Robert E. Kent Ontologos

"In the same way, the world is not the sum of all the things that are in it. It is the infinitely complex network of connections among them. As in the meaning of words, things take on meaning only in relation to each other."

The Invention of Solitude

Paul Auster

"world" — information system "thing" — information resource "connection" — constraint link

Abstract

My paper discusses system consequence, which is a central idea in the project to lift the theory of information flow to the general level of universal logic and the theory of institutions. At the same time, it uses ideas from information flow to extend the theory of institutions.

Table of Contents

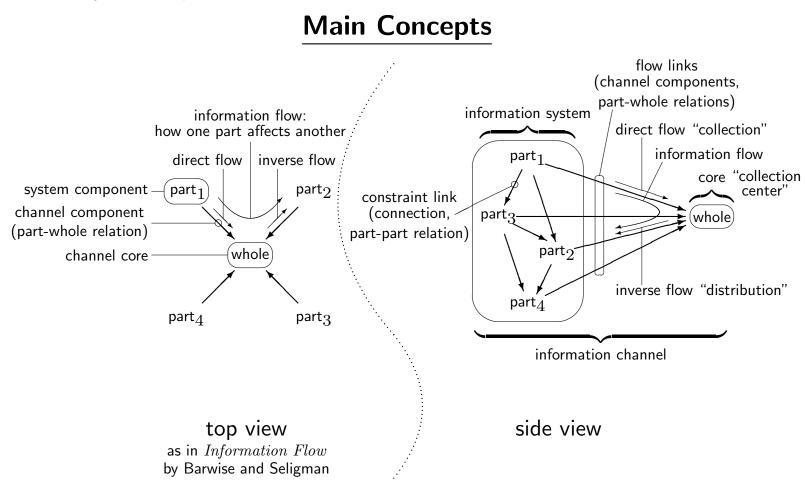
Slogan: "Systems of information resources have a consequence!"

ullet	Introduction	
	– Main Concepts	2
	– A Conference Analogy	3
•	Metatheory ¹	
	- Information Flow (IF)	
	- Institutions (INS)	5
•	Compatibility ²	
	- INS generalizes IF	
	- IF extends INS	,8
ullet	Systems	
	– General Systems	9
	- Information Channels in an Institution	0
•	Flow	
	– Information Flow in an Institution	
	- System Consequence in an Institution1	.2
•	Conclusion	
	– Examples1	
	– <u>Summary</u> 1	_4

¹IF and INS are the relevant foreground theories. Relevant background theories include Formal Concept Analysis (FCA), Conceptual Graphs (CG), Semantic Web technology (SW), etc. ²"... good general theory does not search for the maximum generality, but for the right

generality." - Mac Lane

Introduction



• information system

e.g. distributed information resources of a scientific community

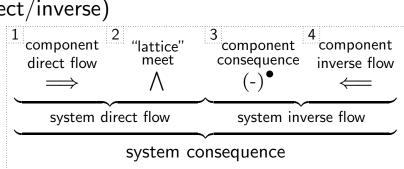
information channel

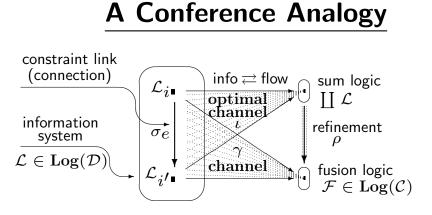
architecture underlying information flow

information flow (direct/inverse)

how different parts interact

• system consequence closure of information flow





Consider a conference such as the ICCS 2009.

Information System: $\mathcal{L} \in Log(\mathcal{D})$, for $\mathcal{D} : I \to V$, V = Lang or Struc

A community's knowledge is distributed as a system of information resources (the member's knowledge); that is, an information system $\mathcal{L} = \{\mathcal{L}_i = \langle \mathcal{D}_i, T_i \rangle \mid i \in \mathbf{I}\}$. The knowledge implicit \mathcal{L}_i^{\bullet} (consequence) in a member's understanding is based upon that person's abilities \mathcal{L}_i with $\mathcal{L}_i \geq \mathcal{L}_i^{\bullet}$.

Information Channel: $\gamma : \mathcal{D} \Rightarrow \mathcal{C}$

A conference serves the needs of a community. It is represented as an information channel $\gamma = \{\gamma_i : \mathcal{D}_i \to \mathcal{C} \mid i \in \mathbf{I}\}$ with components γ_i and core \mathcal{C} .³

Direct System Flow: $dir(\gamma) : Log(\mathcal{D}) \Rightarrow Log(\mathcal{C})$

People come to discuss topics and increase their knowledge (direct specification flow) $\mathcal{L}_i \mapsto dir(\gamma_i)(\mathcal{L}_i)$. Activities at the conference include paper presentations, poster sessions, informal discussions, with disagreements aired and recent advances revealed (information fusion) $\mathcal{F} \doteq \bigwedge dir(\gamma)(\mathcal{L}) \in \operatorname{Log}(\mathcal{C})$.

Inverse System Flow: $inv(\gamma) : Log(\mathcal{D}) \Leftarrow Log(\mathcal{C})$

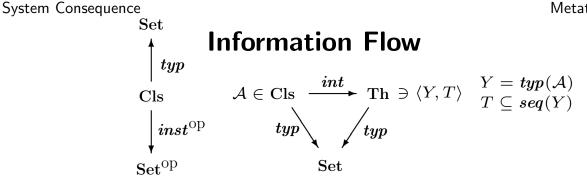
An attendee's understanding of the issues potentially includes all the knowledge implicitly revealed by the conference activities (*fusion consequence*) \mathcal{F}^{\bullet} . Assuming a good conference, an attendee takes home with themselves this increased understanding (*inverse specification flow*) $\mathcal{F}^{\bullet} \mapsto inv(\gamma_i)(\mathcal{F}^{\bullet})$.

System Consequence: $(-)^{\blacklozenge \gamma} \doteq dir(\gamma) \circ inv(\gamma)$

There has been an increase in knowledge $\mathcal{L} \geq \mathcal{L}^{\blacklozenge}$ distributed over the whole community $\mathcal{L}^{\blacklozenge} = inv(\gamma)(dir(\gamma)(\mathcal{L})).$

³For the ICCS 2009 conference, the (*channel core*) C is a single object. However, with satellite conferences, etc., the channel core would be distributed $C = \{C_j \mid j \in J\}$.

Metatheory



- Summarized: Information Flow: The Logic of Distributed Systems by Barwise and Seligman.
- Concepts: classification, infomorphism, theory, (local) logic, information flow, distributed systems, information systems, information channel, and the distributed logic (i.e., consequence) of an information system.

infomorphism

classification is invariant under instance-type flo

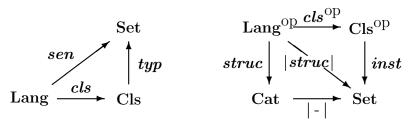
$$inst(f)(b) \models_{\mathcal{A}} \alpha \text{ iff } b \models_{\mathcal{B}} typ(f)(\alpha)$$

• Examples:

 $\begin{array}{ll} \mathcal{A} = \text{astronomical objects} & f = \langle \hat{f}, \check{f} \rangle : \langle A, \leq_A \rangle \rightleftarrows \langle B, \leq_B \rangle \\ \text{mars, rigel} \in \textit{inst}(A) & \text{adjoint pair of monotonic functions} \\ \text{mars} \models_A \text{planet,mars} \not\models_A \text{star} \end{array}$

 $\mathcal{A} = \langle A, \leq_A \rangle \text{ preorder, where } inst(\mathcal{A}) = typ(\mathcal{A}) = A \text{ and } \models_{\mathcal{A}} = \leq_A$

Institutions



- Start: 1992 paper "Institutions: Abstract Model Theory for Specification and Programming" by Goguen and Burstall.
- Heterogeneous elements (atoms):

language (signature)	$\Sigma \in \mathbf{Lang}$	
structure (model)	$M \in struc(\Sigma)$	
sentence	$s\in \boldsymbol{sen}(\Sigma)$	

Core concept and property: $cls = \langle struc, sen \rangle : Lang \rightarrow Cls$

$$s \in sen(\Sigma)$$
$$M \models_{\Sigma} s$$
"
$$M \text{ satisfies } s" \models_{\Sigma}$$

 $M \in struc(\Sigma)$ "s is true in M or "s holds in M " "s is satisfied in M" or "M is a model for s" language Σ $cls(\Sigma) = \langle struc(\Sigma), sen(\Sigma), \models_{\Sigma} \rangle$ satisfaction for language Σ

Examples:

FOL $\Sigma = \{ f \in ftn(\Sigma), r \in rel(\Sigma) \}$ $M \models_{\Sigma} s$ when s is true in M

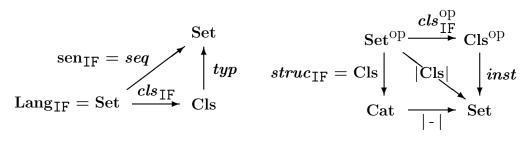
$$s \in sen(\Sigma) \xrightarrow{sen(\sigma)} sen(\Sigma')$$

$$\left| \models_{\Sigma} \qquad \left| \models_{\Sigma'} \\ struc(\Sigma) \xleftarrow{struc(\sigma)} struc(\Sigma') \ni M' \right| \right|$$

language morphism $\sigma: \Sigma \to \Sigma'$ $cls(\sigma) = \langle struc(\sigma), sen(\sigma) \rangle : cls(\Sigma) \rightleftharpoons cls(\Sigma')$ "satisfaction is invariant under sentence-structure flow" $struc(\sigma)(M') \models_{\Sigma} s \text{ iff } M' \models_{\Sigma'} sen(\sigma)(s)$

FOL interpretation $\sigma = \{ f \mapsto t', r \mapsto \varphi' \mid t' \in trm(\Sigma'), \varphi' \in fmla(\Sigma') \}$ $s \text{ composed of } f, r, \land, \lor, \neg, \exists, \forall \qquad sen(\sigma)(r(t_1, ..., t_n)) = \varphi'(\sigma^*(t_1), ..., \sigma^*(t_n))$ $M = \{F_f : U^n \to U, R_r \subseteq U^m\} \qquad struc(\sigma)(M') = M' \text{ where}$ $struc(\sigma)(M') \models_{\Sigma} s \text{ iff } M' \models_{\Sigma'} sen(\sigma)(s)$

Generalization: The IF Institution



• Extend classification from types to sequents

$$\begin{array}{ll} \mathcal{A} = \langle inst(\mathcal{A}), typ(\mathcal{A}), \models_{\mathcal{A}} \rangle & f = \langle inst(f), typ(f) \rangle : \mathcal{A} \rightleftharpoons \mathcal{B} \\ \langle \Gamma, \Delta \rangle \in seq(\mathcal{A}) & \langle \Gamma, \Delta \rangle \in seq(\mathcal{A}) \xrightarrow{seq(f)} seq(\mathcal{B}) \\ a \models_{\mathcal{A}} \langle \Gamma, \Delta \rangle \middle| \models_{\mathcal{A}} & \middle| \models_{\mathcal{A}} & \middle| \models_{\mathcal{B}} \\ a \in inst(\mathcal{A}) & inst(\mathcal{A}) \xleftarrow{inst(f)} inst(\mathcal{B}) \ni b \end{array}$$

$$a \models_{\mathcal{A}}^{\forall} \Gamma \text{ implies } a \models_{\mathcal{A}}^{\exists} \Delta \qquad inst(f)(b) \models_{\mathcal{A}} \langle \Gamma, \Delta \rangle \text{ iff } b \models_{\mathcal{B}} seq(f)(\Gamma, \Delta)$$

• The IF institution ⁴ Lang_{IF} = Set $\xrightarrow{cls_{IF}}$ Cls (type) set Y (type) function $g: Y \to Y'$

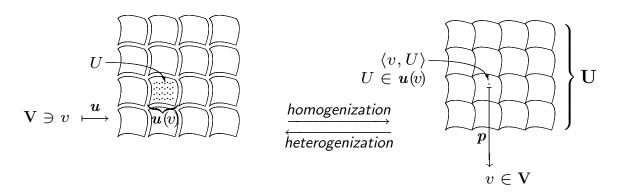
$$\begin{array}{ccc} \langle \Gamma, \Delta \rangle \in seq(Y) & \langle \Gamma, \Delta \rangle \in seq(Y) & \xrightarrow{seq(Y)} seq(Y') \\ \mathcal{A} \models_{Y} \langle \Gamma, \Delta \rangle & \middle| \models_{Y} & \middle| \models_{Y} & \middle| \models_{Y'} \\ \mathcal{A} \in \operatorname{Cls}(Y) & & \operatorname{Cls}(Y) \leftarrow \operatorname{Cls}(Y') \ni \mathcal{A}' \end{array}$$

$$\begin{array}{ll} a \models_{\mathcal{A}} \langle \Gamma, \Delta \rangle \text{ all } a \in \textit{inst}(\mathcal{A}) & \operatorname{Cls}(g)(\mathcal{A}') \models_{Y} \langle \Gamma, \Delta \rangle & \operatorname{iff} \ \mathcal{A}' \models_{Y'} \textit{seq}(g)(\Gamma, \Delta) \\ \text{where } a' \models_{\operatorname{Cls}(g)(\mathcal{A}')} \alpha \text{ when } a' \models_{\mathcal{A}'} g(\alpha) \text{ for all } a' \in \textit{inst}(\mathcal{A}') \text{ and } \alpha \in Y \end{array}$$

⁴In IF, languages are (type) sets, structures are classifications and sentences are sequents.

Compatibility

Extension: Heterogeneous versus Homogeneous



indexed set (heterogeneous representation)

fibered set (homogeneous representation)

- heterogeneous $u : \mathbf{V} \to \mathbf{Set};$ i.e. $u = \{u(v) \in \mathbf{Set} \mid v \in \mathbf{V}\}$
- disjoint union $\mathbf{U} \doteq \{ \langle v, U \rangle \mid U \in \boldsymbol{u}(v) \}$
- homogeneous ${m p}:{f U}
 ightarrow{f V}:\langle v,U
 angle\mapsto v$
- for mathematical contexts, disjoint union extended⁵ to order ($spec \leq gen$) and morphism ($gen \rightarrow spec$)
- Homogeneous elements (molecules):

	V	\boldsymbol{u}	U	$U \in u(v)$	$\langle v, U angle$
	Lang	struc	Struc	$M \in struc(\Sigma)$	$\mathcal{M} = \langle \Sigma, M \rangle$
specification	Lang	spec	Spec	$T \in spec(\Sigma)$	$\mathcal{T} = \langle \Sigma, T \rangle$
logic	Struc	log	Log	$L \in log(\Sigma, M)$	$\mathcal{L} = \langle \Sigma, M, T \rangle$

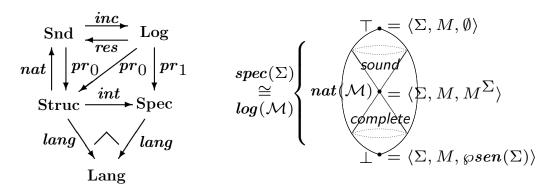
 $^{^{5}}$ extension called Grothendieck construction

Compatibility

(T')

System Consequence

 Σ



fibered context Struc: ⁶

$$structure \qquad structure morphism \\ \mathcal{M} = \langle \Sigma, M \rangle \qquad \sigma : \mathcal{M} \to \mathcal{M}' \\ \in \text{Lang}, M \in struc(\Sigma) \qquad \sigma : \Sigma \to \Sigma', M \ge struc(\sigma)(M')$$

• fibered context Spec: ⁷

$$\begin{array}{ll} \textit{specification} & \textit{specification morphism} \\ \mathcal{T} = \langle \Sigma, T \rangle & \sigma : \mathcal{T} \to \mathcal{T}' \\ \Sigma \in \text{Lang}, T \in \textit{th}(\Sigma) = \wp \textit{sen}(\Sigma) & \sigma : \Sigma \to \Sigma', T \geq \textit{inv}(\sigma)(T) \end{array}$$

• fibered context Log: ⁸ 9

$$\begin{array}{ll} \textit{logic} & \textit{logic morphism} \\ \mathcal{L} = \langle \Sigma, M, T \rangle & \sigma : \mathcal{L} \to \mathcal{L}' \\ \Sigma \in \textit{Lang}, M \in \textit{struc}(\Sigma), & \sigma : \Sigma \to \Sigma', M \geq \textit{struc}(\sigma)(M'), \\ T \in \textit{th}(\Sigma) & T \geq \textit{inv}(\sigma)(T') \end{array}$$

⁶Entailment order \leq in the fibers $spec(\Sigma) \cong log(\mathcal{M})$ is concept lattice order "spec \leq gen". Morphism \rightarrow in the fibered contexts Struc, Spec and Log reduces to reverse entailment order > in the fibers; we express this fact as "gen \rightarrow spec".

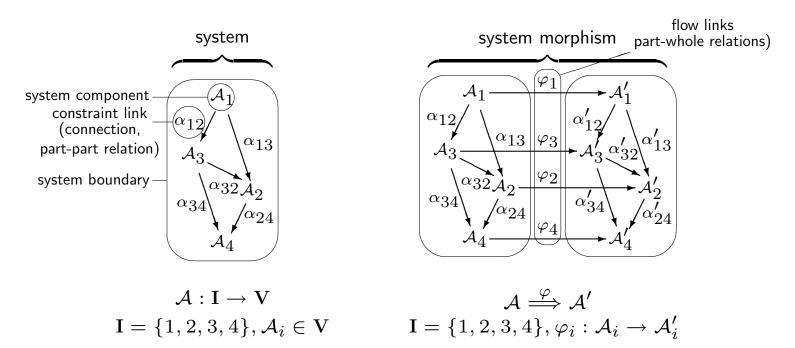
 $^7\mathsf{A}$ theory in information flow is a pair $\mathcal{T}=\langle Y,T\rangle$, where $Y\in\mathbf{Set}$ is a (type) set and $T \in \wp seq(Y)$ is a subset of Y-sequents.

⁸A logic is sound when $T \ge M^{\Sigma}$ and complete when $M^{\Sigma} \ge T$. A (local) logic consists of a general logic $\langle \Sigma, M, T \rangle$ and a sound logic $\langle \Sigma, N, T \rangle$ such that $M^{\Sigma} \wedge T \ge N^{\Sigma}$.

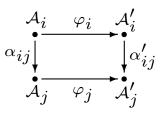
⁹A (general) logic in information flow is a triple $\mathcal{L} = \langle Y, A, T \rangle$, where $Y \in \mathbf{Set}$ is a (type) set, $A \in Cls(Y)$ is a Y-classification, and $T \subseteq \wp seq(Y)$ is a Y-theory.

General Systems (Gr: $\sigma \upsilon \sigma \tau \eta \mu \alpha$)

"a regularly interacting or interdependent group of entities forming a integrated whole"



- A system is a collection of elements (or parts) connected together by constraint links. ¹⁰
- A system morphism, linking one system (source) to another (target), is a collection of flow links between source and target components. ¹¹
- Link types: Constraint links are orthogonal to flow links. Flow links naturally translate constraint links:



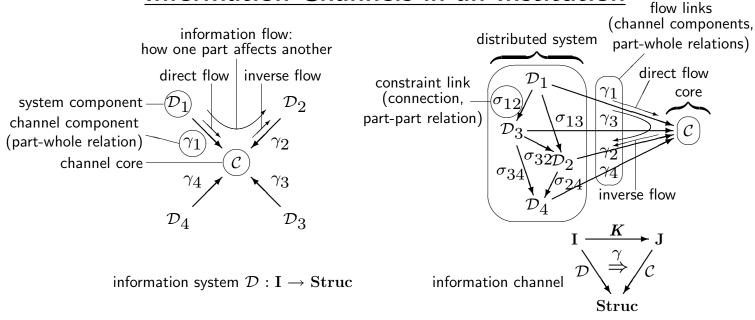
¹⁰In information systems, constraint links represent "ontology alignment".

Systems

 $^{^{11}}$ In information systems, system morphisms are information channels. These facilitate "ontology unification" (fusion) and system consequence.

Systems

Information Channels in an Institution



System Principle: Information flow results from regularities in a distributed system. ¹²

Structure Principle: Information flow crucially involves structures of the world (generalized from classifications to structures). ¹³

Connection Principle: It is by virtue of regularities among connections that information about some components of a distributed system carries information about other components.¹⁴

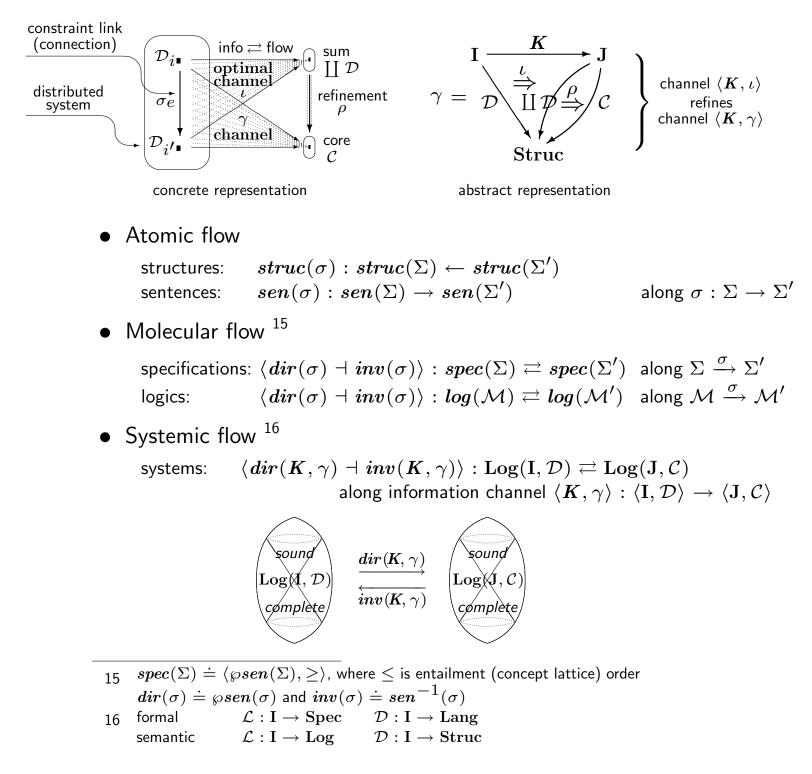
Channel Principle: The regularities of a given distributed system are relative to its analysis in terms of information channels.

 $^{^{12}}$ Motivates the representation of distributed systems by diagrams of objects (specifications or logics) that can incorporate regularities.

 $^{^{13}\}mathrm{Motivates}$ the use of structures to underpin logics and structure morphisms to facilitate the flow of logics.

¹⁴Motivates the use of logics-over-structures or specifications-over-languages to represent information flow over the channels of a distributed system.

Information Flow in an Institution

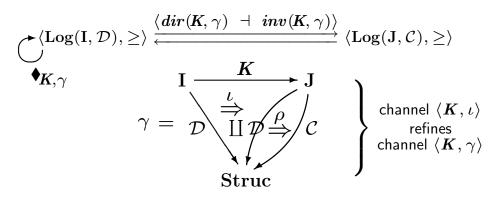


ICCS 2009, 26-31 July 2009

11

Flow

System Consequence in an Institution



system consequence $\mathcal{L}^{\blacklozenge} = inv(K, \gamma)(dir(K, \gamma)((\mathcal{L})))$

Generalities of consequence: Along ¹⁷

information channel $\langle K, \gamma \rangle : \langle \mathbf{I}, \mathcal{D} \rangle \rightarrow \langle \mathbf{J}, \mathcal{C} \rangle$ optimal channel $\langle K, \iota \rangle : \langle I, \mathcal{D} \rangle \rightarrow \langle J, [] \mathcal{D} \rangle$ absolute channel $\langle !_{\mathbf{I}}, \iota \rangle : \langle \mathbf{I}, \mathcal{D} \rangle \rightarrow \langle \mathbf{1}, \bigcup \mathcal{D} \rangle$

Properties of consequence:

- closure operator: monotonic, increasing and idempotent
- composite is more specialized: $\langle \mathbf{K}, \gamma \rangle \geq \langle \mathbf{K}, \gamma \rangle \circ \langle \mathbf{K}', \gamma' \rangle$
- absolute is most specialized: $\langle \mathbf{K}, \iota \rangle \geq \langle \mathbf{K}, \iota \rangle$
- $\mathcal{L}^{\blacklozenge} = res (inc\mathcal{L})^{\blacklozenge}$ for sound info system $\mathcal{L} : \mathbf{I} \to \mathbf{Log}$
- $res(\mathcal{L}^{\blacklozenge}) < (res\mathcal{L})^{\blacklozenge}$ for general info system $\mathcal{L}: \mathbf{I} \to \mathbf{Log}$

Open Questions:

- $res(\mathcal{L}^{\blacklozenge}) < (res\mathcal{L})^{\blacklozenge}$?
- ????

 $^{^{17}}$ Absolute channels use shape I to commence direct specification flow. Optimal channels use subshape $(K \downarrow j) \subseteq I$, consisting of all I-indexing objects relatively more general than indexing object $j \in \mathbf{J}$.

Examples

Parallel Flow: ¹⁸ Discrete system $\mathcal{T}: I \to \operatorname{Spec}$

where $\mathcal{T} = \{ \langle \Sigma_i, T_i \rangle \mid i \in I \}.$

- optimal channel is disjoint union (non-interacting)
- direct system flow is disjoint specification union
- inverse system flow is disjoint specification consequence and selection
- system consequence is $\mathcal{T} = \{ \langle \Sigma_i, T_i^{\bullet} \rangle \mid i \in I \}.$

Identity Flow: ¹⁹ Constant system $\Delta(\Sigma) : \mathbf{I} \to \mathbf{Lang}$

- optimal channel is identity
- direct system flow is meet (specification union)
- inverse system flow is specification consequence
- system consequence is $\mathcal{T}_i^{\blacklozenge} = \left(\bigcup_{i \in I} \mathcal{T}_i\right)^{\bullet}$ for all $i \in I$.

Equivalencing: Consider two ontologies (FOL specifications) $\mathcal{T}_0 = \langle \Sigma_0, T_0 \rangle$ and $\mathcal{T}_1 = \langle \Sigma_1, T_1 \rangle$ with reference ontology $\widehat{\mathcal{T}} = \langle \widehat{\Sigma}, \widehat{T} \rangle$, where $\iota_i : \widehat{\mathcal{T}} \to \mathcal{T}_i$ are injective language morphisms $\iota_i : \widehat{\Sigma} \hookrightarrow \Sigma_i$ for i = 0, 1 pictured as $\Sigma_0(\widehat{\Sigma})\Sigma_1$. Then system consequence merges the two ontologies by equivalencing the linked symbols $\iota_0(r) \equiv \iota_1(r)$ for $r \in \widehat{\Sigma}$.

 $^{^{18}}$ or better, parallel non-interacting disjoint flow

¹⁹Specifically, consider any FOL specification $\mathcal{T} = \langle \Sigma, T \rangle$ with $T = \{s_i \mid i \in I\}$. Totally distribute the axioms over I getting the formal information system $\mathcal{T}^{1,I} : \mathcal{B}(1,I) \to \text{Spec}$ over the constant distributed system $\Sigma^{1,I} = \Delta(\Sigma) : \mathcal{B}(1,I) \to \text{Lang}$, where $\mathcal{B}(1,I)$ is the complete bipartite directed graph on (1,I), $\mathcal{T}_i^{1,I} = \langle \Sigma, \{s_i\}\rangle$ and $\mathcal{T}_*^{1,I} = \langle \Sigma, \emptyset \rangle$. Then $\mathcal{T}_i^{\blacklozenge} = \langle \Sigma_i, T \rangle^{\bullet}$ for $i \in I$.

Summary

- The theory of information flow and the theory of institutions are both *abstract*.
- The theory of information flow and the theory of institutions are compatible.
 - The theory of institutions generalizes the theory of information flow from one specific logical system IF to an arbitrary logical system. $^{20\ 21}$
 - The theory of information flow *extends* the theory of institutions with the concepts of logics, information systems, information flow, system consequence, etc. ²²
- Information flow involves the flow of information systems along information channels. This flow is adjoint between direct and inverse flow. The closure of this adjoint information flow is system consequence, which generalizes specification consequence to systems.

²⁰Examples of logical systems include: first order, equational, Horn clause, intuitionistic, modal, linear, higher-order, polymorphic, temporal, process, behavioral, coalgebraic and object-oriented logics.

 $^{^{21}}$ The paper "System Consequence" describes four important logical systems: unsorted equational logic EQ, information flow IF, unsorted first-order logic with equality FOL, which extends EQ and IF, and the sketch institution Sk.

²²From hindsight, the fact that the theory of information flow can be used to extend the theory of institutions is clear from **Example 4.11 (Interpretations in First-Order Logic)** in the textbook *Information Flow: The Logic of Distributed Systems* by Barwise and Seligman.

References

- Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. Cambridge University Press, Cambridge (1997)
- [2] Goguen, J., Burstall, R.: Institutions: Abstract Model Theory for Specification and Programming. J. Assoc. Comp. Mach. vol. 39, pp. 95–146, (1992)
- [3] Kent, R.E.: Semantic Integration in the Information Flow Framework. In: Kalfoglou, Y., Schorlemmer, M., Sheth, A., Staab, S., Uschold, M. (eds.) Semantic Interoperability and Integration. Dagstuhl Seminar Proceedings, vol. 04391, Dagstuhl Research Online Publication Server (2005).
- [4] The Information Flow Framework (IFF), [http://suo.ieee. org/IFF/].