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1 Introduction

This paper presents a candidate block cipher for the Advanced Encryption Stan-
dard (AES). AES is an intriguing challenge to the designer, because of the great
length of time the selected algorithm will have to resist attack.

Twenty years after the adoption of its predecessor, DES, equipment contain-
ing DES is continuing to be fielded in massive quantities. In the banking sector
alone, we find a global population of some 400,000 automatic teller machines
growing at perhaps 20% per annum and being replaced on average after seven
years, giving annual sales of over 100,000 units. Even if there were an immediate
consensus to migrate to a successor algorithm, it would probably take five years
to agree the design details and the migration strategy. It is more likely that a
further ten or even twenty years will be required to get agreement among the
20,000 or so affected financial institutions. Similar considerations apply to other
established application areas such as prepayment utility meters, burglar alarms
and road toll tags.

So even if AES only persists for 25 years as a standard, we expect it to
be used for a further 25 years in legacy systems. During this period, it will
protect not only embedded systems such as ATMs, but also large quantities
of government data and personal health information whose confidentiality may
have to be maintained for the lifetime of individuals. It follows that AES must
be designed to withstand advances in both engineering and cryptanalysis over a
period of at least a century.

We therefore decided to adopt a highly conservative design philosophy. We
did not feel it appropriate to use relatively novel and untested ideas in a cipher
with such extreme assurance requirements. So we did not wish to rely on oper-
ations such as the mixing of operations from different algebraic groups, or on
data dependent rotations. Although these techniques are promising, they have
not been around for very long and the techniques available for their analysis are
constantly improving.

This left us with the techniques familiar from DES, namely combining S-
boxes with linear mappings in such a way that we can apply the known tech-
niques of differential and linear cryptanalysis [7,17]. The problem that we now
faced was: how could we do this effectively enough to make AES an attractive
alternative to (say) triple-DES?



2 The Cipher

The breakthrough came with recent ideas for bitslice implementation of ci-
phers [2] which were used in the recent software keysearch attack on DES. The
basic idea is that just as one can use a 1-bit processor to implement an algorithm
such as DES by executing a hardware description of it, using a logical instruc-
tion to emulate each gate, so one can also use a 32-bit processor to compute 32
different DES blocks in parallel — using the CPU as a 32-way SIMD machine.

This is much more efficient than the conventional implementation, in which a
32-bit processor is mostly idle as it computes operations on 6 bits, 4 bits, or even
single bits. In a bitslice implementation, all the processor’s 32 bits can be kept
busy. However the problem with using bitslice techniques for DES encryption
(as opposed to keysearch) is that one has to process many blocks in parallel,
which is not what most applications require.

Serpent was therefore designed so that all operations can be executed using
32-fold parallelism during the encryption or decryption of a single block. We
will now describe the algorithm briefly; for a full description and a variety of
implementations, see our AES submission package which contains a full paper,
and the further materials which are all available at [18].

2.1 The conventional description

Serpent is a 32-round SP-network operating on four 32-bit words, giving a block
size of 128 bits. It consists of:

— an initial permutation I P;

— 32 rounds, each consisting of a key mixing operation, a pass through S-
boxes, and (in all but the last round) a linear transform. In the last round,
this linear transform is replaced by an additional key mixing operation;

— a final permutation 7P~

Each round uses 32 copies of the same 4-bit to 4-bit S-box. Thus, for example,
the first round takes the output of the initial permutation, which we call Bo,
xors it with the first round key Kg, and passes it through 32 copies of the first
S-box Sp. The first copy of Sy takes bits 0, 1, 2 and 3 of (f)’o ® K'o) as its input
and returns the first four bits of an intermediate vector; the next copy of Sy
inputs bits 4-7 of (By @ Ko) and returns the next four bits of the intermediate
vector, and so on. The intermediate vector is then transformed using the linear
transform, giving Bj. The initial and final permutations, the linear transform
and the S-boxes are specified in tables as with the official definition of DES;
these tables are in the full paper at [18].

There are eight different S-boxes each of which is used in four rounds: after
using S7 in round 7, we use Sy again in round &, then Sy in round 9, and $o on.
The last round Ry, is slightly different from the others: we apply S; on B31 oK 31,
and XOR the result with K3, rather than applying the linear transform. The
result Bs, is then permuted by IP~!, giving the ciphertext.



Thus the cipher may be formally described by the following equations:

By := IP(P)
Biy1 == Ri(B;)
C := IP~(Bs,)
where
Ri(X) = L(Si(Xa Ky)) i=0,...,30
Ri(X)=8(XoK)®Ks, i=31

here Sl is the application of the S-box S; mod 8 32 times in parallel, and L is
the linear transform.

Decryption differs from encryption in that the inverse of the S-boxes must
be used in the reverse order, as well as the inverse linear transform and reverse
order of the subkeys.

An advantage of this design is that it is easy to adapt the extensive crypt-
analysis already done on DES. Serpent is actually a better design than DES;
we find, for example, that the probability of the best six-round characteristic of
Serpent is less than 27°8, while for DES the corresponding figure is about 2720,
Another advantage is that we can provide a very efficient implementation, which
we will now describe.

2.2 The bitslice description

Much of the motivation for the above design will become clear as we consider
how to implement the algorithm efficiently. We do this in bitslice mode, in which
the description of the algorithm is much simpler. No initial and final permuta-
tions are required, since the initial and final permutations described above are
just those needed to convert the data from and to the bitslice representation. If
the bitslice representation of a vector is X, then we denote its standard repre-
sentation as X. I P takes the first bit of every nibble, then the second, and so on,
packing them into four 32-bit words; we have IP(X) = X and IP~1(X) = X.

In bitslice mode, the cipher consists simply of 32 rounds. The plaintext be-
comes the first intermediate vector By = P, after which the 32 rounds are
applied. Each round i € {0,...,31} consists of three operations:

1. Key Mixing: At each round, a 128-bit subkey K; is exclusive or’ed with the
current intermediate data B;

2. S-Boxes: The 128-bit combination of input and key is considered as four
32-bit words. The S-box, which is implemented as a sequence of logical op-
erations (as it would be in hardware) is applied to these four words, and the
result is four output words. The CPU is thus employed to execute the 32
copies of the S-box simultaneously, resulting in S;(B; ® K;)

3. Linear Transform: The 32 bits in each of the output words are linearly mixed
by the following sequence of register operations:



Xi =8i(Bi®K;) (1=0,...,3)
Xo = Xo << 13
Xo =X <<< 3
X1 =X10X00 X>
X3 := X368 X2 @ (Xo << 3)
X=X <k«1
X3 := X3 <<< 7
Xo=Xo® X1 & X3
X =Xo0®X3® (X1 <<7)
Xo = Xo <<<5H
Xo = Xo << 22

Biji =X (i=0,...,3)

where < << denotes rotation, and << denotes shift. In the last round, this linear
transform is replaced by an additional key mixing: Bss := S7(B31 @ K31) @ K3sa.
At each stage IP(B;) = B;, and IP(K;) = K;.

The first reason for the choice of linear transform is to maximize the avalanche.
The S-boxes have the property that a single input bit change will cause two out-
put bits to change, and the choice of linear transform ensures that a single input
bit change will cause a maximal number of bit changes after two and more
rounds. The effect is that each plaintext bit affects all the data bits after three
rounds, as does each round key bit (even if an opponent chooses some subkeys
and works backwards, it is still guaranteed that each key bit affects each data
bit over six rounds). The second reason is that it is simple, and can be used in
a modern processor with a minimum number of pipeline stalls. The third rea-
son is that we analysed it using programs we developed for investigating block
ciphers, and we found bounds on the probabilities of the differential and linear
characteristics. These bounds show that the choice suits our needs.

2.3 The S-boxes
The S-boxes of Serpent are 4-bit permutations with the following properties:

— each differential characteristic has a probability of at most 1/4, and a one-bit
input difference will never lead to a one-bit output difference;

— each linear characteristic has a probability in the range 1/2 + 1/4, and a
linear relation between one single bit in the input and one single bit in the
output has a probability in the range 1/2 £+ 1/8,;

— the nonlinear order of the output bits as a function of the input bits is the
maximum, namely 3.

The S-boxes were generated by a deterministic pseudorandom process in
which we initialised a matrix with the 32 rows of the DES S-boxes and shuffled
their values using a key until we found eight S-boxes that fit the above criteria.
The details are included in the full length paper.



3 The Key Schedule

As with the description of the cipher, we can describe the key schedule in either
standard or bitslice mode. Here we will give the description for the latter case.

Our cipher requires 132 32-bit words of key material. We first pad the user
supplied key to 256 bits, if necessary, and write it as eight 32-bit words w_g,
..., w—1. We then compute a prekey of 132 words wy, ..., wi3z; by the following
affine recurrence:

w; = (’u}i_s Dwi—s Dw;—3 Pw;—1 P d)@l) << 11

where ¢ is the fractional part of the golden ratio (v/5 + 1)/2 or 0x9e3779b9
in hexadecimal. The underlying polynomial 28 + 27 + 2° + 2® + 1 is primitive,
which together with the addition of the round index is chosen to ensure an even
distribution of key bits throughout the rounds, while eliminating weak keys and
related keys.

The round keys are now calculated from the prekeys using the S-boxes, again
in bitslice mode. We use the S-boxes to transform the prekeys w; into words k;
of round key in the following way:

{ko, k1, k2, ks} := S3(wo, w1, ws, ws)
{ka, ks, ke, kr} := S2 (w4, ws, we, wr)

{k124, k125, k126, K127} := Sa(wi24, w125, w126, wia7)

{k128, k129, k130, k131 } := S3(w128, w120, w130, W131)

We then concatenate the 32-bit values k; four at a time into the 128-bit
subkeys K; (fori € {0, ..., 32}).

3.1 Design history

Serpent’s design history is given in the full paper; here we give a summary. The
first published version of Serpent used the DES S-boxes, as their differential
and linear properties are well understood [5]. We then learned how to construct
S-boxes with much greater security, as Serpent does not impose the tight con-
straints on S-box design that DES does.

The hard choice was whether to make Serpent as fast as possible provided it
could resist all presently known attacks — in which case it would have sixteen
rounds and be about twice as fast as DES — or make it about as fast as DES
but with 32 rounds giving a substantial margin of safety against future advances
in cryptanalysis. For the reasons discussed in the introduction, we opted for the
latter course. We now present the security analysis in more detail.



4 Security

The analysis of our initial published design (with the DES S-boxes) indicated
that the number of plaintexts required for the best shortcut attack would be
well over 2!1%0. The improved S-boxes enable us to improve this figure to 22°6.
By a strength of 22°6, we mean that a differential or linear attack against any
key would take that many texts, assuming that they were available (though they
aren’t). This figure comes from computing the relevant probabilities over all the
keys. There are of course higher probability differentials for fixed keys; for any
fixed key, differentials with probability 27120 can be expected in all the AES
candidates, as only the required block size of 128 bits affects their probability.
However, we expect that these could be found for Serpent only by exhaustive
search and would thus not give rise to any practical attack.

In our analysis, we use conservative bounds to enable our claims to resist
substantial improvements in existing attacks. For example, our differential and
linear analyses use 24-round and 28-round characteristics, shorter by 8 and 4
rounds than the cipher, while the best attacks on DES use characteristics that
are shorter by only three rounds. Our estimates of the probabilities of the best
characteristics are also very conservative, so our complexity claims are almost
certainly much lower than the real values.

The conclusion of our analysis is that there is no indication of any useful
shortcut attack. We believe that such an attack would require a major theoret-
ical breakthrough, and that Serpent’s safety margin is adequate to cope with
foreseeable improvements in current techniques. In any case, it should be noted
that regardless of the design of a 128 bit block cipher, it is prudent to change
keys well before 264 blocks have been encrypted, in order to avoid various col-
lision attacks (e.g., [3,13]). This would easily prevent all known kinds of key
recovery attack other than keysearch.

We now list the main weaknesses and attacks which we had in mind when
designing Serpent.

4.1 Differential Cryptanalysis

We searched for the best characteristics of this cipher. We made a worst case
assumption that all the entries in the difference distribution tables have proba-
bility 1/4, except that entries with a one-bit input difference and one-bit output
difference are impossible. The following results hold independently of the order
of the S-boxes used in the cipher, and independently of the choice of the S-boxes,
so long as they satisfy these minimal conditions. We searched for the best char-
acteristics with up to seven rounds, and those with the highest probabilities are
given in Table 1.

As the probability of a 6-round characteristic is bounded by 2728, the prob-
ability of a 24-round characteristic is bounded by 274%® = 27232, This means
that even if an attacker can implement an 8R-attack (which seems unlikely) this
will require many more plaintexts than are available. If the linear transform had



Rounds|Differential Linear Probability

Probability (1/2+p) p’
277 1/2+4/16 =1/2+£277 2*
276 1/2 £2%(4/16)® =1/2+£27* | 28

21 1/2+£27(4/16)®  =1/2+£27° | 2!8
2726 |1/2 £2'3(4/16)'* = 1/2 £ 2715| 2%0
2742 |1/2 £2%9(4/16)*° = 1/2 £ 272| 212
27%  |1/2 £2%6(4/16)%" = 1/2 £ 2728| 256
7 <2770 |1/2 £2%(4/16)% = 1/2 £ 2734|> 258

Table 1. Bounds on the Probabilities of Differential and Linear Characteristics
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used only rotates, then every characteristic could have 32 equiprobable rotated
variants. This is why we also used shift instructions.

We have bounded the probabilities of characteristics. However, it is both
much more important and much more difficult to bound the probabilities of
differentials. To do this we firstly reduced the probabilities of the characteristics;
secondly ensured that there are few characteristics with the highest possible
probability, and that they cannot be rotated and still remain valid; and thirdly
arranged for characteristics to affect many different bits, so that they cannot
eagsily be unified into differentials.

We conjecture that the probability of the best 28-round differential is not
higher than 2712%) and (as noted above) that such a differential would be very
hard to find.

4.2 Linear Cryptanalysis

In linear cryptanalysis, it is possible to find one-bit to one-bit relations of the
S-boxes. The probability of these relations is bounded by 1/2 + 1/8. Thus, a
28-round linear characteristic with only one active S-box in each round would
have probability 1/2 + 227(1/8)?® = 1/2 £ 2757, even if the linear transform
is eliminated, and that an attack based on such relations would require about
2114 known plaintexts. However, the linear transform assures that in the round
following a round with only one active S-box, at least two are active.

More general attacks can use linear characteristics with more than one active
S-box in some of the rounds. In this case the probabilities of the S-boxes are
in the range 1/2 + 1/4. As with differential cryptanalysis, we can bound the
probability of characteristics. We searched for the best linear characteristic of
Serpent under the assumptions that a probability of any entry is not further
from 1/2 than 1/4 and that the probability of a characteristic which relates one
bit to one bit is not further from 1/2 than 1/8. The best linear characteristics
with up to seven rounds are given in Table 1. We can see that the probability
of a 6-round characteristic is in the range 1/2 + 2728, so the probability of a
24-round characteristic is in the range 1/2 &+ 2719, The number of plaintexts
needed for such an attack is at least 22!%, which is much higher than the number
of available texts.



Based on these figures we believe that the probability of the best 28-round
linear differential (or linear hull) is in the range 1/2+ 27120 so an attack would
need at least 2240 texts. This is a very conservative estimate; we believe the real
figure is well over 22°¢. In any case, linear attacks are infeasible.

4.3 Other Attacks

Related Keys: As the key schedule uses rotations and S-boxes, with different
S-boxes in different rounds, and as we XOR the round number into the
prekey, it is highly unlikely that keys can be found that allow related key
attacks [4,11,12]. Serpent has none of the simpler vulnerabilities that can
result from exploitable symmetries in the key schedule: there are no weak
keys, semi-weak keys, equivalent keys, or complementation properties.

Higher Order Differential Cryptanalysis: Attacks based on dth order dif-
ferentials [14, 16] are not applicable to Serpent, as the output bits attain the
maximum possible nonlinear order after five rounds.

Truncated Differential Cryptanalysis: Because of the strong diffusion over
many rounds, we believe that truncated differential attacks [14] are not ap-
plicable to Serpent.

Other shortcut attacks: Davies’ attack [9] and the improved version of [6]
are not applicable, since the S-boxes are invertible and data bits are not
duplicated. As far as we know, neither statistical cryptanalysis [20] nor par-
titioning cryptanalysis [10] provides a less complex attack than differential
or linear cryptanalysis. Non-linear cryptanalysis has so far only managed
to improve the linear attack by small factors [19], and Serpent has a large
margin of safety against such attacks.

Timing Attacks: The number of instructions used to encrypt or decrypt does
not depend on either the data or the key, and even cache misses cannot help
the attacker. It follows that timing attacks [15] are not applicable.

5 Performance in Various Environments

On a 133MHz Pentium/MMX processor, our bitslice implementation of Ser-
pent runs about as fast as DES: it encrypts 9,791,000 bits per second, or about
1738 clock cycles per block, while the best optimized DES implementation (Eric
Young’s Libdes) encrypts 9,824,864 bits per second. We estimate that on the
NIST platform of a 200 MHz Pentium, it will run at about 14.7 Mbit/s.

Our bitslice Java implementation performs 10,000 encryptions in 3.3 seconds
on a 133 MHz Pentium MMX which translates to 388 kbit/s, and we expect
583 kbit/s on a 200 MHz machine.

In many applications, we can use parallelism to exceed these raw figures. If
we wish to simultaneously encrypt a string and compute a MAC on it, using
two different keys, we can do this easily on an Intel/MMX processor as this can
perform SIMD processing of two 32-bit computations at once. With a 64-bit



processor such as DEC Alpha, it is only slightly more complicated. It is also
possible to hash multiple streams of data simultaneously.

For very high speed applications, one could use dedicated hardware. A fully
pipelined chip might use 67,000 gates: about 33,000 gates for each of encryption
and decryption, plus control logic and buffers. However, as Serpent consists of
four repetitions of the same structure of 8 S-boxes, it would often be adequate
to pipeline only eight rounds at a time, leading to a gate count of approximately
18,000. A compact hardware implementation would process one round at a time
at a cost of about 4,500 gates; a similar investment of silicon could give a CPU
an extra multiplexing instruction that would make Serpent code much faster and
smaller, and have other uses too. (For details, see the full paper.)

On 8-bit processors, the instruction count is larger but here one usually op-
timises for code size rather than speed. Typical 8-bit crypto applications, such
as smartcards, toll tags and prepayment utility meters, encrypt or decrypt a
few blocks during a transaction lasting a second or more; but the cost of the
processors, and thus memory size, is critical [1]. The most compact implementa-
tion of Serpent appears to be one that uses a bitslicing main loop (to avoid the
initial and final permutations) but table lookups for each S-box (to avoid the
code size of the Boolean expression of the S-box). An Ada implementation that
uses this strategy indicates a code size of just under 1K and a computational
cost of 34,000 clock cycles. Thus on a 3.5 MHz 6805, we expect a throughput of
about 100 encryptions per second or 12.8 kbit/s. A full bitslice implementation
would occupy more memory (2K) but should deliver 40.7 kbit/s. These figures
are more than adequate for the applications.

6 Conclusion

We have presented a cipher which satisfies the AES requirements. It provides
users with the highest practical level of assurance that no shortcut attack will
be found. To achieve this, we limited ourselves to well understood mechanisms,
so that we could rely on the wide experience of block cipher cryptanalysis. We
also used twice as many rounds as are necessary to block all currently known
shortcut attacks. We believe that this is prudent practice.

Despite these exacting design constraints, Serpent is as fast as DES. Software
versions can be optimised for speed or code size, and hardware implementations
can start at 4,500 gates. In short, Serpent also offers an unprecedented level of
implementation flexibility.
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