, R., (2008) Software Process Dynamics, Wiley-IEEE Press, Washington D.C.

Authors

Rahul Thakurta is an Assistant Professor of

Information Systems at Xavier Institute of

Management Bhubaneswar, India. His primary

research interests are software process and

project management, and technology adoption

and diffusion. He is also the Managing Editor of

Research World, and holder of the DAAD

Research Fellowship.

Subhajit Dasgupta is a Senior Technical

Consultant at Wipro Technologies and has spent

more than a decade on Application

development/Maintenance, Implementation and

Production Support covering domains like

BFSI, Retail and Supply Chain.

