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Our present, problem has been suggested by Miss Esther Klein 
in connection with the following proposition. 

From 5 points of the plane of which no three lie on the same 
straight line it is always possible to select 4 points determining 

a convex quadrilateral. 
We present E. Klein’s proof here because later on we are 

going to make use of it. If the least convex polygon which en- 
closes the points is a quadrilateral or a pentagon the theorem 
is trivial. Let therefore the enclosing polygon be a triangle ABC. 

Then the two remaining points D and E are inside ABC. Two 
of the given points (say A and C) must lie on the same side of 
the connecting straight line DE. Then it is clear that A EDC 

is a convex quadrilateral. 
Miss Klein suggested the following more general problem. Can 

we find for a given n a number N(n) such that from any set con- 
tainin.g at least N points it is possible to select n points forming 

a convex polygon? 
There are two particular questions: (1) does the number N 

corresponding to n exist? (2) If so, how is the least N(n) deter- 

mined as a function of n? (We denote the least N by N,(n).) 
We give two proofs that the first question is to be answered 

in the affirmative. Both of them will give definite values for 

N(n) and the first one can be generalised to any number of 
dimensions. Thus we obtain a certain preliminary answer to 
the second question. But the answer is not final for we generally 
get in this way a number N which is too large. Mr. E. Makai 

proved that N,,(5) = 9, and from our second demonstration, we 
obtain N(5) = 21 (from the first a number of the order 210000). 

Thus it is to be seen, that our estimate lies pretty far from 
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the true limit NO(n). It is notable that N(3) = 3 = 2 + 1, 
iv0 (4)= 5=22+1, No(S)= 9 = 23+1. 

We might conjecture therefore that N,,(n) = 2n-2 + 1, but the 

limits given by our proofs are much larger. 
It is desirable to extend the usual definition of convex polygon 

to include the eases where three or more consecutive points lie 

on a straight line. 

FIRST PROOF. 

The basis of the first proof is a combinatorial theorem of 
Ramsey 1). In the introduction it was proved that from 5 points 
it is always possible to select 4 forming a convex quadrangle. 

Now it can be easily proved by induction that n points deter- 
mine a convex polygon if and only if any 4 points of them form 

a convex quadrilateral. 
Denote the given points by the numbers I, 2, 3, . . ., N, then 

any k-gon of the set of points is represented by a set of k of these 

numbers, or as we shall say, by a k-combination. Let us now 
suppose each n-gon to be concave, then from what we observed 

above we can divide the &combinations into two classes (i. e. 
into ,,convex” and ,,concave” quadrilaterals) such that every 

!&combination shall contain at least one ,,convex” combination 
and each n-combination at least one concave one. (We regard 
one combination as contained in another, if each element of the 

first is also an element of the second.) 
From Ramsey’s theorem, it follows that this is impossible for 

a sufficiently iarpe N. 

Ramsey’s theorem can be stated as follows: 
Let k, 1, i be given positive integers, k 2 i; 1 2 i. Suppose that 

there exist two classes, cc and B, of i-combinations of m elements 
such that each k-combination shall contain at least one combination 
from class M ultd each I-combination shall contain at least one 

combination from class /I. Then for sufficiently great m < mi(k, 1) 
this is not possible. Ramsey enunciated his theorem in a slightly 
different form. 

In other words: if the members of M had been determined as 

above at our discretion and m 2 m,(k, 1), then there must be 
at least one Z-combination with every combination of order i 

belonging to class M. 

I) F. P. RAMSEY, Collected papers. On a problem of formal logic, 82-111. 
Recently SROLEM also proxTed Ramsey’s theorem [Fundamenta Siath. 20 (1933), 

25442611. 
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We give here a new proof of Ramsey’s theorem, which differs 

entirely from the previous ones and gives for m,(k, I) slightly 
smaller limits. 

a) If i = 1, the theorem holds for every k and 2. For if we 

select out of m some determined elements (combinations of order 1) 
as the class a, so that every k-gon (this shorter denomination 
will be given to the combination of order k) must contain at 

least one of the a elements, there are at most (k-l) elements 
which do not belong to the class a. Then there must be at least 

(m-k+l) elements of a. If (m-k+l) 2 I, then there must be 
an I-gon of the IX elements and thus 

m.lk+l--2 

which is evidently false for sufficiently great ?n. 

Suppose then that i > 1. 
b) The theorem is trivial, if k or 1 equals i. If, for example, 

k = i, then it is sufficient to choose ;I1E = 1. 
For k = 1 means that all i-gons ale a combinations and thus 

in virtue of m = 1 there is one polygon (i. e. the I-gon formed 
of all the elements), whose i-gons are all a-combinations. 

The argument for I = i runs similarly. 

c) Suppose finally that k > i; and suppose that the theorem 
holds for (i-1) and every k and I, furt.her for i, k, I: - 1 and 
i, I; - 1, 1. We shall prove that it will hold for i, k, I also and in 

virtue of (a) and (b) we may say that t’he theorem is proved 
for all i, k, 1. 

Suppose then that we are able to carry out the division of 
the i-polygons mentioned above. Further let. k’ be so great that 

if in every Z-gon of k’ elements there is at least one p combination, 
then there is one (k-1)-g on all of whose i-gons are B combina- 
tions. This choice of k’ is always possible in virtue of the induction- 

hypothesis, we have only to choose k’ = m,(k-1, 1). 
Similarly we choose 1’ so great that if each k-gon of I’ elements 

contains at least one c( combination, then there is one (Z-l)- 
gon all of whose i-gons are tc combinations. 

We then take m. larger than k’ and 1’; and let 

( al, a,, - * '7 Uk,) = A 

be an arbitrary k’-gon of the first (n-1) elements. By hypothesis 

each I-gon contains at least one p combination, hence owing to 
the choice of k’, A contains one (k-l)-gon (amI, u,~, . . ., amk-J 

whose i-gons all belong to the class p. Since in (u,~, * * ‘3 Qmr-*: 4 
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there is at least one M combination, it is clear that this must be 
one of the i-gons 

In just the same way we may prove by replacing the roles 
of k and 1 by k’ and 2’ and of a by /17 that if 

(b,, b,, . . . , b,,) ET? A’ 

is an arbitrary Z’-gon of the first (n-1) elements, then among 
the i-gons 

(bl, b,,, . . ., brtbl, n) = B’ 

there must be a fi combination. 
Thus we can divide the (i-1)-gons of the first (n-1) elements 

into classes u’ and F so that each k’-gon A shall contain at least 
one LX’ combination B and each E’-gon A’ at least one /Y com- 
bination B’. But, by the induction-hypotheses this is impossible 
for 733 2 mi-r(k’21) + 1. 

By following the induction, it is easy to obtain for mi(k, I) 
the following functional equation; 

m,(k, I) = rn&1 [m&k - 1, I), m, (k, 2 - I)] + 1. (1) 

By this recurrence-formula and the initial values 

m,(k, 2) = k + 2 - 1 
m,(i, I) = I, m,(k, i) = k 1 

(2) 

obtained from (a) and (b) we can calculate every m,(k, 2). 
We obtain e. g. easily 

m,(k+l,z+l)= ("L"). 

The function mentioned in the introduction has the form 

N(k) = m(5, k). (4) 

Finally, for the special case i = 2, we give a graphotheoretic 
formulation of Ramsey’s theorem and present a very simple 
proof of it. 

THEOREM: In an arbitrary graph let the maximum number of 
independent points “) be k; if the number of points is N 2 m(k, 1) 
then there exists in our graph a complete graph3) of order Z. 

2) Two points are said to be independent if they are not connected; k points 
are independent if every pair is independent. 

3) A complete graph is one in which every pair of points is connected. 
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PROOF. For 2 = 1, the theorem is trivial for any k, since the 
maximum number of independent points is k and if the number 
of points is (k+l), there must be an edge (complete graph of 
order 1). 

Now suppose the theorem proved for (I-1 ) with any k. Then 
N-k 

at least ~ 
k 

edges start from one of the independent points. 

Hence if 

N-k 
k 2 m(k, E--l), 

i. e., (5) 

then, out of the end points of these edges we may select, in 
virtue of our induction hypothesis, a complete graph whose 
order is at least (Z-l ). As the points of this graph are connected 
with the same point, they form together a complete graph of 
order 1. 

SECOND PROOF. 

The foundation of the second proof of our main theorem is 
formed partly by geometrical and partly by combinatorial 
considerations. We start from some similar problems and we 
shall see, that the numerical limits are more accurate then in 
the previous proof; they are in some respects exact. 

Let us consider the first quarter of the plane, whose points 
are determined by coordinates (z, 3). We choose n points with 
monotonously increasing abscissae “). 

THEOREM: It is always possible to choose at least z/n poilzts 

zvith increasing abscissae and either monotonoidy increasing or 
monotonously decreasing ordinates. If two ordinates are equal, 
the case may equally be regarded as increasing or decreasing. 

Let us denote by f(n, n) the minimum number of the points 
out of which we can select n monotonously increasing or decreas- 
ing ordinates. 

We assert that 

f(n+l, n+l) =f(n, n) f 212 - 1. (6) 

Let us select n monotonously increasing or decreasing points out 
of the f(n, n). Let us replace the last point by one of the (2n-1) 

new points. Then we shall have once more f(n, n) points, out 

4) The same problem was considered independently by Richard Rado. 
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of which we can select as before n monotonous points. Now we 

replace the last point by one of the new ones and so on. Thus 
we obtain Zn points each an endpoint of a monotonous set. Suppose 
that among them (n-+1) are end points of monotonously increas- 

ing sets. Then if yI 2 y, for I > k we add P, to the monotonously 
increasing set of P, and thus, with it, we shall have an increasing 

set of (n+l) points. If yk 2 yt for every k < 1, then the (n-t-l) 
decreasing end-points themselves give the monotonous set of 
(n-/-l) members. If between the 21~ points there are at least 

(n+l ) end-points of monotonous decreasing sets, the proof will 
run in just the same way. 

But it may happen that, out of the 2n points, just n are the 
end-points of increasing se&, and n the end-points of decreasing 
sets. Then by the same reasoning, the end-points of the decreasing 

set.s necessarily increase. But after the last end-point P there is 
no point, for its ordinate would be greater or smaller than that 
of P. If it is greater, then together with the n end-‘points it forms 

a monotonously increasing (n.+l) set and if it is smaller, with the 
n points belonging to P, it forms a decreasing set of (n+l ) 
members. But by the same reasoning the last of t.he n increasing 

end-points Q ought to be also an extreme one and that is evidently 

impossible. Thus we may deduce by induction 

f(n+l, n+l) = nz + 1. (7) 

Similarly let f(i, k) denote the minimum number of points 
out of which it is impossible to select either i monotonously in- 
creasing or k monotonously decreasing points. We have then 

f(i, k) = (i-Il)(k-1) + 1. (8) 

The proof is similar to the previous one. 

It is not difficult to see, that this limit is exact i. e. we can 
give (i-1) (k-l) points such that it is impossible to select 

out of them the desired number of monotonously increasing or 
decreasing ordinates. 

We solve now a similar problem: 

pi, p,, * b b are given points on a straight line. Let fi(i, k) 
denote the minimum number of points such that proceeding 

from left to right we shall be able to select either i points SO 

that the distances of two neighbouring points monotonously 
increase or k points so that the same distances monotonously 

decrease. We assert that 

fl(;, k) =fi(i-1, k) +fi(i, k -1) - 1. (9) 
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- 
Let the point C bisect the distance A I3 (A and B being the first 

and the last points). If the total number of points isf,(i- 1, k) + 
+fi(i, k-l) - 1, then either the number of points in the first 
half is at least fiti---I, Ic), or else there are in the second half 

at least fi(i, k- 1) points. If in the first half there are&(i-1, k) 
points then either there are among them k points whose distances, 
from left to right, monotonously decrease and then the equation 

for fi(i, k) is fulfilled, or there must be (i-1) p0int.s with in- 
creasing distances. By adding the point B, we have i points with 

monotonely increasing distances. If in the second interval there 

are fi(i, k-l) points, the proof runs in the same way. (The 

case, in which two distances are the same, may be classed into 
either the increasing or the decreasing sets.) 

It is possible to prove that this limit is exact. If the limits 

fi(&l, Ic) and fr(;, k---l) are exact (i. e. if it is possible to 
give [fi(i--1, k) - l] points so that there are no (i-l) in- 
creasing nor Ic decreasing distances) then the limit fi(;, k) is 

exact too. For if we choose e. g. [fi(i--1, k) - l] points in the 
0 . . * 1 interval, and [fr(i, k-l) -11 points in the 2.. .3 
interval, then we have [fi(i, k) - l] points out of which it is 

equally impossible to select i points with monotonously increasing 
and k points with decreasing distances. 

We now tackle the problem of the convex n-gon. If there are 
n given points, there is always a straight line which is neither 
parallel nor perpendicular to any join of two points. Let this 
straight line be e. Now we regard the configuration A,A,A,A, . . . 

as convex, if the gradients of the lines A,A,, ASA,, . . . decrease 
monotonously, and as concave if they increase monotonously. Let 

f,(i, k) denote the minimum number of the points such that from 
them we may pick out either i sided convex or k-sided concave 

configurations. We assert that 

f2(i, k) =f*(i-1, xl) +f& k-l) - 1. 

We consider the first fz(i--1, j?) points. If out of them there 
can be taken a concave configuration of k points then the equation 

for f2(i, Ic) is fulfilled. If not, then there is a convex configuration 
of (i-1) points. The last point of this convex configuration we 
replace by another point. Then we have once more either k 

concave points and then the assertion holds, or (i-l) convex 
ones. We go on replacing the last point, until we have made 
use of all points. Thus we obtain f,(i, k--l) points, each of 

which is an end-point of a convex configuration of (i-l) 
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elements. Among them, there are either i convex points and then 

our assertion is proved, or (k - 1) concave ones. Let the first 
of them be A,, the second A,. A, is the end-point of a convex 
configuration of (i-l) points. Let the neighbour of A, in this 
configuration be B. If the gradient of BA, is greater than that of 

A&l,, then A, together with the (i-l) points form a convex 
configuration; if the gradient is smaller, then B together with 

A,A,. . . form a concave k-configuration. This proves our 
assertion. 

The deduction of the recurrence formula may start from the 

statement: f,(3, ?t) =f2(q 3) = n (by definition). Thus we 
easily obtain 

f& k) = (““,I;) + 1. (11) 

as before we may easily prove that the limit given by (11) 

is exact, i. e. it is possible to give ( 1 ‘:I”; points such, that they 

contain neither convex nor concave k points. 
Since by connection of the first and last points, every set of k 

convex or concave points determines a convex k-gon it is evident 

that [c-z) + ] 1 points always contain a convex k-gon. 

And as in every convex (Zk-1) polygon there is always 
either a convex or a concave configuration of k points, it is evident 

that it is possible to give ( ) “:I: points, so that out of them 

no convex (2k-It ) polygon can be selected. Thus the limit is 

also estimated from below. 
Professor D. Kkig’s lemma 5, of infinity also gives a proof 

of the theorem that if k is a definite number and 12 sufficiently 

great, the n points always contain a convex k-gon. But we thus 
obtain a pure existence-proof, which allows no estimation of 
the number n. The proof depends on the statement that if M 

is an infinite set of points we may select out of it another convex 
infinite set of points. 

(Received December Vh, 1934.) 

6, D. K~NIG, tuber eine SchluBweise aus dem Endlichen ins Unendliche 

[Acta Szeged 3 (1927), 121-1301. 


