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2 RAPID EVALUATION OF PERCEPTUAL THRESHOLDS 

 

As an methodical outcome of the threshold experiments conducted at the IHA, we advanced the 
used best-PEST method to a fully independent, browser-based application. The idea was to pro-
vide experimenters with a tool for measuring thresholds, which can be used without spending any 
installation, compilation, or even programming effort (this is in contrast to other available soft-
ware). The drawback of this premise lies in the missing interface. For safety reasons the program 
has no access to the client computer and therefore can not provide it with the estimated values 
directly. The experimenters have to insert the received threshold values in their testing environ-
ment by hand. This fact makes the Best-PEST Calculator useful especially for these threshold es-
timations, whose stimulus presentation can not be done with the aid of common computer-
equipment, like e.g. smell and taste thresholds. The program can be downloaded from: 

http://www.psychophysics.ethz.ch/tools/ 

Depending on the version used, the browser has to be updated with the Macromedia Director 
plug-in version 8.5. The software recognises automatically if an update is necessary, whereupon it 
will be done after three or four mouse-clicks. 

In the following we describe the minimal background necessary to utilize the best-PEST-
Calculator. 

______________________________________________________________________________________________________________ 
Hans-Jörg Zuberbühler, ETH Zürich zuberbuehler@iha.bepr.ethz.ch 



1 Psychophysical Theory 

1.1 Testing paradigms 
Psychophysical procedures dispose of various testing paradigms, of which we describe the yes-

no and the forced-choice (nAFC: n-alternative-forced-choice) mode. With the yes-no mode subjects 
are given a series of trials, in which they must judge the presence or absence of a stimulus at each 
case. The ratio between the number of trials containing a stimulus and the total number of trials 
is usually 0.5, but can be any other value. Usually this ratio is told to the subject in advance. The 
rate of yes-responses for all tested stimulus intensities is defined as the dependent variable. 

A basically different testing mode is represented by the forced-choice mode: Subjects are given 
a variety of n alternatives, from which they have to choose the one containing the stimulus. The 
alternatives are presented with either spatial or temporal coincidence, or without either coinci-
dence. The subjects know that exactly one alternative contains the stimulus, and that the rest has 
a zero-stimulus. The differences between these two methods become obvious when the pre-
sented stimuli are faint. In the yes-no paradigm the proportion of yes-answers approaches zero, 
whereas in the forced-choice paradigm the proportion of correct answers approaches the value of 
equal probability for all alternatives, which is the reciprocal value of the number of alternatives. 
Likewise this means that e.g. in two-alternative forced-choice (2AFC) tasks the threshold is lo-
cated where observers give 75% of correct responses, since they already give 50% of correct re-
sponses due to the 2AFC-inherent guessing. The basic advantage of 2AFC consists of its well-
founded assumption that subjects will opt for the stimulus evoking the strongest perception, re-
gardless their tendency to say “yes” or “no”. This is in contrast to the yes-no paradigm, where 
decision making in the presence of uncertainty is according to the subject’s psychological charac-
teristics, like e.g. prudence. Unlike the yes-no mode, the dependent variable of nAFC is the rate of 
correct responses for all tested stimuli instead of the rate of yes-responses. In the following we 
subsume both kinds of dependent variables under the term positive-response rate ψ . 

For most of psychophysical testing, be it in the clinic or in the research lab, efficiency is of 
great importance, i.e. the threshold should be estimated with satisfying accuracy after as few as 
possible trials. The requirement of minimal number of trials is given by the fact, that after a long 
run of trials experimental subjects tend to fatigue and to be bored, resulting in an apparently drift 
of their thresholds. For this reason, so called adaptive psychophysical procedures have been de-
veloped, whose prior purpose is to minimize the number of trials. We will recapitulate the adap-
tive procedure called best-PEST in chapter 2, for more details about adaptive procedures see the 
overview of Treutwein (Treutwein, 1995). In the next chapter we describe the theoretical back-
ground necessary to understand this procedure. 
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4 CHAPTER 1.    PSYCHOPHYSICAL THEORY 

1.2 Psychometric function ( )fψ φ=  

The psychometric function assigns a positive-response rate ψ to the range of stimulus intensi-
ties. The particular properties of this function are described in the following: 

The range of ψ is bounded as lower limit by the probability to give positive responses without 
perceiving the stimulus (false positive rate). This false positive rate consists of a methodical part 
(only in nAFC), and the “proper” false positive rate ε. The methodical part is equal to the recip-
rocal value of the alternatives n. The upper limit of ψ consists of (1–δ): Big stimulus intensities 
effect positive responses in virtually all the cases, only reduced by the false negative rate (i.e. 
misses) δ . The error terms δ and ε are caused by observers’ inattention or fatigue for instance. 

(positive responsepψ−∞ = )φ → −∞
1
n

ε= +  eq (1) 

( 1positive responsep )ψ φ δ+∞ = → +∞ = −  eq (2) 

φ : stimulus intensity  { }φ∈  

{n : number of alternatives }2 10n n∈ ≤ ≤  0

ε : false positive   { }0 0.ε ε∈ ≤ ≤ 5  

δ : false negative   { }0 0δ δ∈ ≤ ≤ .5  

 

We define the threshold θ  to be that value of stimulus intensity, that yields a specified posi-
tive-response rate. For practical reasons in testing, the threshold is located at the steepest slope of 
the psychometric function (derivation see chapter 2.1.). In the following we will exemplify the 
psychometric function by means of the logistic model, because this is the kernel function of the 
adaptive procedure best-PEST, which is the topic of chapter 2.1: 

( )*ψ φ ( )( )* 1
1 eβ θ φ −

−= +  eq (3) 

* ( )ψ φ  : kernel function 

β∗  : steepness parameter 

θ : threshold 
 

Since the logistic function is rotationally symmetric in the inflection point, the threshold is in 
middle of the response range [ ,ψ ψ−∞ +∞ ]. Therefore, the rate of positive responses at threshold 
is: 

( )( ) positive responsenAFC pθψ φ θ= = 10.5 1
2 n

ψ ψ δ+∞ −∞+  = = − +
 

ε+   eq (4) 
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1.2    Psychometric function 5 

In order to create a formal link between the two testing paradigms, the yes-no situation can be 
considered as forced-choice situation with infinitive number of alternatives. In this case the thresh-
old converges to the value where the positive-response rate is: 

( / )
1lim 0.5 1Yes No n nθψ δ ε

→∞

 = − + 
 

+ (0.5 1 δ ε= − + )  eq (5) 

 

The psychometric function ( )*ψ φ  has to be adjusted due to the observers false positive and 
false negative rates. For these purposes the kernel function is shifted to n–1 + ε  and scaled to the 
response range [ ,ψ ψ−∞ +∞ ], which distance is – according to eq (1) and eq (2) – equal to 

11 nδ ε−− − − : 
1−( ) (1n n 1ψ φ ε δ= + + − − −ε− *ψ  eq (6) )

( )ψ φ  : adjusted psychometric function 
 

In order to deal with a well known constant, which is comparable between different magni-
tudes of stimuli, we let β  be the slope of the inflection point of the normalized psychometric 
function. We define the threshold to be at stimulus intensity of 0.5, thus we normalize the stimu-
lus intensity to two threshold units, with the result of obtaining the “real” slope in a equal-scaled 
plot (i.e. the slope is equivalent to the tangent of the gradient angle): 

d
d φ θ

ψβ
φ =

=
( )* 11

4

nβ δ ε−− − −
=        that is      *β 1

4
1 n

β
δ ε−=

− − −
 eq (7) 

β : slope of the psychometric function at threshold (inflection point) 

 

eq (7) inserted in eq (6) leads to: 

( ) ( )
( )

( )1

14
11 11 1

nn n e

β θ φ
δ εψ φ ε δ ε

−

−−
− − −− −

 
 = + + − − − +
 
 

  eq (8) 

Equation eq (8) is the underlying, generic formula for the threshold estimation by the best-
PEST calculator. In Figure 1 the mapping of eq (8) is shown with different parameter settings: 

{ }2, 4,  n ∈ ∞  

{ }1.5, 3, 7  β ∈  

0.07ε = ,  0.04δ =
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6 CHAPTER 1.    PSYCHOPHYSICAL THEORY 
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Figure 1 Logistic psychometric graphs depicting yes-no and forced-choice situations (nAFC). The asymp-
totes are at (1/n + ε), and at (1-δ). The slope β is 3 (straight lines), and 7 and 1.5 (dashed lines) respectively. 
The stimulus intensity is normalized to 2 threshold units. 

Typically psychometric functions are – as depicted in Figure 1 – of statistical value (unless they 
represent a heaviside step function with its “step” at the threshold value). I.e. when an observer is 
presented on several occasions with the same stimulus, he or she is likely to respond yes on some 
trials and no on other trials. Thus, the threshold cannot be defined as the stimulus value below 
which detection never occurs and above which detection always occurs, but rather as the stimulus 
value which is perceptible in a predefined percentage of the trials (usually 50%). Experimenters 
are confronted with the question, how to determine the psychometric function of an experimen-
tal subject or of a study cohort. For that purpose classical psychophysics offers several methods, 
which we will not explain here in detail. Readers interested in this topic may consult the standard 
work of Gescheider (Gescheider, 1997). Recapitulating, we hold that with these methods we de-
termine the detectability of several stimulus intensities, and fit an appropriate sigmoid shaped 
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1.2    Psychometric function 7 

curve to these data to obtain the psychometric function. From this function the 50% threshold 
can be read out.  

In order to measure the empirical threshold, the experimenter must decide what stimulus in-
tensities should be used in the experiment. It should be clear that choosing intensities that are all 
greatly above or below the threshold will provide little information leading to an accurate estima-
tion of the threshold. In addition to the problem of requiring a large quantity of trials to obtain 
the threshold, waste trials are likely to occur with these methods, unless the testing range is 
known in advance. An approach with these characteristics is far from optimally efficient and con-
sequently the adaptive methods for measuring threshold have evolved. 
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2 Adaptive Psychophysical Procedures 

In all adaptive procedures, the intensity of a stimulus presented on a particular trial is deter-
mined by the observer’s performance in detecting stimuli presented on prior trials. Except for 
one class of procedures called maximum-likelihood methods all other methods described in 
(Gescheider, 1997) suggest more or less heuristic rules after how many trials and how much the 
presented stimulus intensity has to be adjusted. Even though it is a characteristic of all adaptive 
procedures to recall information from the past history of an experimental run, only the maxi-
mum-likelihood procedures determine the next stimulus presentation based on a statistical esti-
mation of the observer’s threshold, which is made from all of the results obtained from the be-
ginning of the run. The statistical technique of maximum-likelihood estimation assumes that the 
underlying psychometric function has a specific form. For example it could be a Gaussian (the 
cumulative normal distribution), logistic, Weibull, or some other sigmoid-shaped function. Be-
cause these functions have similar forms, the estimated thresholds are not greatly different, and 
the choice may only be of importance if e.g. a particular perception model is under test. In the 
following we describe the best-PEST method suggested by (Pentland, 1980). PEST is the acro-
nym for Parameter Estimation of Sequential Trials. 

2.1 Maximum-Likelihood: best-PEST 
In best-PEST the approach taken to the problem of determining a threshold is to maximise the 

information gained with each measurement. In so doing the smallest possible number of meas-
urements will be required. First we derive the choice of the sampling point on the psychometric 
function: 

For any value φ of the stimulus range [0,k], there is a probability Ψ of a positive answer. Given 
n samples taken at φ, of which p were positive, our estimate of Ψ is: 

p
N

ψ =  eq (9) 

ψ  : estimate of the probability of a positive response 

p : number of positive responses 

N : number of samples 

the variance is 
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10 CHAPTER 2.    ADAPTIVE PSYCHOPHYSICAL PROCEDURES 

(1 )
N

ψ ψσ −=  eq (10) 

σ  : variance of estimation 

and the confidence intervals are 

CI wψ σ=  eq (11) 

CIψ  : width of the confidence interval about ψ  

w : level of desired confidence (e.g. 0.95) 

Equations eq (9) and eq (10) inserted in eq (11) leads to 

3
( )p N pCI w

Nψ
−=  eq (12) 

To get the stimulus range φ corresponding to the confidence interval of the dependent vari-
able, it has to be divided by the slope of the psychometric curve: 

CI d
CI

d
ψ

φ

φ
ψ
⋅

=  eq (13) 

CIφ  : width of the confidence interval about φ  

Thus, in order to minimise the estimated confidence interval about the stimulus φ for a given 
number of trials we have to maximise the slope of the psychometric function. For all sigmoid-
shaped functions, the steepest slope is located at the inflection point. In the rotationally symmet-
ric logistic function used in best-PEST this point is at the “center” of the curve. In the yes-no 
mode this is at 50% if E=0 and S=1; in the 2AFC mode this is at 75% if E=0.5 and S=0.5. 

In order to explain the best-PEST procedure we reformulate Equation eq (8) and obtain the 
probability of getting a positive (if r=1) or negative (if r=-1) response at the i-th trial: 

( ) ( ) 1 1
4

, , 1 i ir S
i i ir E S e

θ φ β
ψ φ θ

− −
−+−  = + +

 
  eq (14) 

ri : response of the observer at i-th trial. { }1, -1ir ∈  

iθ  : i-th estimate of the threshold 

E : elevation of the psychometric function according to eq (1) 

S : scaling of the psychometric function to the response range according to eq (1) and eq (2) 

The strategy in best-PEST is to calculate the likelihood of the sampling point’s being at each 
point within the testing range and taking as new estimate the stimulus value that is assigned to the 
highest probability. After n-1 trials, we find the n-th point of measurement by solving: 

1 1 1 1
(0, )

max ( , ),...( , ) is at maximum slopeN k
P x r r

φ
θ θ − −

∈
=  N Nθ  , eq (15) 
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2.1    Maximum-Likelihood: best-PEST 11 

where (0, k) is the test range of the stimulus φ and (θi, ri) denotes the results of the i-th meas-
urement that was taken at value θi. 

The maximum likelihood estimator is known to be the most efficient unbiased estimator. One 
problem arises: the product of all the probability distributions approaches zero for large numbers 
of trials. To overcome this problem, we apply a logarithmic transformation to the likelihood 
function with the result of obtaining the sum instead of the product of all likelihood functions. 
That way, the log-likelihood functions do not need to be standardised to the overall probability 
of 1. Since the logarithmic function is strictly monotonic increasing, the locations of maxima are 
preserved: 

( )
( )

( )
( )

, , 11
max max log

N N

x a b x a b ii
f x

∈ ∈ ==
= ∑∏ f x



 eq (16) 

For the case of the used function eq (14), the n-th threshold estimation is calculated according 
to eq (15) and eq (16): 

( )
( ) 1 11 4

0, 1
max log 1 i i

N r S
N k i

E S e
θ φ β

φ
θ

− −− −

∈ =

  = + +   
∑  eq (17) 

Figure 2 depicts the expansion of the log-likelihood functions according to eq (17). The follow-
ing parameter settings are used: 

 Used Paradigm
Parame- A = 2AFC B = yes-no 

N 10 10
E 0.5 0
S 0.5 1
β 2 2
r { }1, 1, -1, 1, 1, -1, 1, 1, 1, -1 { }1, -1, 1, -1, 1, 1, -1, -1, 1, -1  

Table 1 Parameter settings of the curves depicted in Figure 2. 
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12 CHAPTER 2.    ADAPTIVE PSYCHOPHYSICAL PROCEDURES 
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Figure 2 Expansion of the log-likelihood functions in the stimulus interval [0, k] of the adaptive procedure 
best-PEST. Circles indicate the relative maxima, dashed lines show the progression of the threshold conver-
gence. Bold lines represent the predefined initialisations, thin lines are calculated according to the responses 
r.    A: 2-alternativ forced-choice (2AFC) paradigm. B: yes-no paradigm. 
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3 Description of the best-PEST Calculator 

In the following the best-PEST Calculator is described. Screenshots of the three masks of the 
program are shown and the input and output fields are explained where they are not self-
explanatory (indicated by numbers). 

⑧

⑦

⑥

⑤

④

③

②

① 

Figure 3 Screenshot of the first mask (input), where the settings for the experiment are entered. If a
fields are filled out in the requested format, pressing the “start” button will lead to the second input ma
not, a dialogue window pops up, indicating the missing or false input. Clicking the arrow opens the “adva
settings” fields. By default these settings are: “slope β” = 2, “false negative δ“ = 0,” false positive ε“ 
“mean of x trials” = 3. 

① Mode 
In the drop-down menu mode, the users have the choice between the yes-no and the forced-cho
paradigm. If they choose nAFC, an additional input field appears, where the number of alte
is to insert. If n > 100 is entered, the program switches automatically to the yes-no calculatio
is to state that experimental subjects most likely will be overstrained if they have to make re
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14 CHAPTER 3.    DESCRIPTION OF THE BEST-PEST CALCULATOR 

cisions about the presence of a stimulus from more than hundred alternatives. Anyhow, if such ex-
periments are planned, one can expect the error caused by the slightly inadequate calculation being 
much smaller than the error caused by any other interference – for instance the subject’s lapses.   

② Start value k 
Setting of the test interval [0, k], where k determines the highest stimulus value that can be obtained 
during the run. The upper limit k should be at least twice as large as the expected threshold value. Note 
that the start value will not be presented to the subject, assuming this value so high that subjects will 
perceive it in all the cases. In order to deal with comparable slope values, the algorithm uses the nor-
malized range [0, 1] of the stimulus intensity. The stimulus intensity φ denote therefore: 

*

k
φφ =  eq. ( 18 ) 

φ∗ : stimulus intensity in desired unit { }* * 0φ φ∈ ≥  

k : stimulus maximum   { }0k k∈ >  

③ Smallest Step Size 
Determines the size of the smallest stimulus change that can be obtained. Ideally this is the difference 
threshold of the particular stimulus. If this value is not known – in the case where we just want to de-
termine it – we have to estimate a suitable step size. Experimenters have to be aware of too small or 
too big step sizes, since both result in large measurement bias of the thresholds. If the ratio between 
“start value” and “smallest step size” is larger than 1000, the program will prompt a warning and ask 
for either bigger step size or smaller start value. This is a precaution in order to prevent the users of 
too long computing time. 

④ Termination Criterion 
Users have the choice between “Number of Trials” and “Number of Reversals”. A reversal R is de-
fined as a change from increasing to decreasing (or the other way around) of the presented stimulus in-
tensities M. 

{ } is presented at trial M m m= ∈ i  eq. ( 19 ) 

( ) ( ){ }1 1 1 1i i i i i iR m M m m m m m m− + − += ∈ > < ∨ < > i  eq. ( 20 ) 

M : set of presented stimulus intensities 

R : set of reversals 

⑤ Advanced Setting: Slope β 
As an advanced setting, the users have the opportunity to enter the estimated or known slope of the 
particular psychometric function. For the definition of the slope see Figure 1 and eq (7). The slope 
value is calculated according to equal-scaled axes. Entering β implies knowledge about the tested co-
hort or subject, usually gained through pre-testing. If the slope is not known, β will be set by default to 
two. 
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DESCRIPTION OF THE BEST-PEST CALCULATOR 15 

⑥ Advanced Setting: false negative δ 
δ specifies the false negative rate (or miss rate). This rate is constituted by the observers negative an-
swers even tough the stimulus intensity is at maximum. Entering δ implies knowledge about the tested 
cohort or subject, usually gained through pre-testing. By default this value is zero. 

⑦ Advanced Setting: false positive ε ⑦ Advanced Setting: false positive ε 
ε specifies the false positive rate (or false alarm rate). This rate is constituted by the observers positive 
answers even tough the stimulus intensity is zero. In forced-choice experiments, ε does not comprise 
the methodical false alarm rate, which is the reciprocal value of the number of alternatives. Entering ε 
implies knowledge about the tested cohort or subject, usually gained through pre-testing.  By default 
this value is zero. 

ε specifies the false positive rate (or false alarm rate). This rate is constituted by the observers positive 
answers even tough the stimulus intensity is zero. In forced-choice experiments, ε does not comprise 
the methodical false alarm rate, which is the reciprocal value of the number of alternatives. Entering ε 
implies knowledge about the tested cohort or subject, usually gained through pre-testing.  By default 
this value is zero. 

⑧ Advanced Setting: mean of x trials ⑧ Advanced Setting: mean of x trials 
x specifies the number of trials to take at the end of an experimental run for calculating the mean 
threshold value. As a rule-of-dump, larger numbers of trials permit larger numbers of x. By default this 
value is three. 

x specifies the number of trials to take at the end of an experimental run for calculating the mean 
threshold value. As a rule-of-dump, larger numbers of trials permit larger numbers of x. By default this 
value is three. 

⑪

⑩

⑨

Figure 4 Screenshot of the second mask (input/output), where the computation of the actual maximum 
likelihood threshold is done. Pressing the button “back” will abort the computation and returns to the first 
mask to modify the settings. Pressing the “cancel” button will abort the computation and goes to the results 
mask displaying the recent status of the experiment, without having reached the termination criterion. 

Figure 4 Screenshot of the second mask (input/output), where the computation of the actual maximum 
likelihood threshold is done. Pressing the button “back” will abort the computation and returns to the first 
mask to modify the settings. Pressing the “cancel” button will abort the computation and goes to the results 
mask displaying the recent status of the experiment, without having reached the termination criterion. 
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16 CHAPTER 3.    DESCRIPTION OF THE BEST-PEST CALCULATOR 

⑨ Step 1: output from the best-PEST algorithm 
The output value mi is to present to the subject. It is the maximum likelihood estimation of the thresh-
old, obtained from all available information. Since there is no information available from the subjects 
in the very first trial, the initialisation is conducted assuming that the subjects will perceive the stimulus 
for sure at the start intensity k, and that at zero intensity they will not perceive the stimulus for sure. 
Therefore the first output will be somewhere in the middle of the test interval. 
for sure at the start intensity k, and that at zero intensity they will not perceive the stimulus for sure. 
Therefore the first output will be somewhere in the middle of the test interval. 

⑩ Step 2: response of the subject ⑩ Step 2: response of the subject 
After the subjects were presented with the stimulus intensity obtained from step 1, the radio button is 
to select corresponding to the subject’s response. In the nAFC mode the buttons are labelled with 
“CORRECT” and “INCORRECT”, and in the yes-no mode they are labelled with “YES” and “NO”. 

After the subjects were presented with the stimulus intensity obtained from step 1, the radio button is 
to select corresponding to the subject’s response. In the nAFC mode the buttons are labelled with 
“CORRECT” and “INCORRECT”, and in the yes-no mode they are labelled with “YES” and “NO”. 

⑪ Step 3: next value ⑪ Step 3: next value 
Pressing the button “calculate next value” will trigger the next calculation, whereupon a new value will 
appear in the output field. Step 1 to 3 have to be repeated until the termination criterion is reached. 
Pressing then this button will bring to program to the “results” mask. 

Pressing the button “calculate next value” will trigger the next calculation, whereupon a new value will 
appear in the output field. Step 1 to 3 have to be repeated until the termination criterion is reached. 
Pressing then this button will bring to program to the “results” mask. 

⑭ 

⑬ 

⑫ 

Figure 5 Screenshot of the third mask (output), where the results of the entire experimental run are dis-
played. Pressing the “start again” button will return to the first mask, and leave the settings as they are. 
Figure 5 Screenshot of the third mask (output), where the results of the entire experimental run are dis-
played. Pressing the “start again” button will return to the first mask, and leave the settings as they are. 

⑫ Threshold value ⑫ Threshold value 
Output of the final threshold estimation, which is the mean value of the x last trials. Output of the final threshold estimation, which is the mean value of the x last trials. 
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⑬ All values 
The presented stimulus intensities of the entire experimental run are displayed and marked in the field 
“values” in order to copy them to the clipboard (Ctrl + C). 

⑭ Graph 
The values of the entire experimental run as well as the final threshold are depict in a diagram with 
stimulus intensity as ordinate and number of trials as abscissa. 
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4 Monte-Carlo Simulations 

The following Monte-Carlo-Simulations were made to evaluate the convergence behaviour of 
the best-PEST algorithm. All simulations were made in the yes/no mode with equal start values. A 
built-in random process simulated the response behaviour of an assumed experimental subject 
which we call stochastic observer. For that purpose we assumed that the stochastic observer answers 
in a logistic manner with a stable threshold – an assumption which is in fact made by best-PEST: 

According to eq (17) on page 11, Nθ is the n-th threshold estimate d est-PEST. For 
this estimate there is – according to eq (8) on page 5 – a probability 

one by b
( )Nψ θ  for a positive re-

sponse. We obtain the particular answer of the stochastic observer by applying the following pro-
cedure: If ( )Nψ θ  is greater than a jointly distributed random number between 0 and 1, the sto-
chastic observer answers no, if ( )Nψ θ  is equal or smaller than the random number, the 
stochastic observer answers yes. That way, after a sufficient number of runs we map the whole 
assumed psychometric function of the stochastic observer onto the outcome of the best-PEST 
procedure, and we are possibly able to establish an empirical law of the algorithm’s behaviour.  

In the following we show the results of three simulation runs. 0 lists the corresponding pa-
rameter settings for the conducted simulations, whose results are displayed in Figure 6, Figure 7, 
and Figure 8. 

Parameter Value 
 Figure 6 Figure 7 Figure 8 
Mode yes/no yes/no yes/no 
Start value k 1.7391 1.7391 1.7391 
Threshold θ of the stochastic observer 1.0000 1.0000 1.0000 
Start value k / smallest step size 40 40 40 
Termination criterion: Number of Trials 15 5 to 50 50 
Slopes of best-PEST’s model 1.0 to 3.5 0.1 to 5.0 0.1 to 5.0 
Slopes of the stochastic observer’s psychometric function same steps same steps 0.1 to 5.0 
False negative δ 0 0 0 
False positive ε 0 0 0 
Mean of x trials 3 3 3 
Number of threshold determinations per measuring point 3 1000 1000 
Number of measuring points 2500 2500 2500 

Table 2 Parameter settings used for the Monte-Carlo-Simulations separated for three conditions. For an 
explanation of the parameters see the previous chapter. 
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In order to gain an idea of what accuracy the best-PEST algorithm provides, we ran a simula-
tion with realistic parameter settings: As a trade-off between accuracy and practicability, the sub-
ject would have to accomplish three threshold determinations consisting of 15 stimulus presenta-
tions with corresponding decision-making. In such a way the whole procedure would last the fea-
sible time of about 30 minutes, which is of course depending on the duration of each stimulus 
presentation. Anyway, with such a scenario experimenters can be sure, that the subjects’ fatigue 
will play an negligible role. For the simulations, we ran the above-mentioned scenario with slopes 
from 1.0 to 3.5, resulting in a total amount of 2500 threshold means. The histogram of this dis-
tribution is depicted in Figure 6. 

frequency

0.7 0.9 1.0 1.10.8 1.2 1.3
threshold (target value=1.0)

Figure 6 Distribution of the obtained threshold values with the best-PEST algorithm. The stochastic ob-
server’s threshold is 1.0 (target value). Basis for the distribution are 2500 threshold determinations, each rep-
resenting the mean of 3 runs. 

The distribution is approximately Gaussian with a mean of 0.99755, and a variance of 0.00764. 

The aim of the second simulation was to gain insight in the convergence behaviour of best-
PEST for different numbers of trials until termination, and for different slope values of both sto-
chastic observer and best-PEST model. For that purpose we calculated the variance of the mean 
threshold after 1000 runs as a function of the mentioned variables. The contour lines of equal 
variance in the range [0, 0.05] can be seen in Figure 7. 
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Figure 7 Simulation of threshold determination with the best-PEST algorithm. The curves show contour 
lines of threshold variances up to 0.05. The number of trials until a threshold determination stops is on the 
abscissa, the slopes of the psychometric functions of both stochastic observer and model are on the ordinate. 
The variance is calculated on the basis of 1000 threshold determinations for each measuring point. The 
slope’s increment is 0.1, the number of trials’ increment is 1. 

The equal variances of the mean threshold describe approximately exponential curves, which is 
coherent with the interpretation that increasing number of trials diminish the marginal utility. 
This interpretation is obvious when we consider the nature of the best-PEST procedure: the in-
formation increase relative to the existing information is decreasing with every additional trial, 
and therefore changes of the estimated thresholds become smaller. A further prediction that can 
be made from these data is that the number of trials play an important role only for big slopes of 
the psychometric functions. 

The third simulation was made in order to analyse the convergence behaviour of best-PEST 
for different, interdependent slope values of the observer’s and of the model’s psychometric 
function. For that purpose we calculated – as in the second simulation – the variance of the mean 
threshold after 1000 runs as a function of the two slope variables. The contour lines of equal 
variance in the range [0, 0.05] can be seen in Figure 8. 
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Figure 8 Simulation of threshold determination with the best-PEST algorithm. The curves show contour 
lines of threshold variances up to 0.05. The slope of the model is on the abscissa, the slope of the stochastic 
observer is on the ordinate. The variance is calculated on the basis of 1000 threshold determinations for each 
measuring point. The increment is 0.1 for both variables. 

On first sight the curves of equal variance indicate no reasonable and explainable model of the 
interdependent behaviour of the two slope parameters. It can be read out that there is no reason 
to chose much bigger model than observer slopes, since they increase the variance for a given 
observer slope, especially in its lower range. As a rule of thumb we can say that a model slope 
twice as big as the observer slope will provide best results, since it seems, that there are relative 
minima of the contour lines at these points. 
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