<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 25 October 2010

Macrophage-Mediated Proteolytic Remodeling of the Extracellular Matrix in Atherosclerosis Results in Neoepitopes: A Potential New Class of Biochemical Markers

Publication: ASSAY and Drug Development Technologies
Volume 8, Issue Number 5

Abstract

Worldwide, cardiovascular disease (CVD) is the leading cause of death. Most CVD-related deaths are caused by years of preceding atherogenesis and the extensive development of atherosclerotic plaques, some of which may rupture to cause myocardial infarction. Macrophages are known to have a role in almost all stages of atherosclerosis, by both initiating atherosclerotic plaques and degrading them through the secretion of proteolytic enzymes leading to rupture. This review summarizes the literature on the role of macrophages and their proteolytic activity on proteins in the extracellular matrix (ECM) of the atherosclerotic plaque with a view to suggest a novel approach for identification of vulnerable plaques and turnover by the use of a new type of biomarker. The PubMed database was searched using the terms macrophages, foam cells, atherosclerosis, CVD, ECM remodeling, biomarker, neoepitope, matrix metalloproteinase (MMP), and protease. Atherosclerotic plaques are primarily composed of the protein type I and III collagen, and smaller quantities of elastin and proteoglycans. Macrophages secrete an array of proteases, including MMPs, cathepsins, and aggrecanases, with the ability to degrade most of the constituents of the ECM of the atherosclerotic plaque. At present it is not clear which proteases play pivotal roles at distinct stages of pathogenesis, rather that the combined proteolytic potential with some proteases at early stages and other at later stages may result in plaque rupture. This macrophage-mediated proteolysis and remodeling of the ECM play important roles in many stages of atherosclerosis. The degradation fragments of these ECM events are specific neoepitopes, which are released into the circulation. The identification of these pathologically relevant neoepitopes leads to novel biomarkers able to identify the formation and degradation of plaques providing different biological information than traditionally used biomarkers.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Petersen SPeto VRayner MLeal JLuengo-Fernandez RGray A. European cardiovascular disease statistics2008The European Heart Network & The British Heart Foundationwww.heartstats.org/datapage.asp?id=768303/06/20101. Petersen S, Peto V, Rayner M, Leal J, Luengo-Fernandez R, Gray A: European cardiovascular disease statistics. 2008. The European Heart Network & The British Heart Foundation. www.heartstats.org/datapage.asp?id=7683 [accessed 03/06/2010]
2.
De Backer GAmbrosioni EBorch-Johnsen K et al. European guidelines on cardiovascular disease prevention in clinical practice. Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of eight societies and by invited experts)Atherosclerosis2004173381-391. 2. De Backer G, Ambrosioni E, Borch-Johnsen K, et al.: European guidelines on cardiovascular disease prevention in clinical practice. Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of eight societies and by invited experts). Atherosclerosis 2004;173:381–391.
3.
Sundstrom JVasan RS. Circulating biomarkers of extracellular matrix remodeling and risk of atherosclerotic eventsCurr Opin Lipidol20061745-53. 3. Sundstrom J, Vasan RS: Circulating biomarkers of extracellular matrix remodeling and risk of atherosclerotic events. Curr Opin Lipidol 2006;17:45–53.
4.
Koenig WKhuseyinova N. Biomarkers of atherosclerotic plaque instability and ruptureArterioscler Thromb Vasc Biol20072715-26. 4. Koenig W, Khuseyinova N: Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol 2007;27:15–26.
5.
Gerszten REWang TJ. The search for new cardiovascular biomarkersNature2008451949-952. 5. Gerszten RE, Wang TJ: The search for new cardiovascular biomarkers. Nature 2008;451:949–952.
6.
Adiguzel EAhmad PJFranco CBendeck MP. Collagens in the progression and complications of atherosclerosisVasc Med20091473-89. 6. Adiguzel E, Ahmad PJ, Franco C, Bendeck MP: Collagens in the progression and complications of atherosclerosis. Vasc Med 2009;14:73–89.
7.
Loscalzo JMolecular Mechanisms of AtherosclerosisTaylor & FrancisLondon2000. 7. Loscalzo J: Molecular Mechanisms of Atherosclerosis. Taylor & Francis, London, 2000.
8.
Libby P. Inflammation and cardiovascular disease mechanismsAm J Clin Nutr200683456S-460S. 8. Libby P: Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 2006;83:456S–460S.
9.
Gu LOkada YClinton SK et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient miceMol Cell19982275-281. 9. Gu L, Okada Y, Clinton SK, et al.: Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998;2:275–281.
10.
Boring LGosling JCleary MCharo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosisNature1998394894-897. 10. Boring L, Gosling J, Cleary M, Charo IF: Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894–897.
11.
Choudhury RPLee JMGreaves DR. Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosisNat Clin Pract Cardiovasc Med20052309-315. 11. Choudhury RP, Lee JM, Greaves DR: Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat Clin Pract Cardiovasc Med 2005;2:309–315.
12.
Takahashi KTakeya MSakashita N. Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animalsMed Electron Microsc200235179-203. 12. Takahashi K, Takeya M, Sakashita N: Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc 2002;35:179–203.
13.
Li ACGlass CK. The macrophage foam cell as a target for therapeutic interventionNat Med200281235-1242. 13. Li AC, Glass CK: The macrophage foam cell as a target for therapeutic intervention. Nat Med 2002;8:1235–1242.
14.
Wagsater DBjork HZhu C et al. ADAMTS-4 and −8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaquesAtherosclerosis2008196514-522. 14. Wagsater D, Bjork H, Zhu C, et al.: ADAMTS-4 and −8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis 2008;196:514–522.
15.
Brauer PR. MMPs—role in cardiovascular development and diseaseFront Biosci200611447-478. 15. Brauer PR: MMPs—role in cardiovascular development and disease. Front Biosci 2006;11:447–478.
16.
Whatling CBjork HGredmark SHamsten AEriksson P. Effect of macrophage differentiation and exposure to mildly oxidized LDL on the proteolytic repertoire of THP-1 monocytesJ Lipid Res2004451768-1776. 16. Whatling C, Bjork H, Gredmark S, Hamsten A, Eriksson P: Effect of macrophage differentiation and exposure to mildly oxidized LDL on the proteolytic repertoire of THP-1 monocytes. J Lipid Res 2004;45:1768–1776.
17.
Li ACGlass CK. The macrophage foam cell as a target for therapeutic interventionNat Med200281235-1242. 17. Li AC, Glass CK: The macrophage foam cell as a target for therapeutic intervention. Nat Med 2002;8:1235–1242.
18.
van Berkel TJOut RHoekstra MKuiper JBiessen Evan EM. Scavenger receptors: friend or foe in atherosclerosis?Curr Opin Lipidol200516525-535. 18. van Berkel TJ, Out R, Hoekstra M, Kuiper J, Biessen E, van EM: Scavenger receptors: friend or foe in atherosclerosis? Curr Opin Lipidol 2005;16:525–535.
19.
Greaves DRGordon S. Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptorsJ Lipid Res20054611-20. 19. Greaves DR, Gordon S: Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. J Lipid Res 2005;46:11–20.
20.
Shashkin PDragulev BLey K. Macrophage differentiation to foam cellsCurr Pharm Des2005113061-3072. 20. Shashkin P, Dragulev B, Ley K: Macrophage differentiation to foam cells. Curr Pharm Des 2005;11:3061–3072.
21.
Nagornev VAMaltseva SV. The phenotype of macrophages which are not transformed into foam cells in atherogenesisAtherosclerosis1996121245-251. 21. Nagornev VA, Maltseva SV: The phenotype of macrophages which are not transformed into foam cells in atherogenesis. Atherosclerosis 1996;121:245–251.
22.
Shiffman DMikita TTai JT et al. Large scale gene expression analysis of cholesterol-loaded macrophagesJ Biol Chem200027537324-37332. 22. Shiffman D, Mikita T, Tai JT, et al.: Large scale gene expression analysis of cholesterol-loaded macrophages. J Biol Chem 2000;275:37324–37332.
23.
Katsuda SKaji T. Atherosclerosis and extracellular matrixJ Atheroscler Thromb200310267-274. 23. Katsuda S, Kaji T: Atherosclerosis and extracellular matrix. J Atheroscler Thromb 2003;10:267–274.
24.
Suzuki KEnghild JJMorodomi TSalvesen GNagase H. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin)Biochemistry19902910261-10270. 24. Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H: Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 1990;29:10261–10270.
25.
Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodelingThromb Haemost200186324-333. 25. Lijnen HR: Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost 2001;86:324–333.
26.
Gustafsson MBoren J. Mechanism of lipoprotein retention by the extracellular matrixCurr Opin Lipidol200415505-514. 26. Gustafsson M, Boren J: Mechanism of lipoprotein retention by the extracellular matrix. Curr Opin Lipidol 2004;15:505–514.
27.
Lipinski MJFrias JCFayad ZA. Advances in detection and characterization of atherosclerosis using contrast agents targeting the macrophageJ Nucl Cardiol200613699-709. 27. Lipinski MJ, Frias JC, Fayad ZA: Advances in detection and characterization of atherosclerosis using contrast agents targeting the macrophage. J Nucl Cardiol 2006;13:699–709.
28.
Moreno PRFalk EPalacios IFNewell JBFuster VFallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque ruptureCirculation199490775-778. 28. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT: Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994;90:775–778.
29.
van der Wal ACBecker AEvan der Loos CMTigges AJDas PK. Fibrous and lipid-rich atherosclerotic plaques are part of interchangeable morphologies related to inflammation: a conceptCoron Artery Dis19945463-469. 29. van der Wal AC, Becker AE, van der Loos CM, Tigges AJ, Das PK: Fibrous and lipid-rich atherosclerotic plaques are part of interchangeable morphologies related to inflammation: a concept. Coron Artery Dis 1994;5:463–469.
30.
van der Wal ACBecker AEvan der Loos CMDas PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphologyCirculation19948936-44. 30. van der Wal AC, Becker AE, van der Loos CM, Das PK: Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44.
31.
Veidal SSBay-Jensen ACTougas GKarsdal MAVainer B. Serum markers of liver fibrosis: combining the BIPED classification and the neo-epitope approach in the development of new biomarkersDis Markers20102815-28. 31. Veidal SS, Bay-Jensen AC, Tougas G, Karsdal MA, Vainer B: Serum markers of liver fibrosis: combining the BIPED classification and the neo-epitope approach in the development of new biomarkers. Dis Markers 2010;28:15–28.
32.
Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupturePhysiol Rev2005851-31. 32. Newby AC: Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 2005;85:1–31.
33.
Bobryshev YV. Calcification of elastic fibers in human atherosclerotic plaqueAtherosclerosis2005180293-303. 33. Bobryshev YV: Calcification of elastic fibers in human atherosclerotic plaque. Atherosclerosis 2005;180:293–303.
34.
Rouis M. Matrix metalloproteinases: a potential therapeutic target in atherosclerosisCurr Drug Targets Cardiovasc Haematol Disord20055541-548. 34. Rouis M: Matrix metalloproteinases: a potential therapeutic target in atherosclerosis. Curr Drug Targets Cardiovasc Haematol Disord 2005;5:541–548.
35.
Bode MKMosorin MSatta JRisteli LJuvonen TRisteli J. Complete processing of type III collagen in atherosclerotic plaquesArterioscler Thromb Vasc Biol1999191506-1511. 35. Bode MK, Mosorin M, Satta J, Risteli L, Juvonen T, Risteli J: Complete processing of type III collagen in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 1999;19:1506–1511.
36.
Rekhter MD. Collagen synthesis in atherosclerosis: too much and not enoughCardiovasc Res199941376-384. 36. Rekhter MD: Collagen synthesis in atherosclerosis: too much and not enough. Cardiovasc Res 1999;41:376–384.
37.
Mayne R. Collagenous proteins of blood vesselsArteriosclerosis19866585-593. 37. Mayne R: Collagenous proteins of blood vessels. Arteriosclerosis 1986;6:585–593.
38.
Katsuda SOkada YMinamoto TOda YMatsui YNakanishi I. Collagens in human atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodiesArterioscler Thromb199212494-502. 38. Katsuda S, Okada Y, Minamoto T, Oda Y, Matsui Y, Nakanishi I: Collagens in human atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodies. Arterioscler Thromb 1992;12:494–502.
39.
Eriksen HASatta JRisteli JVeijola MVare PSoini Y. Type I and type III collagen synthesis and composition in the valve matrix in aortic valve stenosisAtherosclerosis200618991-98. 39. Eriksen HA, Satta J, Risteli J, Veijola M, Vare P, Soini Y: Type I and type III collagen synthesis and composition in the valve matrix in aortic valve stenosis. Atherosclerosis 2006;189:91–98.
40.
Barnes MJFarndale RW. Collagens and atherosclerosisExp Gerontol199934513-525. 40. Barnes MJ, Farndale RW: Collagens and atherosclerosis. Exp Gerontol 1999;34:513–525.
41.
Shekhonin BVDomogatsky SPMuzykantov VRIdelson GLRukosuev VS. Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: immunomorphological characteristicsColl Relat Res19855355-368. 41. Shekhonin BV, Domogatsky SP, Muzykantov VR, Idelson GL, Rukosuev VS: Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: immunomorphological characteristics. Coll Relat Res 1985;5:355–368.
42.
McCullagh KGDuance VCBishop KA. The distribution of collagen types I, III and V (AB) in normal and atherosclerotic human aortaJ Pathol198013045-55. 42. McCullagh KG, Duance VC, Bishop KA: The distribution of collagen types I, III and V (AB) in normal and atherosclerotic human aorta. J Pathol 1980;130:45–55.
43.
Prockop DJKivirikko KI. Collagens: molecular biology, diseases, and potentials for therapyAnnu Rev Biochem199564403-434. 43. Prockop DJ, Kivirikko KI: Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995;64:403–434.
44.
Garrone RLethias CLe Guellec D. Distribution of minor collagens during skin developmentMicrosc Res Tech199738407-412. 44. Garrone R, Lethias C, Le Guellec D: Distribution of minor collagens during skin development. Microsc Res Tech 1997;38:407–412.
45.
Ciornei CDTapper HBjartell ASternby NHBodelsson M. Human antimicrobial peptide LL-37 is present in atherosclerotic plaques and induces death of vascular smooth muscle cells: a laboratory studyBMC Cardiovasc Disord2006649. 45. Ciornei CD, Tapper H, Bjartell A, Sternby NH, Bodelsson M: Human antimicrobial peptide LL-37 is present in atherosclerotic plaques and induces death of vascular smooth muscle cells: a laboratory study. BMC Cardiovasc Disord 2006;6:49.
46.
Clarkson TBKaplan JR. Stage of reproductive life, atherosclerosis progression, estrogen effects on coronary artery atherosclerosisTreatment of the Postmenopausal Woman: Basic and Clinical AspectsLobo RA3rdElsevierSan Diego2007509-528. 46. Clarkson TB, Kaplan JR: Stage of reproductive life, atherosclerosis progression and estrogen effects on coronary artery atherosclerosis. In: Treatment of the Postmenopausal Woman: Basic and Clinical Aspects (Lobo RA, ed., 3rd ed.), Elsevier, San Diego, 2007;509–528.
47.
Mecham RPBroekelmann TJFliszar CJShapiro SDWelgus HGSenior RM. Elastin degradation by matrix metalloproteinases. Cleavage site specificity and mechanisms of elastolysisJ Biol Chem199727218071-18076. 47. Mecham RP, Broekelmann TJ, Fliszar CJ, Shapiro SD, Welgus HG, Senior RM: Elastin degradation by matrix metalloproteinases. Cleavage site specificity and mechanisms of elastolysis. J Biol Chem 1997;272:18071–18076.
48.
Kielty CMSherratt MJShuttleworth CA. Elastic fibresJ Cell Sci2002115Pt 142817-2828. 48. Kielty CM, Sherratt MJ, Shuttleworth CA: Elastic fibres. J Cell Sci 2002;115(Pt 14):2817–2828.
49.
Karnik SKBrooke BSBayes-Genis A et al. A critical role for elastin signaling in vascular morphogenesis and diseaseDevelopment2003130411-423. 49. Karnik SK, Brooke BS, Bayes-Genis A, et al.: A critical role for elastin signaling in vascular morphogenesis and disease. Development 2003;130:411–423.
50.
Proudfoot DShanahan CM. Biology of calcification in vascular cells: intima versus mediaHerz200126245-251. 50. Proudfoot D, Shanahan CM: Biology of calcification in vascular cells: intima versus media. Herz 2001;26:245–251.
51.
Robert LRobert AMJacotot B. Elastin-elastase-atherosclerosis revisitedAtherosclerosis1998140281-295. 51. Robert L, Robert AM, Jacotot B: Elastin-elastase-atherosclerosis revisited. Atherosclerosis 1998;140:281–295.
52.
Wight TN. Cell biology of arterial proteoglycansArteriosclerosis198991-20. 52. Wight TN: Cell biology of arterial proteoglycans. Arteriosclerosis 1989;9:1–20.
53.
O'Brien KDOlin KLAlpers CE et al. Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques: colocalization of biglycan with apolipoproteinsCirculation199898519-527. 53. O'Brien KD, Olin KL, Alpers CE, et al.: Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques: colocalization of biglycan with apolipoproteins. Circulation 1998;98:519–527.
54.
Kunz J. Matrix metalloproteinases and atherogenesis in dependence of ageGerontology20075363-73. 54. Kunz J: Matrix metalloproteinases and atherogenesis in dependence of age. Gerontology 2007;53:63–73.
55.
Wight TNMerrilees MJ. Proteoglycans in atherosclerosis and restenosis: key roles for versicanCirc Res2004941158-1167. 55. Wight TN, Merrilees MJ: Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res 2004;94:1158–1167.
56.
Sondergaard BCHenriksen KWulf H et al. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradationOsteoarthritis Cartilage200614738-748. 56. Sondergaard BC, Henriksen K, Wulf H, et al.: Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation. Osteoarthritis Cartilage 2006;14:738–748.
57.
Kuzuya MNakamura KSasaki TCheng XWItohara SIguchi A. Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient miceArterioscler Thromb Vasc Biol2006261120-1125. 57. Kuzuya M, Nakamura K, Sasaki T, Cheng XW, Itohara S, Iguchi A: Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler Thromb Vasc Biol 2006;26:1120–1125.
58.
Gough PJGomez IGWille PTRaines EW. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient miceJ Clin Invest200611659-69. 58. Gough PJ, Gomez IG, Wille PT, Raines EW: Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 2006;116:59–69.
59.
Sukhova GKShi GP. Do cathepsins play a role in abdominal aortic aneurysm pathogenesis?Ann N Y Acad Sci20061085161-169. 59. Sukhova GK, Shi GP: Do cathepsins play a role in abdominal aortic aneurysm pathogenesis? Ann N Y Acad Sci 2006;1085:161–169.
60.
Sukhova GKShi GPSimon DIChapman HALibby P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cellsJ Clin Invest1998102576-583. 60. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P: Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 1998;102:576–583.
61.
Sukhova GKZhang YPan JH et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient miceJ Clin Invest2003111897-906. 61. Sukhova GK, Zhang Y, Pan JH, et al.: Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003;111:897–906.
62.
Novinec MGrass RNStark WJTurk VBaici ALenarcic B. Interaction between human cathepsins K, L, and S and elastins: mechanism of elastinolysis and inhibition by macromolecular inhibitorsJ Biol Chem20072827893-7902. 62. Novinec M, Grass RN, Stark WJ, Turk V, Baici A, Lenarcic B: Interaction between human cathepsins K, L, and S and elastins: mechanism of elastinolysis and inhibition by macromolecular inhibitors. J Biol Chem 2007;282:7893–7902.
63.
Lutgens SPCleutjens KBDaemen MJHeeneman S. Cathepsin cysteine proteases in cardiovascular diseaseFASEB J2007213029-3041. 63. Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S: Cathepsin cysteine proteases in cardiovascular disease. FASEB J 2007;21:3029–3041.
64.
Lutgens ELutgens SPFaber BC et al. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formationCirculation200611398-107. 64. Lutgens E, Lutgens SP, Faber BC, et al.: Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 2006;113:98–107.
65.
Liu JSukhova GKSun JSXu WHLibby PShi GP. Lysosomal cysteine proteases in atherosclerosisArterioscler Thromb Vasc Biol2004241359-1366. 65. Liu J, Sukhova GK, Sun JS, Xu WH, Libby P, Shi GP: Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 2004;24:1359–1366.
66.
Jaffer FAKim DEQuinti L et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensorCirculation20071152292-2298. 66. Jaffer FA, Kim DE, Quinti L, et al.: Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 2007;115:2292–2298.
67.
Garcia-Touchard AHenry TDSangiorgi G et al. Extracellular proteases in atherosclerosis and restenosisArterioscler Thromb Vasc Biol2005251119-1127. 67. Garcia-Touchard A, Henry TD, Sangiorgi G, et al.: Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol 2005;25:1119–1127.
68.
Chen JTung CHMahmood U et al. In vivo imaging of proteolytic activity in atherosclerosisCirculation20021052766-2771. 68. Chen J, Tung CH, Mahmood U, et al.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002;105:2766–2771.
69.
Chapman HARiese RJShi GP. Emerging roles for cysteine proteases in human biologyAnnu Rev Physiol19975963-88. 69. Chapman HA, Riese RJ, Shi GP: Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 1997;59:63–88.
70.
Luttun ALutgens EManderveld A et al. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growthCirculation20041091408-1414. 70. Luttun A, Lutgens E, Manderveld A, et al.: Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation 2004;109:1408–1414.
71.
Jonsson-Rylander ACNilsson TFritsche-Danielson R et al. Role of ADAMTS-1 in atherosclerosis: remodeling of carotid artery, immunohistochemistry, and proteolysis of versicanArterioscler Thromb Vasc Biol200525180-185. 71. Jonsson-Rylander AC, Nilsson T, Fritsche-Danielson R, et al.: Role of ADAMTS-1 in atherosclerosis: remodeling of carotid artery, immunohistochemistry, and proteolysis of versican. Arterioscler Thromb Vasc Biol 2005;25:180–185.
72.
Rouis MAdamy CDuverger N et al. Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E-deficient miceCirculation1999100533-540. 72. Rouis M, Adamy C, Duverger N, et al.: Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E-deficient mice. Circulation 1999;100:533–540.
73.
Allaire EForough RClowes MStarcher BClowes AW. Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat modelJ Clin Invest19981021413-1420. 73. Allaire E, Forough R, Clowes M, Starcher B, Clowes AW: Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest 1998;102:1413–1420.
74.
Rouis M. Matrix metalloproteinases: a potential therapeutic target in atherosclerosisCurr Drug Targets Cardiovasc Haematol Disord20055541-548. 74. Rouis M: Matrix metalloproteinases: a potential therapeutic target in atherosclerosis. Curr Drug Targets Cardiovasc Haematol Disord 2005;5:541–548.
75.
Bailey MPillarisetti SJones PXiao HSimionescu DVyavahare N. Involvement of matrix metalloproteinases and tenascin-C in elastin calcificationCardiovasc Pathol200413146-155. 75. Bailey M, Pillarisetti S, Jones P, Xiao H, Simionescu D, Vyavahare N: Involvement of matrix metalloproteinases and tenascin-C in elastin calcification. Cardiovasc Pathol 2004;13:146–155.
76.
Xu XPMeisel SROng JM et al. Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophagesCirculation199999993-998. 76. Xu XP, Meisel SR, Ong JM, et al.: Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages. Circulation 1999;99:993–998.
77.
Eldrup NGronholdt MLSillesen HNordestgaard BG. Elevated matrix metalloproteinase-9 associated with stroke or cardiovascular death in patients with carotid stenosisCirculation20061141847-1854. 77. Eldrup N, Gronholdt ML, Sillesen H, Nordestgaard BG: Elevated matrix metalloproteinase-9 associated with stroke or cardiovascular death in patients with carotid stenosis. Circulation 2006;114:1847–1854.
78.
Kuzuya MNakamura KSasaki TCheng XWItohara SIguchi A. Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient miceArterioscler Thromb Vasc Biol2006261120-1125. 78. Kuzuya M, Nakamura K, Sasaki T, Cheng XW, Itohara S, Iguchi A: Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler Thromb Vasc Biol 2006;26:1120–1125.
79.
Yamada YIzawa HIchihara S et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genesN Engl J Med20023471916-1923. 79. Yamada Y, Izawa H, Ichihara S, et al.: Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 2002;347:1916–1923.
80.
Silence JLupu FCollen DLijnen HR. Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivationArterioscler Thromb Vasc Biol2001211440-1445. 80. Silence J, Lupu F, Collen D, Lijnen HR: Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vasc Biol 2001;21:1440–1445.
81.
Herman MPSukhova GKLibby P et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profilingCirculation20011041899-1904. 81. Herman MP, Sukhova GK, Libby P, et al.: Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation 2001;104:1899–1904.
82.
Molloy KJThompson MMJones JL et al. Unstable carotid plaques exhibit raised matrix metalloproteinase-8 activityCirculation2004110337-343. 82. Molloy KJ, Thompson MM, Jones JL, et al.: Unstable carotid plaques exhibit raised matrix metalloproteinase-8 activity. Circulation 2004;110:337–343.
83.
Sukhova GKSchönbeck URabkin E et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaquesCirculation1999992503-2509. 83. Sukhova GK, Schönbeck U, Rabkin E, et al.: Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 1999;99:2503–2509.
84.
Knauper VLopez-Otin CSmith BKnight GMurphy G. Biochemical characterization of human collagenase-3J Biol Chem19962711544-1550. 84. Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G: Biochemical characterization of human collagenase-3. J Biol Chem 1996;271:1544–1550.
85.
Turu MMKrupinski JCatena E et al. Intraplaque MMP-8 levels are increased in asymptomatic patients with carotid plaque progression on ultrasoundAtherosclerosis2006187161-169. 85. Turu MM, Krupinski J, Catena E, et al.: Intraplaque MMP-8 levels are increased in asymptomatic patients with carotid plaque progression on ultrasound. Atherosclerosis 2006;187:161–169.
86.
Shapiro SD. Elastolytic metalloproteinases produced by human mononuclear phagocytes. Potential roles in destructive lung diseaseAm J Respir Crit Care Med19941506 Pt 2S160-S164. 86. Shapiro SD: Elastolytic metalloproteinases produced by human mononuclear phagocytes. Potential roles in destructive lung disease. Am J Respir Crit Care Med 1994;150(6 Pt 2):S160–S164.
87.
Beaudeux JLGiral PBruckert EFoglietti MJChapman MJ. Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectivesClin Chem Lab Med200442121-131. 87. Beaudeux JL, Giral P, Bruckert E, Foglietti MJ, Chapman MJ: Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clin Chem Lab Med 2004;42:121–131.
88.
Yamada SWang KYTanimoto A et al. Matrix metalloproteinase 12 accelerates the initiation of atherosclerosis and stimulates the progression of fatty streaks to fibrous plaques in transgenic rabbitsAm J Pathol20081721419-1429. 88. Yamada S, Wang KY, Tanimoto A, et al.: Matrix metalloproteinase 12 accelerates the initiation of atherosclerosis and stimulates the progression of fatty streaks to fibrous plaques in transgenic rabbits. Am J Pathol 2008;172:1419–1429.
89.
Tang BL. ADAMTS: a novel family of extracellular matrix proteasesInt J Biochem Cell Biol20013333-44. 89. Tang BL: ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol 2001;33:33–44.
90.
Wight TN. The ADAMTS proteases, extracellular matrix, and vascular disease: waking the sleeping giant(s)!Arterioscler Thromb Vasc Biol20052512-14. 90. Wight TN: The ADAMTS proteases, extracellular matrix, and vascular disease: waking the sleeping giant(s)! Arterioscler Thromb Vasc Biol 2005;25:12–14.
91.
Wagsater DBjork HZhu C et al. ADAMTS-4 and −8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaquesAtherosclerosis2008196514-522. 91. Wagsater D, Bjork H, Zhu C, et al.: ADAMTS-4 and −8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis 2008;196:514–522.
92.
Lalmanach GDiot EGodat ELecaille FHerve-Grepinet V. Cysteine cathepsins and caspases in silicosisBiol Chem2006387863-870. 92. Lalmanach G, Diot E, Godat E, Lecaille F, Herve-Grepinet V: Cysteine cathepsins and caspases in silicosis. Biol Chem 2006;387:863–870.
93.
Lecaille FChowdhury SPurisima EBromme DLalmanach G. The S2 subsites of cathepsins K and L and their contribution to collagen degradationProtein Sci200716662-670. 93. Lecaille F, Chowdhury S, Purisima E, Bromme D, Lalmanach G: The S2 subsites of cathepsins K and L and their contribution to collagen degradation. Protein Sci 2007;16:662–670.
94.
Abdul-Hussien HSoekhoe RGWeber E et al. Collagen degradation in the abdominal aneurysm: a conspiracy of matrix metalloproteinase and cysteine collagenasesAm J Pathol2007170809-817. 94. Abdul-Hussien H, Soekhoe RG, Weber E, et al.: Collagen degradation in the abdominal aneurysm: a conspiracy of matrix metalloproteinase and cysteine collagenases. Am J Pathol 2007;170:809–817.
95.
Hakala JKOksjoki RLaine P et al. Lysosomal enzymes are released from cultured human macrophages, hydrolyze LDL in vitro, and are present extracellularly in human atherosclerotic lesionsArterioscler Thromb Vasc Biol2003231430-1436. 95. Hakala JK, Oksjoki R, Laine P, et al.: Lysosomal enzymes are released from cultured human macrophages, hydrolyze LDL in vitro, and are present extracellularly in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2003;23:1430–1436.
96.
Sorensen MGHenriksen KSchaller S et al. Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral bloodJ Bone Miner Metab20072536-45. 96. Sorensen MG, Henriksen K, Schaller S, et al.: Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 2007;25:36–45.
97.
Karsdal MAHjorth PHenriksen K et al. Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expressionJ Biol Chem200327844975-44987. 97. Karsdal MA, Hjorth P, Henriksen K, et al.: Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem 2003;278:44975–44987.
98.
Buhling FReisenauer AGerber A et al. Cathepsin K—a marker of macrophage differentiation?J Pathol2001195375-382. 98. Buhling F, Reisenauer A, Gerber A, et al.: Cathepsin K—a marker of macrophage differentiation? J Pathol 2001;195:375–382.
99.
Samokhin AOWong ASaftig PBromme D. Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient miceAtherosclerosis200820058-68. 99. Samokhin AO, Wong A, Saftig P, Bromme D: Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Atherosclerosis 2008;200:58–68.
100.
Zhen EYBrittain IJLaska DA et al. Characterization of metalloprotease cleavage products of human articular cartilageArthritis Rheum2008582420-2431. 100. Zhen EY, Brittain IJ, Laska DA, et al.: Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum 2008;58:2420–2431.
101.
Karsdal MAHenriksen KLeeming DJ et al. Biochemical markers and the FDA Critical Path: how biomarkers may contribute to the understanding of pathophysiology and provide unique and necessary tools for drug developmentBiomarkers200914181-202. 101. Karsdal MA, Henriksen K, Leeming DJ, et al.: Biochemical markers and the FDA Critical Path: how biomarkers may contribute to the understanding of pathophysiology and provide unique and necessary tools for drug development. Biomarkers 2009;14:181–202.
102.
Schaller SHenriksen KHoegh-Andersen P et al. In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist?Assay Drug Dev Technol20053553-580. 102. Schaller S, Henriksen K, Hoegh-Andersen P, et al.: In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist? Assay Drug Dev Technol 2005;3:553–580.
103.
Schaller SHenriksen KSveigaard C et al. The chloride channel inhibitor n53736 prevents bone resorption in ovariectomized rats without changing bone formationJ Bone Miner Res2004191144-1153. 103. Schaller S, Henriksen K, Sveigaard C, et al.: The chloride channel inhibitor n53736 prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res 2004;19:1144–1153.
104.
Ravn PHosking DThompson D et al. Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort studyJ Clin Endocrinol Metab1999842363-2368. 104. Ravn P, Hosking D, Thompson D, et al.: Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab 1999;84:2363–2368.
105.
Nielsen RHStoop RLeeming DJ et al. Evaluation of cartilage damage by measuring collagen degradation products in joint extracts in a traumatic model of osteoarthritisBiomarkers20081379-87. 105. Nielsen RH, Stoop R, Leeming DJ, et al.: Evaluation of cartilage damage by measuring collagen degradation products in joint extracts in a traumatic model of osteoarthritis. Biomarkers 2008;13:79–87.
106.
Reijman MHazes JMBierma-Zeinstra SM et al. A new marker for osteoarthritis: cross-sectional and longitudinal approachArthritis Rheum2004502471-2478. 106. Reijman M, Hazes JM, Bierma-Zeinstra SM, et al.: A new marker for osteoarthritis: cross-sectional and longitudinal approach. Arthritis Rheum 2004;50:2471–2478.
107.
Dam EBByrjalsen IKarsdal MAQvist PChristiansen C. Increased urinary excretion of C-telopeptides of type II collagen (CTX-II) predicts cartilage loss over 21 months by MRIOsteoarthritis Cartilage200917384-389. 107. Dam EB, Byrjalsen I, Karsdal MA, Qvist P, Christiansen C: Increased urinary excretion of C-telopeptides of type II collagen (CTX-II) predicts cartilage loss over 21 months by MRI. Osteoarthritis Cartilage 2009;17:384–389.
108.
Dam EBLoog MChristiansen C et al. Identification of progressors in osteoarthritis by combining biochemical and MRI-based markersArthritis Res Ther200911R115. 108. Dam EB, Loog M, Christiansen C, et al.: Identification of progressors in osteoarthritis by combining biochemical and MRI-based markers. Arthritis Res Ther 2009;11:R115.
109.
Bauer DCHunter DJAbramson SB et al. Classification of osteoarthritis biomarkers: a proposed approachOsteoarthritis Cartilage200614723-727. 109. Bauer DC, Hunter DJ, Abramson SB, et al.: Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage 2006;14:723–727.
110.
Barascuk NZheng RWang J et al. A novel assay for assessment, quantification of arterial extracellular matrix remodeling in ApoE -/- mice. ESC Congress 2009 August 29th–September 2nd Abstract P460729-8-0009. 110. Barascuk N, Zheng R, Wang J, et al.: A novel assay for assessment and quantification of arterial extracellular matrix remodeling in ApoE -/- mice. ESC Congress 2009 August 29th–September 2nd Abstract P4607. 29-8-0009.

Information & Authors

Information

Published In

cover image ASSAY and Drug Development Technologies
ASSAY and Drug Development Technologies
Volume 8Issue Number 5October 2010
Pages: 542 - 552
PubMed: 20662734

History

Published online: 25 October 2010
Published in print: October 2010
Published ahead of print: 27 July 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Helene Skjøt-Arkil
Nordic Bioscience, Herlev, Denmark.
Southern University of Denmark, Odense, Denmark.
Natasha Barascuk
Nordic Bioscience, Herlev, Denmark.
Southern University of Denmark, Odense, Denmark.
Thomas Register
Wake Forest University School of Medicine, Winston-Salem, North Carolina.
Morten A. Karsdal
Nordic Bioscience, Herlev, Denmark.

Notes

Address correspondence to:Helene Skjøt-Arkil, M.Sc. PharmNordic BioscienceHerlev Hovedgade 207Herlev DK-2730Denmark
E-mail: [email protected]

Author Disclosure Statement

Morten A. Karsdal owns stock in Nordic Biosicence.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top