Strength training's chronic effects on muscle architecture parameters of different arm sites

J Strength Cond Res. 2011 Jun;25(6):1711-7. doi: 10.1519/JSC.0b013e3181dba162.

Abstract

Strength training generates alterations in muscle geometry, which can be monitored by imaging techniques as, for example, the ultrasound (US) technique. There is no consensus about the homogeneity of hypertrophy in different muscle sites. Therefore, the purpose of this study was to compare the muscle thickness (MT) and pennation angle (PA) in 3 different sites (50, 60, and 70% of arm length) of the biceps brachii and triceps brachii after 12 weeks of strength training. Forty-nine healthy untrained men were divided into 2 groups: Training Group ([TG, n = 40] 29.90 ± 1.72 years; 79.53 ± 11.84 kg; 173 ± 0.6 cm) and Control Group (n = 9 25.89 ± 3.59 years; 73.96 ± 9.86 kg; 171 ± 6 cm). The TG underwent a strength training program during 12 weeks, which included exercises such as a free-weight bench press, machine lat pull-down, triceps extension in lat pull-down, and standing free-weight biceps curl with a straight bar. A US apparatus was used to measure the PA and MT at the 3 sites. The maximal voluntary isometric contraction (MVC) test was conducted for each muscle group. After 12 weeks of training, a significant difference was observed between MT in biceps brachii, with an improvement of 12% in the proximal site, whereas the distal site increased by only 4.7% (p < 0.05). For the long head of the triceps brachii, the MT and PA at the 3 sites presented significant increases, but no significant variation was observed among them, probably because of the pennated-fiber arrangement. The MVC increased significantly for both muscle groups. The results indicated that the strength training program was efficient in promoting hypertrophy in both muscles, but with dissimilar responses of the pennated and fusiform muscle architecture at different arm sites.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Arm / diagnostic imaging
  • Arm / physiology
  • Humans
  • Isometric Contraction / physiology
  • Male
  • Muscle Strength / physiology
  • Muscle, Skeletal / diagnostic imaging
  • Muscle, Skeletal / physiology*
  • Resistance Training*
  • Ultrasonography