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PREFACE TO THE THIRD ENGLISH EDITION 

This book continues the series of English translations of the revised and 

augmented volumes in the Course of Theoretical Physics, which have been 

appearing in Russian since 1973. The English translations of volumes 2 

(Classical Theory of Fields) and 3 (Quantum Mechanics) will shortly both 

have been published. Unlike those two, the present volume 1 has not 

required any considerable revision, as is to be expected in such a well- 

established branch of theoretical physics as mechanics is. Only the final 

sections, on adiabatic invariants, have been revised by L. P. PitaevskiT 
and myself. 

The Course of Theoretical Physics was initiated by Landau, my teacher 

and friend. Our work together on these books began in the late 1930s and 

continued until the tragic accident that befell him in 1962. Landau’s work 

in science was always such as to display his striving for clarity, his effort to 

make simple what was complex and so to reveal the laws of nature in their 

true simplicity and beauty. It was this aim which he sought to instil into his 

pupils, and which has determined the character of the Course. I have tried 

to maintain this spirit, so far as I was able, in the revisions that have had 

to be made without Landau’s participation. It has been my good fortune to 

find a colleague for this work in L. P. PitaevskiT, a younger pupil of Landau’s. 

The present edition contains the biography of Landau which I wrote in 

1969 for the posthumous Russian edition of his Collected Works. I should 

like to hope that it will give the reader some slight idea of the personality of 
that remarkable man. 

The English translations of the Course were begun by Professor 

M. Hamermesh in 1951 and continued by Dr. J. B. Sykes and his colleagues. 

>io praise can be too great for their attentive and careful work, which has 

worldbUted S° mUCh t0 thC SUCCeSS °f 0ur books in the English-speaking 

Institute of Physical Problems 

I .S.S.R. Academy of Sciences 
Moscow 1976 

E. M. Lifshitz 





LEV DAVIDOVICH LANDAU (1908-1968)f 

Very little time has passed since the death of Lev Davidovich Landau on 

1 April 1968, but fate wills that even now we view him at a distance, as it 

were. From that distance we perceive more clearly not only his greatness as 

a scientist, the significance of whose work becomes increasingly obvious 

with time, but also that he was a great-hearted human being. He was 

uncommonly just and benevolent. There is no doubt that therein lie the 

roots of his popularity as a scientist and teacher, the roots of that genuine 

love and esteem which his direct and indirect pupils felt for him and which 

were manifested w'ith such exceptional strength during the days of the 

struggle to save his life following the terrible accident. 

To him fell the tragic fate of dying twice. The first time it happened was 

six years earlier on 7 January 1962 when on the icy road, en route from 

Moscow to Dubna, his car skidded and collided w'ith a lorry coming from 

the opposite direction. The epic story of the subsequent struggle to save 

his life is primarily a story of the selfless labour and skill of numerous 

physicians and nurses. But it is also a story of a remarkable feat of solidarity. 

The calamitous accident agitated the entire community of physicists, 

arousing a spontaneous and instant response. The hospital in which Landau 

lay unconscious became a centre to all those his students and colleagues - 

who strove to make whatever contributions they could to help the physicians 

in their desperate struggle to save Landau’s life. 

“Their feat of comradeship commenced on the very first day. Illustrious 

scientists who, however, had no idea of medicine, academicians, correspond¬ 

ing members of the scientific academies, doctors, candidates, men of the 

same generation as the 54-year-old Landau as well as his pupils and their 

still more youthful pupils - all volunteered to act as messengers, chauffeurs, 

intermediaries, suppliers, secretaries, members of the watch and, lastly, 

porters and labourers. Their spontaneously established headquarters was 

located in the office of the Physician-in-Chief of Hospital No. 50 and it 

became a round-the-clock organizational centre for an unconditional and 

immediate implementation of any instruction of the attending physicians. 

t By E. Al. I.ifshitz; written for the Russian edition of Landau’s Collected Papers, and 
first published in Russian in Uspekhi fizicheskikh nauk 97, 169-183, 1969. This translation 
is by E. Bergm-an (first published in Soviet Physics Uspekhi 12, 135-143, 1969), with minor 
modifications, and is reprinted by kind permission of the American Institute of Physics. 
The reference numbers correspond to the numbering in the Collected Papers of / D. Landau 
(Pergamon Press, Oxford 1965). 
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“Eighty-seven theoreticians and experimenters took part in this voluntary 

rescue team. An alphabetical list of the telephone numbers and addresses of 

any one and any institution with which contact might be needed at any 

instant was compiled, and it contained 223 telephone numbers! It included 

other hospitals, motor transport bases, airports, customs offices, pharmacies, 

ministries, and the places at which consulting physicians could most likely 

be reached. 

“During the most tragic days when it seemed that ‘Dau is dying’ - and 

there were at least four such days - 8-10 cars could be found waiting at 

any time in front of the seven-storey hospital building. . . 

“When everything depended on the artificial respiration machine, on 

12 January, a theoretician suggested that it should be immediately con¬ 

structed in the workshops of the Institute of Physical Problems. This was 

unnecessary and naive, but how amazingly spontaneous! The physicists 

obtained the machine from the Institute for the Study of Poliomyelitis 

and carried it in their own hands to the ward where Landau was gasping 

for breath. They saved their colleague, teacher, and friend. 

“The story could be continued without limit. This was a real fraternity 

of physicists. . . .”f 

And so, Landau’s life was saved. But when after three months he re¬ 

gained consciousness, it was no longer the same man whom we had known. 

He was not able to recover from all the consequences of his accident and 

never again completely regained his abilities. The story of the six years 

that followed is only a story of prolonged suffering and pain. 

Lev Davidovich Landau was born on 22 January 1908 in Baku, in the 

family of a petroleum engineer who worked on the Baku oil-fields. His 

mother was a physician and at one time had engaged in scientific work on 

physiology. 

He completed his school course at the age of 13. Even then he already 

was attracted by the exact sciences, and his mathematical ability manifested 

itself very early. He studied mathematical analysis on his own and later he 

used to say that he hardly remembere'd a time when he did not know 

differentiation and integration. 

His parents considered him too young to enter a university and for a 

year he attended the Baku Economic Technicum. In 1922 he enrolled at 

Baku University where he studied simultaneously in two departments: 

Physico-mathematical and Chemical. Subsequently he did not continue 

his chemical education but he remained interested in chemistry throughout 

his life. 
In 1924 Landau transferred to the Physics Department of Leningrad 

f From D. Danin, “Comradeship”, Liter» aya Gazeta (Literary Gazette), 21 July 1962. 
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University. In Leningrad, the main centre of Soviet physics at that time, 

he first made the acquaintance of genuine theoretical physics, which was 

then going through a turbulent period. He devoted himself to its study with 

all his youthful zeal and enthusiasm and worked so strenuously that often 

he became so exhausted that at night he could not sleep, still turning over 

formulae in his mind. 

Later he used to describe how at that time he was amazed by the in¬ 

credible beauty of the general theory of relativity (sometimes he even 

would declare that such a rapture on first making one’s acquaintance with 

this theory should be a characteristic of any born theoretical physicist). 

He also described the state of ecstasy to which he was brought on reading 

the articles by Heisenberg and Schrodinger signalling the birth of the new 

quantum mechanics. He said that he derived from them not only delight in 

the true glamour of science but also an acute realization of the power of 

the human genius, whose greatest triumph is that man is capable of appre¬ 

hending things beyond the pale of his imagination. And of course, the 

curvature of space-time and the uncertainty principle are precisely of this 

kind. 

In 1927 Landau graduated from the university and enrolled for post¬ 

graduate study at the Leningrad Physicotechnical Institute where even 

earlier, in 1926, he had been a part-time research student. These years 

brought his first scientific publications. In 1926 he published a theory of 

intensities in the spectra of diatomic molecules [l],f and as early as 1927, 

a study of the problem of damping in quantum mechanics, which first 

introduced a description of the state of a system with the aid of the density 

matrix. 

His fascination with physics and his first achievements as a scientist were, 

however, at the time beclouded by a painful diffidence in his relations with 

others. This trait caused him a great deal of suffering and at times - as he 

himself confessed in later years - led him to despair. The changes which 

occurred in him with the years and transformed him into a buoyant and 

gregarious individual were largely a result of his characteristic self-discipline 

and feeling of duty toward himself. These qualities, together with his sober 

and self-critical mind, enabled him to train himself and to evolve into a 

person with a rare ability - the ability to be happy. The same sobriety of 

mind enabled him always to distinguish between what is of real value in 

life and what is unimportant triviality, and thus also to retain his mental 

equilibrium during the difficult moments which occurred in his life too. 

In 1929, on an assignment from the People’s Commissariat of Education, 

Landau travelled abroad and for one and a half years worked in Denmark, 

Great Britain and Switzerland. To him the most important part of his trip 

was his stay in Copenhagen where, at the Institute of Theoretical Physics, 

r by Honl and London. 
that these results had been already published a 
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theoretical physicists from all Europe gathered round the great Niels Bohr 

and, during the famous seminars headed by Bohr, discussed all the basic 

problems of the theoretical physics of the time. This scientific atmosphere, 

enhanced by the charm of the personality of Bohr himself, decisively 

influenced Landau in forming his own outlook on physics and subsequently 

he always considered himself a disciple of Niels Bohr. He visited Copen¬ 

hagen two more times, in 1933 and 1934. Landau’s sojourn abroad was 

the occasion, in particular, of his work on the theory of the diamagnetism 

of an electron gas [4] and the study of the limitations imposed on the 

measurability of physical quantities in the relativistic quantum region (in 
collaboration with Peierls) [6]. 

On his return to Leningrad in 1931 Landau worked in the Leningrad 

Physicotechnical Institute and in 1932 he moved to Khar’kov, where he 

became head of the Theoretical Division of the newly organized Ukrainian 

Physicotechnical Institute, an offshoot of the Leningrad Institute. At the 

same time he headed the Department of Theoretical Physics at the Physics 

and Mechanics Laculty of the Khar’kov Mechanics and Machine Building 

Institute and in 1935 he became Professor of General Physics at 'Khar’kov 
University. 

The Khar’kov period was for Landau a time of intense and varied 

research activity.f It was there that he began his teaching career and estab¬ 

lished his own school of theoretical physics. 

Twentieth-century theoretical physics is rich in illustrious names of 

trail-blazing creators, and Landau was one of these creators. But his 

influence on scientific progress was far from exhausted by his personal 

contribution to it. He was not only an outstanding physicist but also a 

genuinely outstanding educator, a born educator. In this respect one may 

take the liberty of comparing Landau only to his own teacher - Niels Bohr. 

The problems of the teaching of theoretical physics as well as of physics 

as a whole had first attracted his interest while still quite a young man. It 

was there, in Khar’kov, that he first began to work out programmes for the 

“theoretical minimum” - programmes of the basic knowledge in theoretical 

physics needed by experimental physicists and by those who wish to devote 

themselves to professional research work in theoretical physics. In addition 

to drafting these programmes, he gave lectures on theoretical physics to 

the scientific staff at the Ukrainian Physicotechnical Institute as well as to 

students of the Physics and Mechanics Laculty. Attracted by the ideas of 

reorganizing instruction in physics as a whole, \ he accepted the Chair of 

General Physics at Khar’kov State \ University \{and subsequently, after 

t The extent of Landau’s scientific activities at the time can be grasped from the list of 
studies he completed during the year 1936 alone: theory of second-order phase transitions 
[29], theory of the intermediate state of superconductors [30], the transport equation in the 
case of Coulomb interaction [24], the theory of unimolecular reactions [23], properties of 
metals at very low temperatures [25], theory of the dispersion and absorption of sound 
[22, 28], theory of photoelectric effects in semiconductors [21]- 
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the war, he continued to give lectures on general physics at the Physico- 

technical Faculty of Moscow State University). 

It was there also, in Khar’kov, that Landau had conceived the idea and 

began to implement the programme for compiling a complete Course of 

Theoretical Physics and Course of General Physics. All his life long, Landau 

dreamed of writing books on physics at every level - from school textbooks 

to a course of theoretical physics for specialists. In fact, by the time of his 

fateful accident, nearly all the volumes of the Course of Theoretical Physics 

and the first volumes of the Course of General Physics and Physics for 

Everyone had been completed. He also had drafted plans for the compilation 

of textbooks on mathematics for physicists, which should be “a guide to 

action”, should instruct in the practical applications of mathematics to 

physics, and should be free of the rigours and complexities unnecessary to 

this course. He did not have time to begin to translate this programme into 

reality. 

Landau always attached great importance to the mastering of mathemati¬ 

cal techniques by the theoretical physicist. The degree of this mastery 

should be such that, insofar as possible, mathematical complications would 

not distract attention from the physical difficulties of the problem - at least 

whenever standard mathematical techniques are concerned. This can be 

achieved only by sufficient training. Yet experience shows that the current 

style and programmes for university instruction in mathematics for physi¬ 

cists often do not ensure such training. Experience also shows that after a 

physicist commences his independent research activity he finds the study 

of mathematics too “boring”. 

Therefore, the first test which Landau gave to anyone who desired to 

become one of his students was a quiz in mathematics in its “practical” 

calculational aspects.f The successful applicant could then pass on to the 

study of the seven successive sections of the programme for the “theoretical 

minimum”, which includes basic knowledge of all the domains of theoretical 

physics, and subsequently take an appropriate examination. In Landau’s 

opinion, this basic knowledge should be mastered by any theoretician 

regardless of his future specialization. Of course, he did not expect anyone 

to be as universally well-versed in science as he himself. But he thus 

manifested his belief in the integrity of theoretical physics as a single 

science with unified methods. 

At first Landau himself gave the examination for the “theoretical 

minimum”. Subsequently, after the number of applicants became too large, 

this duty was shared with his closest associates. But Landau always re- 

t The requirements were: ability to evaluate any indefinite integral that can be expressed 
in terms of elementary functions and to solve any ordinary differential equation of the standard 
type, knowledge of vector analysis and tensor algebra as well as of the principles of the theory 
of functions of a complex variable (theory of residues, Laplace method). It was assumed that 
such fields as tensor analysis and group theory would be studied together with the fields of 
theoretical physics to which they apply. 
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served for himself the first test, the first meeting with each new young 

applicant. Anyone could meet him - it was sufficient to ring him up and 
ask him for an interview. 

Of course, not every one who began to study the “theoretical minimum” 

had sufficient ability and persistence to complete it. Altogether, between 

1934 and 1961, 43 persons passed this test. The effectiveness of this selec¬ 

tion can be perceived from the following indicative facts alone: of these 

persons 7 already have become members of the Academy of Sciences and 

an additional 16, doctors of sciences. 

In the spring of 1937 Landau moved to Moscow where he became head 

of the Theoretical Division of the Institute of Physical Problems [which had 

not long before been established under the direction of P. L. Kapitza. 

There he remained to the end of his life; in this Institute, which became a 

home to him, his varied activity reached its full flowering. It was there, in a 

remarkable interaction with experimental research, that Landau created 

what may be the outstanding accomplishment of his scientific life - the 

theory of quantum fluids. 

It was there also that he received the numerous outward manifestations 

of the recognition of his contributions. In 1946 he was elected a full Member 

of the USSR Academy of Sciences. He was awarded a number of orders 

(including two Orders of Lenin) and the honorific title of Hero of Socialist 

Labour - a reward for both his scientific accomplishments and his contribu¬ 

tion to the implementation of important practical State tasks. He was 

awarded the State Prize three times and in 1962, the Lenin Prize. There 

also was no lack of honorific awards from other countries. As far back as 

1951 he was elected member of the Danish Royal Academy of Sciences 

and in 1956, member of the Netherlands Royal Academy of Sciences. In 

1959 he became honorary fellow of the British Institute of Physics and 

Physical Society and in 1960, Foreign Member of the Royal Society of 

Great Britain. In the same year he was elected to membership in the National 

Academy of Sciences of the United States and the American Academy of 

Arts and Sciences. In 1960 he became recipient of the F. London Prize 

(United States) and of the Max Planck Medal (West Germany). Lastly, in 

1962 he was awarded the Nobel Prize in Physics “for his pioneering theories 

for condensed matter, especially liquid helium”. 

Landau’s scientific influence was, of course, far from confined to his own 

disciples. He was deeply democratic in his life as a scientist (and in his life 

as a human being, for that matter; pomposity and deference to titles always 

remained foreign to him). Anyone, regardless of his scientific merits and 

title, could ask Landau for counsel and criticism (which were invariably 
precise and clear), on one condition only: the question must be businesslike 
instead of pertaining to what he detested most in science: empty philoso¬ 
phizing or vapidity and futility cloaked in pseudo-scientific sophistries. 
He had an acutely critical mind; this quality, along with his approach from 
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the standpoint of profound physics, made discussion with him extremely 

attractive and useful. 

In discussion he used to be ardent and incisive but not rude; witty and 

ironic but not caustic. The nameplate which he hung on the door of his 

office at the Ukrainian Physicotechnical Institute bore the inscription: 

L. LANDAU 

BEWARE, HE BITES! 

With years his character and manner mellowed somewhat, but his 

enthusiasm for science and his uncompromising attitude toward science 

remained unchanged. And certainly his sharp exterior concealed a scientifi¬ 

cally impartial attitude, a great heart and great kindness. However harsh 

and unsparing he may have been in his critical comments, he was just as 

intense in his desire to contribute with his advice to another man’s success, 

and his approval, when he gave it, was just as ardent. 

These traits of Landau’s personality as a scientist and of his talent 

actually elevated him to the position of a supreme scientific judge, as it 

were, over his students and colleagues.f There is no doubt that this side of 

Landau’s activities, his scientific and moral authority which exerted a 

restraining influence on frivolity in research, has also markedly contributed 

to the lofty level of our theoretical physics. 

His constant scientific contact with a large number of students and 

colleagues also represented to Landau a source of knowledge. A unique 

aspect of his style of work was that, ever since long ago, since the Khar’kov 

years, he himself almost never read any scientific article or book but never¬ 

theless he was always completely au courant with the latest news in physics. 

% 
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He derived this.knowledge from numerous discussions and from the papers 
presented at the seminar held under his direction. 

This seminar was held regularly once a week for nearly 30 years, and in 

the last years its sessions became gatherings of theoretical physicists from 

all Moscow. The presentation of papers at this seminar became a sacred 

duty for all students and co-workers, and Landau himself was extremely 

serious and thorough in selecting the material to be presented. He was 

interested and equally competent in every aspect of physics and the partici¬ 

pants in the seminar did not find it easy to follow his train of thought in 

instantaneously switching from the discussion of, say, the properties of 

strange particles to the discussion ol the energy spectrum of electrons in 

silicon, d o Landau himself listening to the papers was never an empty 

formality: he did not rest until the essence of a sti. ,ly was completely 

elucidated and all traces of “philology” - unproved statements or proposi¬ 

tions made on the principle of “why might it not” - therein were eliminated. 

As a result of such discussion and criticism many studies were condemned 

as “pathology” and Landau completely lost interest in them. On the other 

hand, articles that really contained new ideas or findings were included in 

the so-called “gold fund” and remained in Landau’s memory for ever. 

In fact, usually it was sufficient for him to know just the guiding idea of 

a study in order to reproduce all of its findings. As a rule, he found it easier 

to obtain them on his own than to follow in detail the author’s reasoning. 

In this way he reproduced for himself and profoundly thought out most of 

the basic results obtained in all the domains of theoretical physics, f This 

probably also was the reason for his phenomenal ability to answer practically 

any question concerning physics that might be asked of him. 

Landau’s scientific style was free of the - unfortunately fairly wide¬ 

spread - tendency to complicate simple things (often on the grounds of 

generality and rigour which, however, usually turn out to be illusory). He 

himself always strove towards the opposite - to simplify complex things, to 

uncover in the most lucid manner the genuine simplicity of the laws under¬ 

lying the natural phenomena. This ability of his, this skill at “trivializing” 

things as he himself used to say, was to him a matter of special pride. 

The striving for simplicity and order was an inherent part of the structure 

of Landau’s mind. It manifested itself not only in serious matters but also 

in semi-serious things as well as in his characteristic personal sense of 

humour.J Thus, he liked to classify everyone, from women according to 

the degree of their beauty, to theoretical physicists according to the signifi- 

f Incidentally, this explains the absence of certain needed references in Landau’s papers, 
which usually was not intentional. However, in some cases he could leave out a reference on 
purpose, if he considered the question too trivial; and he did have his own rather high stan¬ 
dards on that matter. 

t It is characteristic, however, that this trait was not a habit of Landau in his, soto speak, 
everyday outside life, in which he was not at all pedantically accurate and a zone ot disorder” 



cance of their contribution to science. This last classification was based on a 

logarithmic scale of five: thus, a second-class physicist supposedly accom¬ 

plished 10 times as much as a third-class physicist (“pathological types” 

were ranked in the fifth class). On this scale Einstein occupied the position i, 

while Bohr, Heisenberg, Schrodinger, Dirac and certain others were 

ranked in the first class. Landau modestly ranked himself for a long time 

in class 2^ and it was only comparatively late in his life that he promoted 
himself to the second class. 

He always worked hard (never at a desk, usually reclining on a divan at 
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home). The recognition of the results of one’s work is to a greater or lesser 

extent important to any scientist; it was, of course, also essential to Landau. 

But it can still be said that he attached much less importance to questions of 

priority than is ordinarily the case. And at any rate there is no doubt that 

his drive for work was inherently motivated not by desire for fame but by 

an inexhaustible curiosity and passion for exploring the laws of nature in 

their large and small manifestations. He never omitted a chance to repeat 

the elementary truth that one should never work for extraneous purposes, 

work merely for the sake of making a great discovery, for then nothing 

would be accomplished anyway. 

The range of Landau’s interests outside physics also was extremely wide. 

In addition to the exact sciences he loved history and was well-versed in it. 

He was also passionately interested in and deeply impressed by every genre 

of fine arts, though with the exception of music (and ballet). 

Those who had the good fortune to be his students and friends for many 

years knew that our Dau, as his friends and comrades nicknamed himj-, did 

not grow old. In his company boredom vanished. The brightness of his 

personality never grew dull and his scientific power remained strong. All 

the more senseless and frightful was the accident which put an end to his 

brilliant activity at its zenith. 

Landau’s articles, as a rule, display all the features of his characteristic 

scientific style: clarity and lucidity of physical statement of problems, the 

shortest and most elegant path towards their solution, no superfluities. 

Even now, after many years, the greater part of his articles does not require 

any revisions. 

The brief review below is intended to provide only a tentative idea of the 

abundance and diversity of Landau’s work and to clarify to some extent 

the place occupied by it in the history of physics, a place which may not 

always be obvious to the contemporary reader. 

A characteristic feature of Landau’s scientific creativity is its almost 

unprecedented breadth, which encompasses the whole of theoretical 

physics, from hydrodynamics to the quantum field theory. In our century, 

which is a century of increasingly narrow specialization, the scientific paths 

of his students also have been gradually diverging, but Landau himself 

unified them all, always retaining a truly astounding interest in everything. 

It may be that in him physics has lost one of the last great universalists. 

Even a cursory examination of the bibliography of Landau’s works shows 

that his life cannot be divided into any lengthy periods during which he 

worked only in some one domain of physics. Hence also the survey of his 
works is given not in chronological order but, insofar as possible, in thematic 

t Landau himself liked to say that this name originated from the French spelling of his 
name: Landau = L’ane Dau (the ass Dau). 
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order. We shall begin with the works devoted to the general problems of 

quantum mechanics. 

These include, in the first place, several of his early works. In the course 

of his studies of the radiation-damping problem he was the first to introduce 

the concept of incomplete quantum-mechanical description accomplished 

with the aid of quantities which were subsequently termed the density 

matrix [2]. In this article the density matrix was introduced in its energy 

representation. 
Two articles [7, 9] are devoted to the calculation of the probabilities of 

quasiclassical processes. The difficulty of this problem stems from the fact 

that, by virtue of the exponential nature (with a large imaginary exponent) 

of the quasiclassical wave functions, the integrand in the matrix elements 

is a rapidly fluctuating quantity; this greatly complicates even an estimate 

of the integral; in fact, until Landau’s work all studies of problems of this 

kind were erroneous. Landau was the first to provide a general method for 

the calculation of quasiclassical matrix elements and he also applied it to 

a number of specific processes. 

In 1930 Landau (in collaboration with R. Peierls) published a detailed 

study of the limitations imposed by relativistic requirements on the quantum- 

mechanical description [6]; this article caused lively discussions at the time. 

Its basic result lies in determining the limits of the possibility of measuring 

the particle momentum within a finite time. This implied that in the rela¬ 

tivistic quantum region it is not feasible to measure any dynamical variables 

characterizing the particles in their interaction, and that the only measurable 

quantities are" the momenta (and polarizations) of free particles. Therein 

also lies the physical root of the difficulties that arise when methods of 

conventional quantum mechanics, employing concepts which become 

meaningless in the relativistic domain, are applied there. Landau returned 

to this problem in his last published article [100], in which he expressed his 

conviction that the ^-operators, as carriers of unobservable information, 

and along with them the entire Hamiltonian method, should disappear 

from a future theory. 

One of the reasons for this conviction was the results of the research into 

the foundations of quantum electrodynamics which Landau carried out 

during 1954-1955 (in collaboration with A. A. Abrikosov, I. M. Khalatnikov 

and I. Ya. Pomeranchuk) [78-81, 86]. These studies were based on the 

concept of the point interaction as the limit of “smeared” interaction when 

the smearing radius tends to zero. This made it possible to deal directly with 

finite expressions. Further, it proved possible to carry out the summation 

of the principal terms of the entire series of perturbation theory and this 

led to the derivation of asymptotic expressions (for the case of large momen¬ 

ta) for the fundamental quantities of quantum electrodynamics - the Green 

functions and the vertex part. These relations, in their own turn, were used 
to derive the relationship between the true charge and mass of the electron, 
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on the one hand, and their “bare” values, on the other. Although these 

calculations proceeded on the premise of smallness of the “bare” charge, it 

was argued that the formula for the relation between true and bare charges 

retains its validity regardless of the magnitude of the bare charge. Then 

analysis of this formula shows that at the limit of point interaction the 

true charge becomes zero - the theory is “nullified”.-)- (A review of the 

pertinent questions is provided in the articles [84, 89]). 

Only the future will show the extent of the validity of the programme 

planned by Landau [100] for constructing a relativistic quantum field 

theory. He himself was energetically working in this direction during the 

last few years prior to his accident. As part of this programme, in particular, 

he had worked out a general method for determining the singularities of 

the quantities that occur in the diagram technique of quantum field 

theory [98]. 

In response to the discovery in 1956 of parity nonconservation in weak 

interactions, Landau immediately proposed the theory of a neutrino with 

fixed helicity (“two-component neutrino”) [92]J, and also suggested the 

principle of the conservation of “combined parity”, as he termed the 

combined application of spatial inversion and charge conjugation. Accord¬ 

ing to Landau, the symmetry of space would in this way be “saved” - 

the asymmetry is transferred to the particles themselves. This principle 

indeed proved to be more widely applicable than the law of parity conserva¬ 

tion. As is known, however, in recent years processes not conserving 

combined parity have also been discovered; the meaning of this violation 

is at present still unclear. 

A 1937 study [31] by Landau pertains to nuclear physics. This study 

represents a quantitative embodiment of the ideas proposed not long 

before by Bohr: the nucleus is examined by methods of statistical physics 

as a drop of “quantum fluid”. It is noteworthy that this study did not make 

use of any far-reaching model conceptions, contrary to the previous practice 

of other investigators. In particular, the relationship between the mean 

distance between the levels of the compound nucleus and the width of the 

levels was established for the first time. 

The absence of model conceptions is characteristic also of the theory of 

proton-proton scattering developed by Landau (in collaboration with 

Ya. A. Smorodinskii) [55]. The scattering cross-section in their study was 

expressed in terms of parameters whose meaning is not restricted by any 

specific assumptions concerning the particle interaction potential. 

The study (in collaboration with Yu. B. Rumer) [36] of the cascade 

t In connection with the search for a more rigorous proot of this statement, the article 
[100] contains the assertion, characteristic of Landau, that “the brevity of life does not allow 
us the luxury of spending time on problems which will lead to no new results . 

J Simultaneously and independently, this theory was proposed by Sa am and by Lee 
and Yang. 
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theory of electron showers in cosmic rays is an example of technical 

virtuosity; the physical foundations of this theory had been earlier formula¬ 

ted by a number of investigators, but a quantitative theory was essentially 

lacking. That study provided the mathematical apparatus which became the 

basis for all subsequent work in this domain. Landau himself took part in 

the further refinement of the shower theory by contributing two more 

articles, one on the particle angular distribution [43] and the other on 

secondary showers [44]. 

Of ho smaller virtuosity was Landau’s work dealing with the elaboration 

of Fermi’s idea of the statistical nature of multiple particle production in 

collisions [74]. This study also represents a brilliant example of the metho¬ 

dological unity of theoretical physics in which the solution of a problem is 

accomplished by using the methods from a seemingly completely different 

domain. Landau showed that the process of multiple production includes 

the stage of the expansion of a “cloud” whose dimensions are large com¬ 

pared with the mean free path of particles in it; correspondingly, this stage 

should be described by equations of relativistic hydrodynamics. The solu¬ 

tion of these equations required a number of ingenious techniques as well 

as a thorough analysis. Landau used to say that this study cost him more 

effort than any other problem that he had ever solved. 

Landau always willingly responded to the requests and needs of the 

experimenters, e.g. by publishing the article [56] which established the 

energy distribution of the ionization losses of fast particles during passage 

through matter (previously only the theory of mean energy loss had existed). 

Turning now to Landau’s work on macroscopic physics, we begin with 

several articles representing his contribution to the physics of 

magnetism. 

According to classical mechanics and statistics, a change in the pattern of 

movement of free electrons in a magnetic field cannot result in the appear¬ 

ance of new magnetic properties of the system. Landau was the first to 

elucidate the character of this motion in a magnetic field for the quantum 

case, and to show that quantization completely changes the situation, 

resulting in the appearance of diamagnetism of the free electron gas 

(“Landau diamagnetism” as this effect is now termed) [4]. The same study 

qualitatively predicted the periodic dependence of the magnetic suscepti¬ 

bility on the intensity of the magnetic field when this intensity is high. 

At the time (1930) this phenomenon had not yet been observed by anyone, 

and it was experimentally discovered onlv later (the De Haas-Van Alphen 

effect); a quantitative theory of this effect was presented by Landau in a 
later paper [38], 

A short article published in 1933 [12] is of a significance greatly tran¬ 
scending the problem stated in its title - a possible explanation of the field 
dependence of the magnetic susceptibility of a particular class of substances 
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at low temperatures. This article was the first to introduce the concept of 

antiferromagnetism (although it did not use this term) as a special phase of 

magnetic bodies differing in symmetry from the paramagnetic phase; 

accordingly, the transition from one state to the other ^ must occur at a 

rigorously definite point.f This article examined the particular model of a 

layered antiferromagnet with a strong ferromagnetic coupling in each 

layer and a weak antiferromagnetic coupling between the layers; a quantita¬ 

tive investigation of this case was carried out and the characteristic features 

of magnetic properties in the neighbourhood of the transition point were 

established. The method employed here by Landau was based on ideas 

which he subsequently elaborated in the general theory of second-order 

phase transitions. 

Another paper concerns the theory of ferromagnetism. The idea of the 

structure of ferromagnetic bodies as consisting of elementary regions 

spontaneously magnetized in various directions (“magnetic domains,” as 

the modern term goes) was expressed by P. Weiss as early as in 1907. 

However, there was no suitable approach to the question of the quantitative 

theory of this structure until Landau (in collaboration with E. M. Lifshitz) 

[18] showed in 1935 that this theory should be constructed on the basis 

of thermodynamic considerations and determined the form and dimensions 

of the domains for a typical case. The same study derived the macroscopic 

equation of the motion of the domain magnetization vector and, with its 

aid, developed the principles of the theory of the dispersion of the magnetic 

permeability of ferromagnets in an alternating magnetic field; in particular, 

it predicted the effect now known as ferromagnetic resonance. 

A short communication published in 1933 [10] expressed the idea of the 

possibility of the “autolocalization” of an electron in a crystal lattice within 

the potential well produced by virtue of the polarization effect of the electron 

itself. This idea subsequently provided the basis for the so-called polaron 

theory of the conductivity of ionic crystals. Landau himself returned once 

more to these problems in a later study (in collaboration with S. I. Pekar) 

[67] dealing with the derivation of the equations of motion of the polaron 

in the external field. 

Another short communication [14] reported on the results obtained by 

Landau (in collaboration with G. Placzek) concerning the structure of the 

Rayleigh scattering line in liquids or gases. As far back as the early 1920s 

Brillouin and Mandel’shtam showed that, owing to scattering by sound 

vibrations, this line must split into a doublet. Landau and Placzek drew 

attention to the attendant necessity of the existence of scattering by entropy 

t Roughly a year earlier Neel (whose work was unknown 
possibility of existence of substances which, from the magr 
sublattices with opposite moments. Ne'el, however, did not 
matter is involved here, and instead he simply thought tha 
exchange integral at low temperatures gradually turns into a 
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fluctuations, not accompanied by any change in frequency; as a result, a 

triplet should be observed instead of a doublet, f 

Two of Landau’s works pertain to plasma physics. One of these two 

[24] was the first to derive the transport equation with allowance for Coulomb 

interaction between particles; the slowness of decrease of these forces 

rendered inapplicable in this case the conventional methods for constructing 

transport equations. The other work [61], dealing with plasma oscillations, 

showed that, even under conditions when collisions between particles in the 

plasma can be disregarded, high-frequency oscillations will still attenuate 

(“Landau damping”).]; 

His work to compile one of the successive volumes of the Course of 

Theoretical Physics was to Landau a stimulus for a thorough study of 

hydrodynamics. Characteristically, he independently pondered and derived 

all the basic notions and results of this branch of science. His fresh and 

original perception led, in particular, to a new approach to the problem of 

the onset of turbulence and he elucidated the basic aspects of the process 

of the gradual development of unsteady flow with increase in the Reynolds 

number following the loss of stability by laminar motion and predicted 

qualitatively various alternatives possible in this case [52], On investigating 

the qualitative properties of supersonic flow around bodies, he arrived at 

the unexpected discovery that in supersonic flow there must exist far from 

the body not one - as had been the conventional assumption - but two 

shock waves, one following the other [60], Even in such a “classical” field 

as the jet theory he succeeded in finding a new and previously unnoticed 

exact solution for an axially symmetric “inundated” jet of a viscous in¬ 

compressible fluid [51]. 

In Landau’s scientific creative accomplishments an eminent position is 

occupied — both from the standpoint of direct significance and in terms of 

the consequent physical applications - by the theory of second-order phase 

transitions [29]; a first outline of the ideas underlying this theory is already 

contained in an earlier communication [17]. || The concept of phase transi¬ 

tions of various orders had first been introduced by Ehrenfest in a purely 

formal manner, with respect to the order of the thermodynamic derivatives 

which could undergo a discontinuity at the transition point. The question of 

exactly which of these transitions can exist in reality, and w'hat is their 

j No detailed exposition of the conclusions and results of this study was ever published in 
article form. It is partly presented in the book by Landau and Lifshitz, Electrodynamics of 
Continuous Media, Pergamon, Oxford I960, §96. 

t It is interesting that this w ork was carried out by Landau as his response to the “philo¬ 
logy” present, in his opinion, in previous studies dealing with this subject (e.g.j the unjustified 
replacement of divergent integrals by their principal values). It was to prove his rightness 
that he occupied himself with this question. 

II Landau himself applied this theory to the scattering of X-rays bv crystals [32] and - in 
collaboration with I. M. Khalatnikov - to the absorption of sound in the neighbourhood of the 
transition point [82]. 
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physical nature, had remained open, and previous interpretations had been 

fairly vague and unsubstantiated. Landau was the first to point to the 

profound connection between the possibility of existence of a continuous 

(in the sense of variation in the body’s state) phase transition and the jump¬ 

like (discontinuous) change in some symmetry property of the body at the 

transition point. He also showed that far from just any change in symmetry 

is possible at that transition point and provided a method which makes it 

possible to determine the permissible types of change in symmetry. The 

quantitative theory developed by Landau was based on the assumption of 

the regularity of the expansion of thermodynamic quantities in the neigh¬ 

bourhood of the transition point. It is now clear that such a theory, which 

fails to allow for possible singularities of these quantities at the transition 

point, does not reflect all the properties of phase transitions. The question 

of the nature of these singularities was of great interest to Landau and 

during the last years of his activity he worked a great deal on this difficult 

problem without, however, succeeding in arriving at any definite conclusions. 

The phenomenological theory of superconductivity developed in 1950 

by Landau (in collaboration with V. L. Ginzburg) [73] also was constructed 

in the spirit of the theory of phase transitions; subsequently it became, in 

particular, the basis for the theory of superconducting alloys. This theory 

involves a number of variables and parameters whose meaning was not 

completely clear at the time it was originally developed and became under¬ 

standable only after the appearance in 1957 of the microscopic theory of 

superconductivity, which made possible a rigorous substantiation of the 

Ginzburg-Landau equations and a determination of the region of their 

applicability. In this connection, the story (recounted by V. L. Ginzburg) 

of an erroneous statement contained in the original article by Landau and 

Ginzburg is instructive. The basic equation of the theory, defining the 

effective wave function V7 of superconducting electrons, contains the field 

vector potential A in the term 

2 m 
-ih V ~) 

which is completely analogous to the corresponding term in the Schrodinger 

equation. It might be thought that in the phenomenological theory the 

parameter e* should represent some effective charge which does not have 

to be directly related to the charge of the free electron e. Landau, however, 

refuted this hypothesis by pointing out that the effective charge is not 

universal and would depend on various factors (pressure, composition of 
specimen, etc.); then in an inhomogeneous specirhen the charge e* would 
be a function of coordinates and this would disturb the gauge invariance of 
the theory. Hence the article stated that . . there is no reason to consider 
the charge e* as different from the electronic charge ■ " e no ' know that 
in reality e* coincides with the charge of the Cooper electron pair, i.e., 



Lev Davidovich Landau xxv 

e* = 2e and not e. This value of e* could, of course, have been predicted 

only on the basis of the idea of electron pairing which underlies the micro¬ 

scopic theory of superconductivity. But the value 2e is as universal as e and 

hence Landau’s argument in itself was valid. 

Another of Landau’s contributions to the physics of superconductivity 

was to elucidate the nature of the so-called intermediate state. The concept 

of this state was first introduced by Peierls and F. London (1936) to account 

for the observed fact that the transition to the superconducting state in a 

magnetic field is gradual. Their theory was purely phenomenological, 

however, and the question of the nature of the intermediate state had 

remained open. Landau showed that this state is not a new state and that in 

reality a superconductor in that state consists of successive thin layers of 

normal and superconducting phases. In 1937 Landau [30] considered a 

model in which these layers emerge to the surface of the specimen; using 

an elegant and ingenious method he succeeded in completely determining 

the shape and dimensions of the layers in such a model.']' In 1938 he proposed 

a new variant of the theory, according to which the layers repeatedly branch 

out on emerging to the surface; such a structure should be thermodynami¬ 

cally more favourable, given sufficiently large dimensions of the specimen.]; 

But the most significant contribution that physics owes to Landau is his 

theory of quantum liquids. The significance of this new discipline at present 

is steadily growing; there is no doubt that its development in recent decades 

has produced a revolutionary effect on other domains of physics as well - 

on solid-state physics and even on nuclear physics. 

The superfluidity theory was created by Landau during 1940-1941 soon 

after Kapitza’s discovery towards the end of 1937 of this fundamental 

property of helium II. Prior to it, the premises for understanding the 

physical nature of the phase transition observed in liquid helium had been 

essentially lacking and it is not surprising that the previous interpretations 

of this phenomenon now seem even naive. 11 The completeness with which 

the theory of helium II had been constructed by Landau from the very 

beginning is remarkable: already his first classic paper [46] on this subject 

contained practically all the principal ideas of both the microscopic theory 

of helium II and the macroscopic theory constructed on its basis - the 

thermodynamics and hydrodynamics of this fluid. 

Underlying Landau’s theory is the concept of quasiparticles (elementary 

excitations) constituting the energy spectrum of helium II. Landau was in 

fact the first to pose the question of the energy spectrum of a macroscopic 

t Landau himself wrote concerning this matter that “amazingly enough an exact determi¬ 
nation of the shape of the lavers proves to be possible” [30] 

X A detailed description of this work was published in 19+3 [49], 
|| Thus, Landau himself in his work on the theory of phase transitions [29] considered 

whether helium II is a liquid crystal, even though he emphasized the dubiousness of this 
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body in such a very general form, and it was he, too, who discovered the 

nature of the spectrum for a quantum fluid of the type to which liquid 

helium (He4 isotope) belongs - or, as it is now termed, of the Bose type. 

In his 1941 work Landau assumed that the spectrum of elementary excita¬ 

tions consists of two branches: phonons, with a linear dependence of energy 

£- on momentum p, and “rotons”, with a quadratic dependence, separated 

from the ground state by an energy gap. Subsequently he found that such 

a form of spectrum is not satisfactory from the theoretical standpoint 

(as it would be unstable) and careful analysis of the more complete and 

exact experimental data that had by then become available led him in 1946 

to establish the now famous spectrum containing only one branch in 

which the “rotons” correspond to a minimum on the curve of e(p). The 

macroscopic concepts of the theory of superfluidity are widely known. 

Basically they reduce to the idea of two motions simultaneously occurring 

in the fluid - “normal” motion and “superfluid” motion, which may be 

visualized as motions of two “fluid components”.f Normal motion is 

accompanied by internal friction, as in conventional fluids. The determina¬ 

tion of the viscosity coefficient represents a kinetic problem which requires 

an analysis of the processes of the onset of an equilibrium in the “gas of 

quasiparticles”; the principles of the theory of the viscosity of helium II 

were developed by Landau (in collaboration with I. M. Khalatnikov) in 

1949 [69, 70]. Lastly, yet another investigation (carried out in collaboration 

with I. Ya. Pomeranchuk) [64] dealt with the problem of the behaviour of 

extraneous atoms in helium; it was shown, in particular, that any atom of 

this kind will become part of the “normal component” of the fluid regard¬ 

less of whether the impurity substance itself does or does not display the 

property of superfluidity - contrary to- the incorrect view previously held 

in the literature. 

The liquid isotope He3 is a quantum liquid of another type - the Fermi 

type as it is now termed. Although its properties are not as.striking as the 

properties of liquid He4, they are no less interesting from the standpoint of 

basic theory. A theory of liquids of this kind was developed by Landau and 
presented by him in three papers published during 1956-1958. The first two 

of these [90, 91] established the nature of the energy spectrum of Fermi 

liquids, considered their thermodynamic properties and established the 

kinetic equation for the relaxation processes occurring in these liquids. His 

study of the kinetic equation led Landau to predict a special type of vibra- 

t Some of the ideas of the "two-component” macroscopic description of liquid helium 
.vere introduced independently of Landau by L. Tisza (although without providing a clear 
nhvsical interpretation of them). His detailed article published in ranee in ''as, 
.not rec eived in the USSR until 1943 and the brief note of 1938 

-ndemie des Sciences had unfortunately remained un- 
5 provided by Landau in ie Compte. rendus of the Pari 

e [66]. 
aspects of Tisza’s 1 
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tional process in liquid He3 in the neighbourhood of absolute zero, which 

he termed zeroth sound. The third paper [95] presented a rigorous micro¬ 

scopic substantiation of the transport equation, whose earlier derivation had 

contained a number of intuitive assumptions. 

Concluding this brief and far from complete survey, it only remains to be 

repeated that to physicists there is no need to emphasize the significance of 

Landau’s contribution to theoretical physics. His accomplishments are of 

lasting significance and will for ever remain part of science. 





CHAPTER I 

THE EQUATIONS OF MOTION 

§1. Generalised co-ordinates 

One of the fundamental concepts of mechanics is that of a particle.y By this 

we mean a body whose dimensions may be neglected in describing its motion. 

The possibility of so doing depends, of course, on the conditions of the prob¬ 

lem concerned. For example, the planets may be regarded as particles in 

considering their motion about the Sun, but not in considering their rotation 

about their axes. 

The position of a particle in space is defined by its radius vector r, whose 

components are its Cartesian co-ordinates x, y, z. The derivative v = dr/df 

of r with respect to the time t is called the velocity of the particle, and the 

second derivative d2r/dt2 is its acceleration. In what follows we shall, as is 

customary, denote differentiation with respect to time by placing a dot above 

a letter: v = r. 

To define the position of a system of N particles in space, it is necessary to 

specify N radius vectors, i.e. 3N co-ordinates. The number of independent 

quantities which must be specified in order to define uniquely the position of 

any system is called the number of degrees of freedom; here, this number is 

3N. These quantities need not be the Cartesian co-ordinates of the particles, 

and the conditions of the problem may render some other choice of co¬ 

ordinates more convenient. Any 5 quantities q\, <72, qs which completely 

define the position of a system with $ degrees of freedom are called generalised 

co-ordinates of the system, and the derivatives qi are called its generalised 
velocities. 

When the values of the generalised co-ordinates are specified, however, 

the “mechanical state” of the system at the instant considered is not yet 

determined in such a way that the position of the system at subsequent 

instants can be predicted. For given values of the co-ordinates, the system 

can have any velocities, and these affect the position of the system after an 
infinitesimal time interval df. 

If all the co-ordinates and velocities are simultaneously specified, it i3 

known from experience that the state of the system is completely determined 

and that its subsequent motion can, in principle, be calculated. Mathematic- 

ally, this means that, if all the co-ordinates q and velocities q are given at 

some instant, the accelerations q at that instant are uniquely defined.! 

t Sometimes called in Russian a material point. 
t For brevity, we shall often conventionally denote by q the set of all the co-ordinates 

91, 9a,..., 9», and similarly by 9 the set of all the velocities. 
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The relations between the accelerations, velocities and co-ordinates are 

called the equations of motion. They are second-order differential equations 

for the functions q{t), and their integration makes possible, in principle, the 

determination of these functions and so of the path of the system. 

§2. The principle of least action 

The most general formulation of the law governing the motion of mech¬ 

anical systems is the principle of least action or Hamilton's principle, according 

to which every mechanical system is characterised by a definite function 

L(qu ?2, —. <7s, qu ?2, .... qs, t), or briefly L(q, q, t), and the motion of the 

system is such that a certain condition is satisfied. 

Let the system occupy, at the instants ti and t2, positions defined by two 

sets of values of the co-ordinates, qa) and qi2\ Then the condition is that the 

system moves between these positions in such a way that the integral 

<2 

S = | L(q, q, t) dt (2.1) 

takes the least possible value.f The function L is called the Lagrangian of 

the system concerned, and the integral (2.1) is called the action. 

The fact that the Lagrangian contains only q and q, but not the higher 

derivatives q, q, etc., expresses the result already mentioned, that the mech¬ 

anical state of the system is completely defined when the co-ordinates and 

velocities are given. 
Let us now derive the differential equations which solve the problem of 

minimising the integral (2.1). For simplicity, we shall at first assume that the 

system has only one degree of freedom, so that only one function q(t) has to 

be determined. 
Let q = q(t) be the function for which S is a minimum. This means that S 

is increased when q(t) is replaced by any function of the form 

q(t) + 8q(t), (2-2) 

where 8q{t) is a function which is small everywhere in the interval of time 

from <i to t2\ 8q(t) is called a variation of the function q(t). Since, for t = h 

and for t = t2, all the functions (2.2) must take the values qa) and qi2) respec¬ 

tively, it follows that 

8q(h) = 8q(t2) = 0. (2-3) 
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The change in 5 when q is replaced by q+ 8q is 

f L(q+8q,q + 8q, t)dt — J L(q,q,t)dt. 

When this difference is expanded in powers of 8q and 8q in the integrand, the 

leading terms are of the first order. The necessary condition for S to have a 

minimum-j- is that these terms (called the first variation, or simply the varia¬ 

tion, of the integral) should be zero. Thus the principle of least action may 

be written in the form 

8S = 8 | L(q, q, t) dt = 0, (2.4) 

q 
or, effecting the variation, 

Since 8q = dS^/df, we obtain, on integrating the second term by parts, 

, f 8L V2 j-2/ 8L d 8L\ 

i“kH,+Ju-^hd,“a 8S = (2.5) 

The conditions (2.3) show that the integrated term in (2.5) is zero. There 

remains an integral which must vanish for all values of 8q. This can be so only 

if the integrand is zero identically. Thus we have 

d/8L\ 8L 

df \ 8q j 8q 

When the system has more than one degree of freedom, the 5 different 

functions q^t) must be varied independently in the principle of least action. 

Wre then evidently obtain $ equations of the form 

d/8L\ 8L 

dt \ 8qi / 8qi 
(*'=1,2.s). (2.6) 

These are the required differential equations, called in mechanics Lagrange's 

equations.% If the Lagrangian of a given mechanical system is known, the 

equations (2.6) give the relations between accelerations, velocities and co¬ 
ordinates, i.e. they are the equations of motion of the system. 

t Or, in general, an extremum. 
} In the calculus of variations they are Euler’s equations for the formal problem of deter- 

lining the extrema 'of an integral of the form (2.1). 



4 The Equations of Motion §3 

Mathematically, the equations (2.6) constitute a set of s second-order 

equations for s unknown functions qft). The general solution contains 2s 

arbitrary constants. To determine these constants and thereby to define 

uniquely the motion of the system, it is necessary to know the initial conditions 

which specify the state of the system at some given instant, for example the 

initial values of all the co-ordinates and velocities. 

Let a mechanical system consist of two parts A and B which would, if 

closed, have Lagrangians La and Lb respectively. Then, in the limit where 

the distance between the parts becomes so large that the interaction between 

them may be neglected, the Lagrangian of the whole system tends to the value 

HmL = La + Lb. (2-7) 

This additivity of the Lagrangian expresses the fact that the equations of mo¬ 

tion of either of the two non-interacting parts cannot involve quantities per¬ 

taining to the other part. 

It is evident that the multiplication of the Lagrangian of a mechanical 

system by an arbitrary constant has no effect on the equations of motion. 

From this, it might seem, the following important property of arbitrariness 

can be deduced: the Lagrangians of different isolated mechanical systems 

may be multiplied by different arbitrary constants. The additive property, 

however, removes this indefiniteness, since it admits only the simultaneous 

multiplication of the Lagrangians of all the systems by the same constant. 

This corresponds to the natural arbitrariness in the choice of the unit of mea¬ 

surement of the Lagrangian, a matter to which we shall return in §4. 

One further general remark should be made. Let us consider two functions 

L'{q, q, t) and L(q, q, t), differing by the total derivative with respect to time 

of some function/(q, t) of co-ordinates and time: 

L\q,q,t) = L(q,q,t) + jtf(q,t). (2.8) 

The integrals (2.1) calculated from these two functions are such that 

t2 f2 *2 

S’ = J L'(q,q, t) dt i J L(q,q,t)dt + J ~dt = tz)-ftf°, h), 

h h h 

i.e. they differ by a quantity which gives zero on variation, so that the condi¬ 

tions SS' = 0 and 85 = 0 are equivalent, and the form of the equations of 

motion is unchanged. Thus the Lagrangian is defined only to within an 

additive total time derivative of any function of co-ordinates an time. 

§3. Galileo’s relativity principle 

In order to consider mechanical phenomena lt ls n““S^ ^°°s® a 
frame of reference. The laws of motion are in general ditterent m form for 
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different frames of reference. When an arbitrary frame of reference is chosen, 

it may happen that the laws governing even very simple phenomena become 

very complex. The problem naturally arises of finding a frame of reference 

in which the laws of mechanics take their simplest form. 

If we were to choose an arbitrary frame of reference, space would be in¬ 

homogeneous and anisotropic. This means that, even if a body interacted 

with no other bodies, its various positions in space and its different orienta¬ 

tions would not be mechanically equivalent. The same would in general be 

true of time, which would likewise be inhomogeneous; that is, different in¬ 

stants would not be equivalent. Such properties of space and time would 

evidently complicate the description of mechanical phenomena. For example, 

a free body (i.e. one subject to no external action) could not remain at rest: 

if its velocity were zero at some instant, it would begin to move in some direc¬ 

tion at the next instant. 

It is found, however, that a frame of reference can always be chosen in 

which space is homogeneous and isotropic and time is homogeneous. This is 

called an inertial frame. In particular, in such a frame a free body which is at 

rest at some instant remains always at rest. 

We can now draw some immediate inferences concerning the form of the 

Lagrangian of a particle, moving freely, in an inertial frame of reference. 

The homogeneity of space and time implies that the Lagrangian cannot con¬ 

tain explicitly either the radius vector r of the particle or the time t, i.e. L 

must be a function of the velocity v only. Since space is' isotropic, the Lagran¬ 

gian must also be independent of the direction of v, and is therefore a func¬ 

tion only of its magnitude, i.e. of v2 = v2: 

L = L{v*). (3.1) 

Since the Lagrangian is independent of r, we have 8Lj8r = 0, and so 
Lagrange’s equation is| 

whence 8L/8v 

follows that 

v = constant. (3.2) 

Thus we conclude that, in an inertial frame, any free motion takes place 

with a velocity which is constant in both magnitude and direction. This is 
the law of inertia. 

If we consider, besides the inertial frame, another frame moving uniformly 

in a straight line relative to the inertial frame, then the laws of free motion in 

liar quantity with respect to a vector is defined as the vector whc t The Dfasca 
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the other frame will be the same as in the original frame: free motion takes 

place with a constant velocity. 

Experiment shows that not only are the laws of free motion the same in 

the two frames, but the frames are entirely equivalent in all mechanical re¬ 

spects. Thus there is not one but an infinity of inertial frames moving, relative 

to one another, uniformly in a straight line. In all these frames the properties 

of space and time are the same, and the laws of mechanics are the same. This 

constitutes Galileo's relativity principle, one of the most important principles 

of mechanics. 

The above discussion indicates quite clearly that inertial frames of refer¬ 

ence have special properties, by virtue of which they should, as a rule, be 

used in the study of mechanical phenomena. In what follows, unless the con¬ 

trary is specifically stated, we shall consider only inertial frames. 

The complete mechanical equivalence of the infinity of such frames shows 

also that there is no “absolute” frame of reference which should be preferred 

to other frames. 

The co-ordinates r and r' of a given point in two different frames of refer¬ 

ence K and K\ of which the latter moves relative to the former with velocity 

V, are related by 

r = r' + Vf. (3.3) 

Here it is understood that time is the same in the two frames: 

t = (3.4) 

The assumption that time is absolute is one of the foundations of classical 

mechanics.! 

Formulae (3.3) and (3.4) are called a Galilean transformation. Galileo’s 

relativity principle can be formulated as asserting the invariance of the mech¬ 

anical equations of motion under any such transformation. 

§4. The Lagrangian for a free particle 

Let us now go on to determine the form of the Lagrangian, and consider 

first of all the simplest case, that of the free motion of a particle relative to 

an inertial frame of reference. As we have already seen, the Lagrangian in 

this case can depend only on the square of the velocity. To discover the form 

of this dependence, we make use of Galileo’s relativity principle. If an inertial 

frame K is moving with an infinitesimal velocity c relative to another inertial 

frame K‘, then v' = v + e. Since the equations of motion must have the same 

form in every frame, the Lagrangian L(y2) must be converted by this trans¬ 

formation into a function L’ which differs from L(v2), if at all, only by the 
total time derivative of a function of co-ordinates and time (see the end of 

§2). 
! t This assumption does not hold good in relativistic mechanics. 
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We have L' = L(v'2) = L(v2 + 2v • e + e2). Expanding this expression in 

powers of e and neglecting terms above the first order, we obtain 

8L 
Uv’2) = L{v2) + — 2v-e. 

The second term on the right of this equation is a total time derivative only 

if it is a linear function of the velocity v. Hence dL/dv2 is independent of the 

velocity, i.e. the Lagrangian is in this case proportional to the square of the 

velocity, and we write it as 

L = \mv2. (4.1) 

From the fact that a Lagrangian of this form satisfies Galileo’s relativity 

principle for an infinitesimal relative velocity, it follows at once that the 

Lagrangian is invariant for a finite relative velocity V of the frames K and K'. 

For 

L' = \mv'2 = -|rw(v+V)2 = \mv2 + viv V+\mV2, 
or 

L' = L + d(mr- V+\mV2t)jdt. 

The second term is a total time derivative and may be omitted. 

The quantity m which appears in the Lagrangian (4.1) for a freely moving 

particle is called the mass of the particle. The additive property of the Lagran¬ 

gian shows that for a system of particles which do not interact we havef 

L = 2 imava2. (4.2) 

It should be emphasised that the above definition of mass becomes mean¬ 

ingful only when the additive property is taken into account. As has been 

mentioned in §2, the Lagrangian can always be multiplied by any constant 

without affecting the equations of motion. As regards the function (4.2), such 

multiplication amounts to a change in the unit of mass; the ratios of the masses 

of different particles remain unchanged thereby, and it is only these ratios 

which are physically meaningful. 

It is easy to see that the mass of a particle cannot be negative. For, according 

to the principle of least action, the integral 

2 

5 = Hrm^dt 

has a minimum for the actual motion of the particle in space from point 1 to 

point 2. If the mass were negative, the action integral would take arbitrarily 

large negative values for a motion in which the particle rapidly left point 1 
and rapidly approached point 2, and there would be no minimum.t 

t We shall use the suffixes a, b, c, ... to distinguish the various particles, and i, k,l, ... to 
distinguish the co-ordinates. 

t The argument is not affected by the point mentioned in the first footnote to §2; for 
m < 0, the integral could not have a minimum even for a short segment of the path. 
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It is useful to notice that 

v2 = (d//df)2 = (d/)2,(df)2. (4.3) 

Hence, to obtain the Lagrangian, it is sufficient to find the square of the ele¬ 

ment of arc d/ in a given system of co-ordinates. In Cartesian co-ordinates, 

for example, d/2 = dx2 + dy2 + dz2, and so 

L = lm(x2+y2+z2). (4.4) 

In cylindrical co-ordinates dl2 = dr2 + r2 d<£2 + ds2, whence 

L = \m{f2 + r2<j>2+z2). (4.5) 

In spherical co-ordinates dl2 — dr2 + r2 d62 + r2 sin26 d<f>2, and 

L = hm(r2 + r2&2 + r2<j>2 sin26). (4.6) 

§5. The Lagrangian for a system of particles 

Let us now consider a system of particles which interact with one another 

but with no other bodies. This is called a closed system. It is found that the 

interaction between the particles can be described by adding to the Lagran¬ 

gian (4.2) for non-interacting particles a certain function of the co-ordinates, 

which depends on the nature of the interaction.t Denoting this function 

by — U, we have 

L= Zimaz-a2-U{rur2,...), (5.1) 

where r„ is the radius vector of the ath particle. This is the general form of 

the Lagrangian for a closed system. The sum T = 2 imava2 is called the 

kinetic energy, and U the potential energy, of the system. The significance 

of these names is explained in §6. 

The fact that the potential energy depends only on the positions of the 

particles at a given instant shows that a change in the position of any particle 

instantaneously affects all the other particles. We may say that the inter¬ 

actions are instantaneously propagated. The necessity for interactions in 

classical mechanics to be of this type is closely related to the premises upon 

which the subject is based, namely the absolute nature of time and Galileo’s 

relativity principle. If the propagation of interactions were not instantaneous, 

but took place with a finite velocity, then that velocity would be different in 

different frames of reference in relative motion, since the absoluteness of 

time necessarily implies that the ordinary law of composition of velocities is 

applicable to all phenomena. The laws of motion for interacting bodies would 

then be different in different inertial frames, a result which would contradict 

the relativity principle. , 
In §3 only the homogeneity of time has been spoken of. e orm of the 

Lagrangian (5.1) shows that time is both homogeneous and isotropic, ,.e. its 

t This stat 
in this book. 
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properties are the same in both directions. For, if t is replaced by — t, the La¬ 

grangian is unchanged, and therefore so are the equations of motion. In other 

words, if a given motion is possible in a system, then so is the reverse motion 

(that is, the motion in which the system passes through the same states in 

the reverse order). In this sense all motions which obey the laws of classical 

mechanics are reversible. 

Knowing the Lagrangian, we can derive (the equations.of motion: 

d 8L _ 8L 

dt 8va 8ra 
(5.2) 

Substitution of (5.1) gives 

mad\ajdt =** ~8Ujcra. (5.3) 

In this form the equations of motion are called Newton’s equations and form 

the basis of the mechanics of a system of interacting particles. The vector 

T=-8U!8ra (5.4) 

which appears on the right-hand side of equation (5.3) is called the force on 

the ath particle. Like U, it depends only on the co-ordinates of the particles, 

and not on their velocities. The equation (5.3) therefore shows that the acceler¬ 

ation vectors of the particles are likewise functions of their co-ordinates only. 

The potential energy is defined only to within an additive constant, which 

has no effect on the equations of motion. This is a particular case of the non¬ 

uniqueness of the Lagrangian discussed at the end of §2. The most natural 

and most usual way of choosing this constant is such that the potential energy 

tends to zero as the distances between the particles tend to infinity. 

If we use, to describe the motion, arbitrary generalised co-ordinates q% 

instead of Cartesian co-ordinates, the following transformation is needed to 
obtain the new Lagrangian: 

Xa = fa(qu 92, qs), xa=y —qk, etc. 

* dqk 
Substituting these expressions in the function L = |Sma(ia2 + ya2 + za2) - U, 
we obtain the required Lagrangian in the form 

L = \Haik(q)mk- U{q), (5.5) 
i,k 

where the aik are functions of the co-ordinates only. The kinetic energy in 

generalised co-ordinates is still a quadratic function of the velocities, but it 
may depend on the co-ordinates also. 

Hitherto we have spoken only of closed systems. Let us now consider a 
system A which is not closed and interacts with another system B executing 
a given motion. In such a case we say that the system A moves in a given 
external field (due to the system B). Since the equations of motion are obtained 



10 §5 The Equations of Motion 

from the principle of least action by independently varying each of the co¬ 

ordinates (i.e. by proceeding as if the remainder were given quantities), we 

can find the Lagrangian LA of the system A by using the Lagrangian L of 

the whole system A + B and replacing the co-ordinates qB therein by given 

functions of time. 
Assuming that the system A + B is closed, we have L = TA(qA,qA) + 

+ TB(qB, qB)-U{qA, qB), where the first two terms are the kinetic energies of 

the systems A and B and the third term is their combined potential energy. 

Substituting for qB the given functions of time and omitting the term 

T[qB(t), qB(t)] which depends on time only, and is therefore the total time 

derivative of a function of time, we obtain LA = TA{qA, qA)- U[qA, ?b(0]- 

Thus the motion of a system in an external field is described by a Lagrangian 

of the usual type, the only difference being that the potential energy may 

depend explicitly on time. 
For example, when a single particle moves in an external field, the general 

form of the Lagrangian is 

L = \mv2—U(x,t), (5-6) 

and the equation of motion is 

mv= -dU/dr. (5-7) 

A field such that the same force F acts on a particle at any point in the field 

is said to be uniform. The potential energy in such a field is evidently 

XJ= -F-r. (5-8) 

To conclude this section, we may make the following remarks concerning 

the application of Lagrange’s equations to various problems. It is often 

necessary to deal with mechanical systems in which the interaction between 

different bodies (or particles) takes the form of constraints, i.e. restrictions on 

their relative position. In practice, such constraints are effected by means of 

rods, strings, hinges and so on. This introduces a new factor into the problem, 

in that the motion of the bodies results in friction at their points of contact, 

and the problem in general ceases to be one of pure mechanics (see §25). In 

many cases, however, the friction in the system is so slight that its effect on 

the motion is entirely negligible. If the masses of the constraining elements of 

the system are also negligible, the effect of the constraints is simply to reduce 

the number of degrees of freedom s of the system to a value less than 3N. To 

determine the motion of the system, the Lagrangian (5.5) can again be used, 

with a set of independent generalised co-ordinates equal in number to the 

actual degrees of freedom. 

PROBLEMS 

Find the Lagrangian for each of the following systems when placed in a uniform gravita¬ 
tional field (acceleration g). 
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Fig. 1 

Solution. We take as co-ordinates the angles $1 and <j>2 which the strings h and h make 
with the vertical. Then we have, for the particle mi, Ti = Jmi/i2^i2, U = —mig/i cos <f>l. In 
order to find the kinetic energy of the second particle, we express its Cartesian co-ordinates 
X2, yz (with the origin at the point of support and the >'-axis vertically downwards) in terms 
of the angles <j> 1 and $2: *2 *= h sin <f>i+lz sin <j>2, yz — h cos <j>i+lz cos fa. Then we find 

T2 = im2(x22+>'22) 

= i«2[/l2,{l2+/22^22+2/l/2 CO^fa-fa^lfa]. 
Finally 

L — i(mi +m2)h2<j>L2+im2l22<j>22+m2hl2<j>iil>2 cos(fa-fa) +(mi+m2)f?/i cos fa ymzgh cos fa. 

Problem 2. A simple pendulum of mass m2, with a mass mi at the point of support which 
can move on a horizontal line lying in the plane in which m2 moves (Fig. 2). 

Fig. 2 

Solution. Using the co-ordinate x of mi and the angle 6 between the string and the 
vertical, we have 

L — i(mi+m2)x2+}m2(l2^2+2lx£ cos fa+mzgl cos <j>. 

Problem 3. A simple pendulum of mass m whose point of support (a) moves uniformly 
on a vertical circle with constant frequency y (Fig. 3), (b) oscillates horizontally in the plane 
° motion of the pendulum according to the law x — a cos yt, (c) oscillates vertically accord¬ 
ing to the law y = n cos yt. 

Solution, (a) The co-ordinates of m are x = a cos yt+l sin >t>, y = —a sin yf+/ cos fa 
The Lagrangian is 

L = iml^+mlayi sin(<l>-yt)+mgl cos fa. 

Here terms depending only on time have been omitted, together with the total time derivative 
of mlay cos(<j>—yt)- 
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(b) The co-ordinates of m 
ting total derivatives) 

L = 
(c) Similarly 

are x = a cos yt+l sin <j>, y = l co 

iml^+mlay* cos yt sin </>+mgl 

ItnPfl+mlay2 cos yt cos <f>+mgl 

js -j>. The Lagrangian is (onnt- 

cos <j>. 

cos*. 

Fig. 3 

Problem 4. The system shown in Fig. 4. The particle mz moves on a vertical axis and the 
whole system rotates about this axis with a constant angular velocity ft. 

Fig. 4 

Solution. Let 6 be the angle between one of the segments a and the vertical, and 4> the 
angle of rotation of the system about the axis; ^ = ft. For each particle tn, the infinitesimal 
displacement is given by d/i2 = a*dfl*+o* sin2 B d<&2. The distance of ntz from the point 
of support A is 2a cos 8, and so d/2 = -2a sin B dB. The Lagrangian is 

L = mic^+ft2 sin20)+2m2a2$2 sin2e+2(mi+»ns)ga cos 8. 



CHAPTER II 

CONSERVATION LAWS 

§6. Energy 

During the motion of a mechanical system, the 2s quantities qt and q( 

(i = 1, 2,s) which specify the state of the system vary with time. There 

exist, however, functions of these quantities whose values remain constant 

during the motion, and depend only on the initial conditions. Such functions 

are called integrals of the motion. 

The number of independent integrals of the motion for a closed mechanical 

system with s degrees of freedom is 2s — 1. This is evident from the following 

simple arguments. The general solution of the equations of motion contains 

2s arbitrary constants (see the discussion following equation (2.6)). Since the 

equations of motion for a closed system do not involve the time explicitly, 

the choice of the origin of time is entirely arbitrary, and one of the arbitrary 

constants in the solution of the equations can always be taken as an additive 

constant to in the time. Eliminating t + to from the 2s functions qt = qft + to, 

Ci, Co,..., C2S-1), qt = qft + to, Ci, C2, ..., C2s-i), we can express the 2s—1 

arbitrary constants Ci, C2,..., C2s-i as functions of q and q, and these functions 

will be integrals of the motion. 

Not all integrals of the motion, however, are of equal importance in mech¬ 

anics. There are some whose constancy is of profound significance, deriving 

from the fundamental homogeneity and isotropy of space and time. The 

quantities represented by such integrals of the motion are said to be conserved, 

and have an important common property of being additive: their values for a 

system composed of several parts whose interaction is negligible are equal 

to the sums of their values for the individual parts. 

It is to this additivity that the quantities concerned owe their especial 

importance in mechanics. Let us suppose, for example, that two bodies 

interact during a certain interval of time. Since each of the additive integrals 

of the whole system is, both before and after the interaction, equal to the 

sum of its values for the two bodies separately, the conservation laws for these 

quantities immediately make possible various conclusions regarding the state 

of the bodies after the interaction, if their states before the interaction are 
known. 

Let us consider first the conservation law resulting from the homogeneity 

of time. By virtue of this homogeneity, the Lagrangian of a '' osed system 

does not depend explicitly on time. The total time derivative of the Lagran¬ 
gian can therefore be written 

13 
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If L depended explicitly on time, a term dLjdt would have to be added on 

the right-hand side. Replacing BLjdqu in accordance with Lagrange’s equa¬ 

tions, by (d/d<) BLjdqt, we obtain 

d L ^ _ d / 8L \ 8L 

dt ^ dt\dqt) + dqt ^ 

Hence we see that the quantity 

(6.1) 

remains constant during the motion of a closed system, i.e. it is an integral 

of the motion; it is called the energy of the system. The additivity of the 

energy follows immediately from that of the Lagrangian, since (6.1) shows 

that it is a linear function of the latter. 

The law of conservation of energy is valid not only for closed systems, but 

also for those in a constant external field (i.e. one independent of time): the 

only property of the Lagrangian used in the above derivation, namely that 

it does not involve the time explicitly, is still valid. Mechanical systems whose 

energy is conserved are sometimes called conservative systems. 

As we have seen in §5, the Lagrangian of a closed system (or one in a 

constant field) is of the form L = T(q, q)— U(q), where T is a quadratic 

function of the velocities. Using Euler’s theorem on homogeneous functions, 

we have 

^ dT _ 
> Qi-= 2 T. 

Hi 

Substituting this in (6.1) gives 

E = T(q,q)+ U(q); (6-2) 

in Cartesian co-ordinates, 

E = ^(ri> r2> —)• 
(6.3) 
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Thus the energy of the system can be written as the sum of two quite different 

terms: the kinetic energy, which depends on the velocities, and the potential 

energy, which depends only on the co-ordinates of the particles. 

§7. Momentum 

A second conservation law follows from the homogeneity of space. By virtue 

of this homogeneity, the mechanical properties of a closed system are un¬ 

changed by any parallel displacement of the entire system in space. Let us 

therefore consider an infinitesimal displacement e, and obtain the condition 

for the Lagrangian to remain unchanged. 

A parallel displacement is a transformation in which every particle in the 

system is moved by the same amount, the radius vector r becoming r + e. 

The change in L resulting from an infinitesimal change in the co-ordinates, 

the velocities of the particles remaining fixed, is 

where the summation is over the particles in the system. Since e is arbitrary, 

the condition 8L = 0 is equivalent to 

r„ = 0. (7.1) 

From Lagrange’s equations (5.2) we therefore have 

2 
d 8L 

dr 8va 

d ^ 0L 

dr dva 

Thus we conclude that, in a closed mechanical system, the vector 

P s ^ ZLldva (7.2) 

remains constant during the motion; it is called the momentum of the system. 

Differentiating the Lagrangian (5.1), we find that the momentum is given in 

terms of the velocities of the particles by 

P = 2w«v«- (7-3) 

The additivity of the momentum is evident. Moreover, unlike the energy, 

the momentum of the system is equal to the sum of its values pn = ma\a for 

the individual particles, whether or not the interaction between them can be 
neglected. 

The three components of the momentum vector are all conserved only in 

the absence of an external field. The individual components maybe conserved 
even in the presence of a field, however, if the potential energy in the field does 
not depend on all the Cartesian co-ordinates. The mechanical properties of 
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the system are evidently unchanged by a displacement along the axis of a 

co-ordinate which does not appear in the potential energy, and so the corre¬ 

sponding component of the momentum is conserved. For example, in a uni¬ 

form field in the 2-direction, the x and y components of momentum are 
conserved. 

The equation (7.1) has a simple physical meaning. The derivative 

8Ljdra = - dUjdra is the force F„ acting on the oth particle. Thus equation 

(7.1) signifies that the sum of the forces on all the particles in a closed system 
is zero: 

2F« = °- (7.4) 

In particular, for a system of only two particles, Fj + F2 = 0: the force exerted 

by the first particle on the second is equal in magnitude, and opposite in direc¬ 

tion, to that exerted by the second particle on the first. This is the equality 

of action and reaction (Newton's third law). 

If the motion is described by generalised co-ordinates qi, the derivatives 

of the Lagrangian with respect to the generalised velocities 

pt = dLjdqt (7.5) 

are called generalised momenta, and its derivatives with respect to the general¬ 

ised co-ordinates 

Ft = BLIdqi (7.6) 

are called generalised forces. In this notation, Lagrange’s equations are 

h = Ft. (7.7) 

In Cartesian co-ordinates the generalised momenta are the components of the 

vectors pa. In general, however,-the pi are linear homogeneous functions of 

the generalised velocities qi, and do not reduce to products of mass and velo¬ 

city. 

PROBLEM 

A particle of mass m moving with velocity Vj leaves a half-space in which its potential energy 
is a constant Vi and enters another in which its potential energy is a different constant U2. 
Determine the change in the direction of motion of the particle. 

Solution. The potential energy is independent of the co-ordinates whose axes are parallel 
to the plane separating the half-spaces. The component of momentum in that plane is 
therefore conserved. Denoting by Oi and 82 the angles between the normal to the plane and 
the velocities Vi and V2 of the particle before and after passing the plane, we have vi sin 61 
= V2 sin 62. The relation between vi and V2 is given by the law of conservation of energy, 
and the result is 

i-d [' 
§8. Centre of mass 

The momentum of a closed mechanical system has different values in 
different (inertial) frames of reference. If a frame K’ moves wit ve ocity \ 
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relative to another frame K, then the velocities va' and vn of the particles 

relative to the two frames are such that vn = vn' + V. The momenta P and P' 

in the two frames are therefore related by 

P= wava = w„V + V 

or 

P=F + V2% (8.1) 

In particular, there is always a frame of reference K' in which the total 

momentum is zero. Putting P' = 0 in (8.1), we find the velocity of this frame: 

V = P/2^$«.v./24, (8.2) 

If the total momentum of a mechanical system in a given frame of reference 

is zero, it is said to be at rest relative to that frame. This is a natural generali¬ 

sation of the term as applied to a particle. Similarly, the velocity V given by 

(8.2) is the velocity of the “motion as a whole” of a mechanical system whose 

momentum is not zero. Thus we see that the law of conservation of momen¬ 

tum makes possible a natural definition of rest and velocity, as applied to a 

mechanical system as a whole. 

Formula (8.2) shows that the relation between the momentum P and the 

velocity V of the system is the same as that between the momentum and velo¬ 

city of a single particle of mass j± = Hma, the sum of the masses of the particles 

in the system. This result can be regarded as expressing the additivity of mass. 

The right-hand side of formula (8.2) can be written as the total time deriva¬ 

tive of the expression 

r = 2w«r«/ (8-3> 

We can say that the velocity of the system as a whole is the rate of motion in 

space of the point whose radius vector is (8.3). This point is called the centre 

of mass of the system. 

The law of conservation of momentum for a closed system can be formu¬ 

lated as stating that the centre of mass of the system moves uniformly in a 

straight line. In this form it generalises the law of inertia derived in §3 for a 

single free particle, whose “centre of mass” coincides with the particle itself. 

In considering the mechanical properties of a closed system it is natural 

to use a frame of reference in which the centre of mass is at rest. This elimi¬ 

nates a uniform rectilinear motion of the system as a whole, but such motion 
is of no interest. 

The energy of a mechanical system which is at rest as a whole is usually 

called its internal energy E%. This includes the kinetic energy of the relative 

motion of the particles in the system and the potential energy of their inter¬ 

action. The total energy of a system moving as a whole with velocity V can 
be written 

E = i^V2+Ei. (8.4) 
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Although this formula is fairly obvious, we may give a direct proof of it. 

The energies E and E' of a mechanical system in two frames of reference K 
and K' are related by 

E = \ 2w«,y«2+ U 

= \ 2ma(Va' + V)2+U 

= 1^F2 + V- ]>waVa'+i ^maVa2+U 

= E' + V- P'+-^F2. (8.5) 

This formula gives the law of transformation of energy from one frame to 

another, corresponding to formula (8.1) for momentum. If the centre of mass 

is at rest in K', then P' = 0, E' = Eit and we have (8.4). 

PROBLEM 

Find the law of transformation of the action 5 from one inertial frame to another. 

Solution. The Lagrangian is equal to the difference of the kinetic and potential energies, 
and is evidently transformed in accordance with a formula analogous to (8.5): 

L = Z/+V • P'+ifiF2. 

Integrating this with respect to time, we obtain the required law of transformation of the 

5 = S'+nV-R'+inF*!, 

where R' is the radius vector of the centre of mass in the frame K'. 

§9. Angular momentum 

Let us now derive the conservation law which follows from the isotropy of 

space. This isotropy means that the mechanical properties of a closed system 

do not vary when it is rotated as a whole in any manner in space. Let us there¬ 

fore consider an infinitesimal rotation of the system, and obtain the condition 

for the Lagrangian to remain unchanged. 

We shall use the vector 8<f> of the infinitesimal rotation, whose magnitude 

is the angle of rotation 8</>, and whose direction is that of the axis of rotation 

(the direction of rotation being that of a right-handed screw driven along S<J>). 

Let us find, first of all, the resulting increment in the radius vector from 

an origin on the axis to any particle in the system undergoing rotation. The 

linear displacement of the end of the radius vector is related to the angle by 
| Sr | = rsin 8 8<f> (Fig. 5). The direction of Sr is perpendicular to the plane 

of r and S<J>. Hence it is clear that 

Sr = S<}> xr. (9.1) 
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When the system is rotated, not only the radius vectors but also the velocities 

of the particles change direction, and all vectors are transformed in the same 

manner. The velocity increment relative to a fixed system of co-ordinates is 

8v = 8<t> xv. (9.2) 

Fig. 5 

If these expressions are substituted in the condition that the Lagrangian is 
unchanged by the rotation: 

X-' / ^ \ 

and the derivative 8L/8va replaced by pa, and BL/Sra by pa, the result is 

2(pa- S<1> xra+pa. 8<J> xva) = 0 

or, permuting the factors and taking 8<f> outside the sum, 

S<t>2(raxpa + v„xpa) = 84,. A^raxpa = 0. 

Since §4> is arbitrary, it follows that (d/dt) 2r0 xpa = 0, and we conclude 
that the vector 

Ms 2raxpa, (9.3) 

called the angular momentum or moment of momentum of the system, is con¬ 

served in the motion of a closed system. Like the linear momentum, it is 
additive, whether or not the particles in the system interact. 

There are no other additive integrals of the motion. Thus every closed 
system has seven such integrals: energy, three components of momentum, 
and three components of angular momentum. 

Since the definition of angular momentum involves the radius vectors of 
the particles, its value depends in general on the choice of origin. The radius 
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vectors ra and rn' of a given point relative to origins at a distance a apart are 

related by ra = r0' + a. Hence 

M = 2raxPa 

= 2r“'xP«+ax 2p« 

= M'+axP. (9.4) 

It is seen from this formula that the angular momentum depends on the 

choice of origin except when the system is at rest as a whole (i.e. P = 0). 

This indeterminacy, of course, does not affect the law of conservation of 

angular momentum, since momentum is also conserved in a closed system. 

We may also derive a relation between the angular momenta in two inertial 

frames of reference K and K', of which the latter moves with velocity V 

relative to the former. We shall suppose that the origins in the frames K and 

K' coincide at a given instant. Then the radius vectors of the particles are the 

same in the two frames, while their velocities are related by va = vn' + V. 

Hence we have 

M= ]>?Hara xva = mara x va' + 2 m°-Ta x 

The first sum on the right-hand side is the angular momentum M' in the 

frame Kusing in the second sum the radius vector of the centre of mass 

(8.3), we obtain 

M = M'+ju.R x V. (9.5) 

This formula gives the law of transformation of angular momentum from one 

frame to another, corresponding to formula (8.1) for momentum and (8.5) 

for energy. 

If the frame K' is that in which the system considered is at rest as a whole, 

then V is the velocity of its centre of mass, fiY its total momentum P relative 

to K, and 

M = M' + RxP. (9-6) 

In other words, the angular momentum M of a mechanical system consists 

of its “intrinsic angular momentum” in a frame in which it is at rest, and the 

angular momentum R x P due to its motion as a whole. 

Although the law of conservation of all three components of angular 

momentum (relative to an arbitrary origin) is valid only for a closed system, 

the law of conservation may hold in a more restricted form even for a system 

in an external field. It is evident from the above derivation that the component 
of angular momentum along an axis about which the field is symmetrical is 
always conserved, for the mechanical properties of the system are ^ ered 
by any rotation about that axis. Here the angular momen , of 

course, be defined relative to an origin lying on the axis. 
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The most important such case is that of a centrally symmetric field or central 

field, i.e. one in which the potential energy depends only on the distance from 

some particular point (the centre). It is evident that the component of angular 

momentum along any axis passing through the centre is conserved in motion 

in such a field. In other words, the angular momentum M is conserved pro¬ 

vided that it is defined with respect to the centre of the field. 

Another example is that of a homogeneous field in the ^-direction; in such 

a field, the component Mz of the angtilar momentum is conserved, whichever 

point is taken as the origin. 
The component of angular momentum along any axis (say the s-axis) can 

be found by differentiation of the Lagrangian: 

^ dL 
(9.7) 

where the co-ordinate </> is the angle of rotation about the ~-axis. This is 

evident from the above proof of the law of conservation of angular momentum, 

but can also be proved directly. In cylindrical co-ordinates r, <f>, z we have 

(substituting xa = ra cos <f>a, Va = ra sin (f>a) 

Mz ** ^m(l(xnya-yaxa) 

» ^mara24>a■ (9-8) 

The Lagrangian is, in terms of these co-ordinates, 

L = \ ^ina(fa2 + ra2(f>a2 + Za2)-U, 

and substitution of this in (9.7) gives (9.8). 

PROBLEMS 

Problem 1. Obtain expressions for the Cartesian components and the magnitude of the 
angular momentum of a particle in cylindrical co-ordinates r, <f>, z. 

Solution. Mx = m(rz —zr) sin cos <j>. 
My — —m(rz—zr) cos <t>—mrzj, sin <j>, 
Mz = mr% 
M2 = m V^O2 +~2) +m2(ri-zi)\ 

Problem 2. The same as Problem 1, but in spherical co-ordinates r, 8, <j>. 

Solution. Mx = —mr2(e sin <j>+rl sin 8 cos 8 cos <f>). 
My = mr2(6 cos sin 8 cos 8 sin <f>), 
Mz = mrU sin20, 
M2 = sin20). 

Problem 3. Which components of momentum P and angular momentum M are conserved 
in motion in the following fields? 

(a) the field of an infinite homogeneous plane, (b) that of an infinite homogeneous cylinder, 
(c) that of an infinite homogeneous prism, (d) that of two points, (e) that of an infinite homo¬ 
geneous half-plane, (f) that of a homogeneous cone, (g) that of a homogeneous circular torus, 
(h) that of an infinite homogeneous cylindrical helix. 
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Solution (a) Px, Py,Mz(ti the plane is the *y-plane), (b) Mz, Pz (if the axis of the 
^J‘n.drer.!* tbe f.'aX1^’. Pf Of the ed8es of the prism are parallel to the 2-axis), 
(d) Mz (if the line joining the points is the 2-axis), (e) P„ (if the edge of the half- 
plane is the j’-axis), (f) M, (if the axis of the cone is the 2-axis), (g) Mi (if the axis 
of the torus is the 2-axis) (h) the Lagrangian is unchanged by a rotation through an angle 
,? about the axis of the helix (let this be the 2-axis) together with a translation through a 

dtSlTfr ,the a"S (/! being the pitch of the helix). Hence SL = 8z 8L/Bz+ 
+ S<f, 8L/Bij> = HifiPzllir+Mi) = 0, so that Mi+hP.Jl-n = constant. 

§10. Mechanical similarity 

Multiplication of the Lagrangian by any constant cleany does not affect 

the equations of motion. This fact (already mentioned in §2) makes possible, 

in a number of important cases, some useful inferences concerning the pro¬ 

perties of the motion, without the necessity of actually integrating the equa¬ 
tions. 

Such cases include those where the potential energy is a homogeneous 

function of the co-ordinates, i.e. satisfies the condition 

f/(an, ar2,.... ar„) = a*t/(n, r2,..., r„), (10.1) 

where a is any constant and k the degree of homogeneity of the function. 

Let us carry out a transformation in which the co-ordinates are changed by 

a factor a and the time by a factor j8: ra -> ara, t -* pt. Then all the velocities 

Va = dra/df are changed by a factor a/j8, and the kinetic energy by a factor 

a2/^2. The potential energy is multiplied by a*. If a and j8 are such that 

a?IP2 — a*, i.e. ft = a1-**, then the result of the transformation is to multiply 

the Lagrangian by the constant factor a*, i.e. to leave the equations of motion 
unaltered. 

A change of all the co-ordinates of the particles by the same factor corre¬ 

sponds to the replacement of the paths of the particles by other paths, geometri¬ 

cally similar but differing in size. Thus we conclude that, if the potential energy 

of the system is a homogeneous function of degree k in the (Cartesian) co¬ 

ordinates, the equations of motion permit a series of geometrically similar 

paths, and the times of the motion between corresponding points are in the 
ratio 

fit = (io.2) 

where l jl is the ratio of linear dimensions of the two paths. Not only the times 

but also any mechanical quantities at corresponding points at corresponding 

times are in a ratio which is a power of I'll. For example, the velocities, 

energies and angular momenta are such that 

% 
v'lv = (*70**, E'/E = (Z'/0* M’/M = (*'//)!+**. (10.3) 

The following are some examples of the foregoing. 

As we shall see later, in small oscillations the potential energy is a quadratic 
function of the co-ordinates (k = 2). From (10.2) we find that the period of 
such oscillations is independent of their amplitude. 
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In a uniform field of force, the potential energy is a linear function of the 

co-ordinates (see (5.8)), i.e. k = 1. From (10.2) we have t'ft = \f(l'jt). 

Hence, for example, it follows that, in fall under gravity, the time of fall is as 

the square root of the initial altitude. 

In the Newtonian attraction of two masses or the Coulomb interaction of 

two charges, the potential energy is inversely proportional to the distance 

apart, i.e. it is a homogeneous function of degree /?= — 1. Then t'jt 

= (/'//)3/2, and we can state, for instance, that the square of the time of revolu¬ 

tion in the orbit is as the cube of the size of the orbit (Kepler's third law). 

If the potential energy is a homogeneous function of the co-ordinates and 

the motion takes place in a finite region of space, there is a very simple relation 

between the time average values of the kinetic and potential energies, known 

as the zirial theorem. 

Since the kinetic energy T is a quadratic function of the velocities, we have 

by Euler’s theorem on homogeneous functions Hva’dTj8va = 27', or, put¬ 

ting 8TjBva = pa, the momentum, 

2T = 2p«-va = ~( r«)- 2r«- P“- (10-4) 

Let us average this equation with respect to time. The average value of any 

function of time / (t) is defined as 

/ = rKJS; J/Wd/- 
o 

It is easy to see that, il f(t) is the time derivative dF(t)jdt of a bounded func¬ 

tion F[t), its mean value is zero. For 

, lrdF FM-F(0) 
f = hm- -df = lim-= 0. 

T-mrJ At T->co r 
0 

Let us assume that the system executes a motion in a finite region of space 

and with finite velocities. Then 2pa • fa is bounded, and the mean value of 

the first term on the right-hand side of (10.4) is zero. In the second term we 

replace pn by —dU/dra in accordance with Newton’s equations (5.3), obtain¬ 

ing! 

2T = SUISia. (10.5) 

If the potential energy is a homogeneous function of degree k in the radius 

vectors ra, then by Euler’s theorem equation (10.5) becomes the required 
relation: 

2T -= kU. 

ometimes called the virial of the systei t The expressi the right of (10.5) is sc 

(10.6) 
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Since T+ U — E — E, the relation (10.6) can also be expressed as 

U = 2E;(k + 2), T = kEftk+2), (10.7) 

which express U and T in terms of the total energy of thcssystem. 

' In particular, for small oscillations (k = 2) we have T = U, i.e. the mean 

values of the kinetic and potential energies are equal. For a Newtonian inter¬ 

action [k = — 1) 2 T = — (7, and E = — T, in accordance with the fact that, 

in such an interaction, the motion takes place in a finite region of space only 
if the total energy is negative (see §15). 

PROBLEMS 

Problem 1. Find the ratio of the times in the same path for particles having different 
masses but the same potential energy. 

Solution, t'/t = 

Problem 2. Find the ratio of the times in the same path for particles having the same mass 
but potential energies differing by a constant factor. 

Solution, t’lt = V(U/U'). 



CHAPTER II 

INTEGRATION OF THE EQUATIONS OF MOTION 

§11. Motion in one dimension 

The motion of a system having one degree of freedom is said to take place 

in one dimension. The most general form of the Lagrangian of such a system 

in fixed external conditions is 

(ii-i) 

where a(q) is some function of the generalised co-ordinate q. In particular, 

if q is a Cartesian co-ordinate (x, say) then 

L = \mx2- U(x). (11.2) 

The equations of motion corresponding to these Lagrangians can be inte¬ 

grated in a general form. It is not even necessary to write down the equation 

of motion; we can start from the first integral of this equation, which gives 

the law of conservation of energy. For the Lagrangian (11.2) (e.g.) we have 

\mx2 + U(x) = E. This is a first-order differential equation, and can be inte¬ 

grated immediately. Since dx/dt = v/{2[E— U(x)]/m}, it follows that 

r dx 
t = -+ constant. (11.3) 

The two arbitrary constants in the solution of the equations of motion are 

here represented by the total energy E and the constant of integration. 

Since the kinetic energy is essentially positive, the total energy always 

exceeds the potential energy, i.e. the motion can take place only in those 

regions of space where U(x) < E. For example, let the function U(x) be 

of the form shown in Fig. 6 (p. 26). If we draw in the figure a horizontal 

line corresponding to a given value of the total energy, we immediately find 

the possible regions of motion. In the example of Fig. 6, the motion can 

occur only in the range AB or in the range to the right of C. 

The points at which the potential energy equals the total energy, 

U{x) = E, (11.4) 

give the limits of the motion. They are turning points, since the velocity there 

is zero. If the region of the motion is bounded by two such points, then the 

motion takes place in a finite region of space, and is said to be finite. If the 

region of the motion is limited on only one side, or on neither, then the 
motion is infi?iite and the particle goes to infinity. 

25 
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A finite motion in one dimension is oscillatory, the particle moving re¬ 

peatedly back and forth between two points (in Fig. 6, in the potential well 

AB between the points xy and x2). The period T of the oscillations, i.e. the 

time during which the particle passes from xy to x2 and back,*is twice the time 

from a* to a2 (because of the reversibility property, §5) or, by (11.3), 

x2 (£) 

T(E) = v/(2„,) f dl -■ (11.5) 
(J V[E~U(x)] 

where ai and x2 are roots of equation (11.4) for the given value of E. This for¬ 

mula gives the period of the motion as a function of the total energy of the 

particle. 

PROBLEMS 

Problem 1. Determine the period of oscillations of a simple pendulum (a particle of mass 
m suspended by a string of length l in a gravitational field) as a function of the amplitude of 
the oscillations. 

Solution. The energy of the pendulum is E = iml2j,2—mgl cos <j>= -mgl cos ^o, where 
^ is the angle between the string and the vertical, and <f>o the maximum value of <f>. Calculating 
the period as fHe.time required to go from = 0 to ^ = fo, multiplied by four, we find 

'■Jhl 2gJ \/(cos 4>—cos ^o) 

2 IL f_di_ 
V g J y/(sin2^0-sin2^) 

The substitution sin { = sin J^/sin l<fio converts this to T = 4\/(l/g)K(sm where 

K(k) = J M df 

V(1 —k2 sin*f) 

is the complete elliptic integral of the first kind. For sin £$o K i$o <€ 1 (sma11 osclllations), 
an expansion of the function K gives 

T= 2nVa/g)(.i + Mo2+ ...). 



§12 Determination of the potential energy 

The first term corresponds to the familiar formula. 

27 

Problem 2. Determine the period of oscillation, as a function of the energy, when a 
particle of mass m moves in fields for which the potential energy is 

(a) U = A\x\n, (b) U = —UofcosbPax, -Uo < E < 0, (c) U = U0 tan2ax. 

Solution, (a): 

^■(in^fe- 
By the substitution yn = u the integral is reduced to a beta function, which can be expressed 
in terms of gamma functions: 

2 / 277TO /£\i/» r(l/«), 

We U; r(i+i/«)' 

The dependence of T on E is in accordance with the law of mechanical similarity (10.2), 
(10.3). 

(b) T = (Wa)v/(2m/|£|). 
(c) r = (W«)VM(£+Uo)]. 

§12. Determination of the potential energy from the period of 

oscillation 

Let us consider to what extent the form of the potential energy U(x) of a 

field in which a particle is oscillating can be deduced from a knowledge of the 

period of oscillation T as a function of the energy E. Mathematically, this 

involves the solution of the integral equation (11.5), in which U(x) is regarded 

as unknown and T{E) as known. 

We shall assume that the required function U(x) has only one minimum 

in the region of space considered, leaving aside the question whether there 

exist solutions of the integral equation which do not meet this condition. 

For convenience, we take the origin at the position of minimum potential 

energy, and take this minimum energy to be zero (Fig. 7). 

Frc. 7 
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In the integral (11.5) we regard the co-ordinate x as a function of U. The 

function x(U) is two-valued: each value of the potential energy corresponds 

to two different values of x. Accordingly, the integral (11.5) must be divided 

into two parts before replacing dx by (dxjdU) dU: one from v = X\ to x = 0 

and the other from x = 0 to x = x2- We shall write the function x( U) in 

these two ranges as * = vi(L') and x = x2{U) respectively. 

The limits of integration with respect to U are evidently E and 0, so that 

we have 

r(E)=V(2m)j 
dx2(U) d U 

d U xf{E- U) H 

dxy(U) dU 

dll X'{E- U) 

rdv2 dvn d U 

[dU~ dC/J V(E-U)' 

If both sides of this equation are divided by V(a~ E), where a is a parameter, 

and integrated with respect to E from 0 to a, the result is 

dx2 dvil dlldE 

0 0 0 

or, changing the order of integration, 

A/[(«-£)(E-£/)] 

VK« ~E)(E-U)Y 

The integral over E is elementary; its value is tt. The integral over U is 

thus trivial, and we have 

T(E) dE cm 
J V(«- 

= W(2m)[x2(a)-x,(,)l 

V(«~E) 

since jc2(0) = vi(0) = 0. Writing U in place of a, we obtain the final result: 

x2(U)-Xl{U) = ■ -L-f /(2m) J 
T(E)dE 

V(2m) J y/f$~E) ‘ 
(12.1) 

Thus the known function T(E) can be used to determine the difference 
x2(U)-x](U). The functions x2(U) and Xl(U) themseives remain^in eter- 
min ate. This means that there is not one but an infinity of curves L _ U(x) 
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which give the prescribed dependence of period on energy, and differ in such 

a way that the difference between the two values of x corresponding to each 

value of U is the same for every curve. 

The indeterminacy of the solution is removed if we impose the condition 

that the curve U = U(x) must be symmetrical about the U-axis, i.e. that 

x2([/) = — xi(U) = x(U). In this case, formula (12.1) gives for x(U) the 

unique expression 

*([/) = 
1 

2*V(2 m) 

r T(E)dE 

JV(U-E) 
(12.2) 

§13. The reduced mass 

A complete general solution can be obtained for an extremely important 

problem, that of the motion of a system consisting of two interacting particles 

(the two-body problem). 

As a first step towards the solution of this problem, we shall show how it 

can be considerably simplified by separating the motion of the system into 

the motion of the centre of mass and that of the particles relative to the centre 

of mass. 

The potential energy of the interaction of two particles depends only on 

the distance between them, i.e. on the magnitude of the difference in their 

radius vectors. The Lagrangian of such a system is therefore 

L = \niiii2 + |?«2f22 — f/(|r1-r2|). (13.1) 

Let r = lq —r2 be the relative position vector, and let the origin be at the 

centre of mass, i.e. miri + mor2 = 0. These two equations give 

iq = m2r/(wzi + ot2), r2 = — ?«ir( (wi + m2). (13-2) 

Substitution in (13.1) gives 

L = \mi2— U(r), (13.3) 

where 

in = m\mo\{rii\ + m2) (13-4) 

is called the reduced mass. The function (13.3) is formally identical with the 

Lagrangian of a particle of mass m moving in an external field U(r) which is 
symmetrical about a fixed origin. 

Thus the problem of the motion of two interacting particles is equivalent 

to that of the motion of one particle in a given external field U(r). From the 
solution r = t{t) of this problem, the paths ri = r3(t) and r2 = r2(t) of the 
two particles separately, relative to their common centre of mass, are obtained 
by means of formulae (13.2). 
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PROBLEM 

A system consists of one particle of mass M and n particles with equal masses m. Eliminate 
the motion of the centre of mass and so reduce the problem to one involving n particles. 

Solution. Let R be the radius vector of the particle of mass M, and R0 (a = 1, 2, ..., n) 
those of the particles of mass m. We put rB = Ra—R and take the origin to be at the centre 
of mass: MR + mSRa = 0. Hence R = — (m!fi)Y.ra, where ft~M + ivm\ Ra = R + rc. 
Substitution in the Lagrangian L — Ll/R2 + \m £R0Z — U gives 

L = >]>v- — I fy?a) — U, where vQ = ra. 

The potential energy depends only on the distances between the particles, and so can be 
written as a function of the ra. 

§14. Motion in a central field 

On reducing the two-body problem to one of the motion of a single body, 

we arrive at the problem of determining the motion of a single particle in an 

external field such that its potential energy depends only on the distance r 

from some fixed point. This is called a central field. The force acting on the 

particle is F = — C L (r)j£r = — (d U, dr)r/r; its magnitude is likewise a func¬ 

tion of r only, and its direction is everywhere that of the radius vector. 

As has already been shown in §9, the angular momentum of any system 

relative to the centre of such a field is conserved. The angular momentum of a 

single particle is M = r xp. Since M is perpendicular to r, the constancy of 

M shows that, throughout the motion, the radius vector of the particle lies 

in the plane perpendicular to M. 

Thus the path of a particle in a central field lies in one plane. Using polar 

co-ordinates r, f in that plane, we can write the Lagrangian as 

L = \tn{r2 + r2f2) - U(r); (14.1) 

see (4.5). This function does not involve the co-ordinate f explicitly. Any 

generalised co-ordinate qt which does not appear explicitly in the Lagrangian 

is said to be cyclic. Tor such a co-ordinate we have, by Lagrange’s equation, 

(d, d/) dLJcqi = cL eq-i = 0, so that the corresponding generalised momen¬ 

tum pi = clf'cqi is an integral of the motion. This leads to a considerable 

simplification of the problem of integrating the equations of motion when 

there are cyclic co-ordinates. 

In the present case, the generalised momentum = mr-<j> is the same as 

the angular momentum Mz = M (see (9.6)), and we return to the known law 

of conservation of angular momentum: 

M = mr-<j> = constant. (14.2) 

This law has a simple geometrical interpretation in the plane motion of a single 
particle in a central field. The expression hr • rdf is the area of the sector 
bounded by two neighbouring radius vectors and an element of t e path 
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(Fig. 8). Calling this area d/, we can write the angular momentum of the par¬ 

ticle as 

M = 2 mf, (14.3) 

where the derivative f is called the sectorial velocity. Hence the conservation 

of angular momentum implies the constancy of the sectorial velocity: in equal 

times the radius vector of the particle sweeps out equal areas (Kepler’s second 

law), f 

Fig. 8 

The complete solution of the problem of the motion of a particle in a central 

field is most simply obtained by starting from the laws of conservation of 

energy and angular momentum, without writing out the equations of motion 

themselves. Expressing <f> in terms of M from (14.2) and substituting in the 

expression for the energy, we obtain 

E = \m{f* + r°4 2) + U(r) = \mr2 + + U(r). (14.4) 

Hence 

'•t-Jfo-w'-i* I !'4-5) 
or, integrating, 

t = | dr/ J{^[E- C/(r)]--^j +constant. (14.6) 

Writing (14.2) as d<f> = M dtjmr2, substituting dt from (14.5) and integrating, 

we find 

r MdrM 
cb =-+ constant. (14.7) 
V J V{2m[E-U(r)]-M*/rS} V 1 

Formulae (14.6) and (14.7) give the general solution of the problem. The 

latter formula gives the relation between r and <f>, i.e. the equation of the path. 
Formula (14.6) gives the distance r from the centre as an implicit function of 

time. The angle <f>, it should be noted, always varies monotonically with time, 
since (14.2) shows that <j> can never change sign. 

t The law of conservation of angular momentum for a particle moving in a central field 
is sometimes called the area integral. 
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The expression (14.4) shows that the radial part of the motion can be re¬ 

garded as taking place in one dimension in a field where the “effective poten¬ 
tial energy” is 

Ueti = U(r) + M2\2mr2. (14.8) 

The quantity M2j2mr2 is called the centrifugal energy. The values of r for which 

U{r) + M2j2mr2 = E (14.9) 

determine the limits of the motion as regards distance from the centre. 

When equation (14.9) is satisfied, the radial velocity r is zero. This does not 

mean that the particle comes to rest as in true one-dimensional motion, since 

the angular velocity <f> is not zero. The value r = 0 indicates a turning point 

of the path, where r(t) begins to decrease instead of increasing, or vice versa. 

If the range in which r may vary is limited only by the condition r ^ rmln, 

the motion is infinite: the particle comes from, and returns to, infinity. 

If the range of r has two limits rmin and rmax, the motion is finite and the 

path lies entirely within the annulus bounded by the circles r = rmax and 

r — rmin- This does not mean, however, that the path must be a closed curve. 

During the time in which r varies from rmax to rmln and back, the radius 

vector turns through an angle Awhich, according to (14.7), is given by 

Af = 
M drjr2 

x/[2m(E-U)-M2lr2] 
(14.10) 

The condition for the path to be closed is that this angle should be a rational 

fraction of 2ir, i.e. that A<j> — 27rmjn, where m and n are integers. In that case, 

after*?! periods, the radius vector of the particle will have made m complete 

revolutions and will occupy its original position, so that the path is closed. 

Such cases are exceptional, however, and when the form of U(r) is arbitrary 

the angle A^ is not a rational fraction of 2-,t. In general, therefore, the path 

of a particle executing a finite motion is not closed. It passes through the 

minimum and maximum distances an infinity of times, and after infinite time 

it covers the entire annulus between the two bounding circles. The path 

shown in Fig. 9 is an example. 

There are only two types of central field in which all finite motions take 

place in closed paths. They are those in which the potential energy of the 

particle varies as P[r or as r2. The former case is discussed in §15; the latter 

is that of the space oscillator (see §23, Problem 3). 

At a turning point the square root in (14.5), and therefore the integrands 

in (14.6) and (14.7), change sign. If the angle <}> is measured from the direc¬ 
tion of the radius vector to the turning point, the parts of the path on each 
side of that point differ only in the sign of <f> for each value of r, i.e. the path 
is symmetrical about the line <j> = 0. Starting, say, from a point where r = rmax 
the particle traverses a segment of the path as far as a point wit r = rmln> 
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then follows a symmetrically placed segment to the next point where r = rmax, 

and so on. Thus the entire path is obtained by repeating identical segments 

forwards and backwards. This applies also to infinite paths, which consist of 

two symmetrical branches extending from the turning point (r = rmln) to 
infinity. 

The presence of the centrifugal energy when M # 0, which becomes 

infinite as 1 /r2 when r -> 0, generally renders it impossible for the particle to 

reach the centre of the field, even if the field is an attractive one. A “fall” of 

the particle to the centre is possible only if the potential energy tends suffi¬ 

ciently rapidly to — co as r -> 0. From the inequality 

\mr2 = E- U(r) — M2/2mr2 > 0, 

or r2U(r) + M2/2m < Er2, it follows that r can take values tending to zero 
only if 

[r2 U(r)]r^o < -M2;2m, (14.11) 

i.e. U(r) must tend to — oo either as — a/r2 with a > M2/2m, or proportionally 
to — \/rn with n > 2. 

PROBLEMS 

Problem 1. Integrate the equations of motion 
m moving on the surface of a sphere of radius l in 

for a spherical pendulum 
a gravitational field). 

(a particle of mass 

SOLUTION. In spherical co-ordinates, with the origin at the centre of the sphere and t] 
polar axis vertically dow nwards, the Lagrangian of the pendulum is 

imlKP + p sinz0) + mgl cos 6. 
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E = sin-0) - 

= ImPfP + lMi2 'ml- si 

where the “effective potential energy” 

lV(2m) Jsin20\'[E—t/err(0)]‘ 

Tire integrals (3) and (4) lead to elliptic integrals of the first and third kinds respectively. 
The range of 0 in which the motion takes place is that where E > Ueti, and its limits 

are given by the equation E = Ucit- This is a cubic equation for cos 8, having two roots 
between —1 and +1; these define two circles of latitude on the sphere, between which the 
path lies. 

Problem 2. Integrate the equations of motion for a particle moving on the surface of a 
cone (of vertical angle 2re) placed vertically and with vertex downwards in a gravitational 
field. 

Solution. In spherical co-ordinates, with the origin at the vertex of the cone and the 
polar axis vertically upwards, the Lagrangian is |m(f2+r2^2 sin2ot)—tngr cos a. The co¬ 
ordinate <j> is cyclic, and Mz = mr2(j> sin2a is again conserved. The energy is 

E = font2 + sin2x+mgr cos a. 

By the same method as in Problem 1, we find 

f dr 

: J 

Problem 3. Integrate the equations of motion for a pendulum of mass mi, with a mass >m 
at the point of support which can move on a horizontal line Iving in the plane in which nl-> 
moves (Fig. 2, §5). 

Solution. In the Lagrangian derived in §5, Problem 2, the co-ordinate x is cyclic. The 

(mi + ni2)x+mzl si 
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Using (1), we find the energy in the form 

E = -—— cos2$j — mzgl cos (3) 

t = l I ”12 f /”»!+"««sin^ 
V 2(mj+tn2) J V E+mo"l cos 

Expressing the co-ordinates .V2 = x+l sin <j>, y = l cos <f> of the particle m2 in terms of <j> 
by means of (2), we find that its path is an arc of an ellipse with horizontal semi¬ 
axis lmil(nii +1112) and vertical semi-axis l. As mi -* <x> we return to the familiar simple pen¬ 
dulum, which moves in an arc of a circle. 

§15. Kepler’s problem 

An important class of central fields is formed by those in which the poten¬ 

tial energy is inversely proportional to r, and the force accordingly inversely 

proportional to r2. They include the fields of Newtonian gravitational attrac¬ 

tion and of Coulomb electrostatic interaction; the latter may be either attrac¬ 
tive or repulsive. 

Let us first consider an attractive field, where 

U= -a/r 

with a a positive constant. The “effective” potential energy 

a M- 
Uelt =-h--- 

r 2 mr2 

is of the form shown in Fig. 10. As r -> 0, Ueff tends to + 00, and as r 00 

it tends to zero from negative values; for r = M2\via it has a minimum value 

Lt'fT, min = -vix2'2M2. (15.3) 

(15.1) 

(15.2) 

It is seen at once from Fig. 10 that the motion is finite for E < 0 and infinite 
for E > 0. 
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The shape of the path is obtained from the general formula (14.7). Substi¬ 

tuting there If = — a r and effecting the elementary integration, we have 

(.Mlr)-{im.fM) 
<j> = COST-1---—- + constant. 

Taking the origin of <j> such that the constant is zero, and putting 

p = M-jmsf., 0 m V[1 + (15.4) 

we can write the equation of the path as 

pir — l + eco?<f>. (15-^) 

This is the equation of a conic section with one focus at the origin; 2p is called 

the latus rectum of the orbit and e the eccentricity. Our choice of the origin of f 

is seen from (15.5) to be such that the point where <}> = 0 is the point nearest 

to the origin (called the perihelion). 
In the equivalent problem of two particles interacting according to the law 

(15.1), the orbit of each particle is a conic section, with one focus at the centre 

of mass of the two particles. 
It is seen from (15.4) that, if E < 0, then the eccentricity e < 1, i.e. the 

orbit is an ellipse (Fig. 11) and the motion is finite, in accordance with what 

has been said earlier in this section. According to the formulae of analytical 

geometry, the major and minor semi-axes of the ellipse are 

a = pi{ 1-#) = a/2|£j, h = pjy/{ 1-e2) = M,x\2m\E\). (15.6) 

The least possible value of the energy is (15.3), and then e = 0, i.e. the ellipse 

becomes a circle. It may be noted that the major axis of the ellipse depends 

only on the energy of the particle, and not on its angular momentum. The 

least and greatest distances from the centre of the field (the focus of the 

ellipse) are 

rmln=P/(l+4^^(l-^ '-ax = Pl( 1-4 = fl(1+f); (15-7) 

These expressions, with a and e given by (15.6) and (15.4),° course, 

also be obtained directly as the roots of the equation > 
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The period T of revolution in an elliptical orbit is conveniently found by 

using the law of conservation of angular momentum in the form of the area 

integral (14.3). Integrating this equation with respect to time from zero to 

T, we have 2mf = TM, where / is the area of the orbit. For an ellipse 

/ = TTtib, and by using the formulae (15.6) we find 

T = 

= mxv'(w!/2|Ejs). (15.8) 

The proportionality between the square of the period and the cube of the 

linear dimension of the orbit has already been demonstrated in §10. It may 

also be noted that the period depends only on the energy of the particle. 

For E ^ 0 the motion is infinite. If E > 0, the eccentricity e > 1, i.e. the 

the path is a hyperbola with the origin as internal focus (Fig. 12). The dis¬ 

tance of the perihelion from the focus is 

rmin = p;(e+ 1) = a(e- 1), (15.9) 

where a = pj(e2— 1) = a/2E is the “semi-axis” of the hyperbola. 

Fig. 12 

If E = 0, the eccentricity e — 1, and the particle moves in a parabola with 

perihelion distance rmln = \p. This case occurs if the particle starts from rest 
at infinity. 

The co-ordinates of the particle as functions of time in the orbit may be 

found by means of the general formula (14.6). They may be represented in a 
convenient parametric form as follows. 

Let us first consider elliptical orbits. With a and e given by (15.6) and (15.4) 
" e can write the integral (14.6) for the time as 

Jmf r dr 

V[-r2 + (*l\E\)r-(M2l2m\E\)] 

_ 
V a J V[cPe2-(r-a)2] ' 
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The obvious substitution r—a= -ae cos £ converts the integral to 

ima3 f tma3 
t = I- (1—ecos|)d£= /-(g-e sin £) + constant. 

If time is measured in such a way that the constant is zero, we have the 

following parametric dependence of r on t: 

r = a(l — ecos|), t = x fina3,1 a)(£ —e sin"|), (15.10) 

the particle being at perihelion at t ^ 0. The Cartesian co-ordinates 

x = r cos <j>, y = r sin f (the x and y axes being respectively parallel to the 

major and minor axes of the ellipse) can likewise be expressed in terms of 

the parameter $. From (15.5) and (15.10) we have 

ex = p — r = a(l — e2) — a(l — e cos|) = fle(cos£ — e); 

y is equal to -y/(r2 — x2). Thus 

x = a(cosg-e), y = a\ (1 — e2) sin|. (15.11) 

A complete passage round the ellipse corresponds to an increase of $ from 0 

tO 277. 

Entirely similar calculations for the hyperbolic orbits give 

r = fl(ecosh£— 1), t = \/{mazja){e sinhf — £), 

a; = a(e — cosh£), f = '{e2— 1) sinh|, 

where the parameter g varies from — co to + co. 

Let us now consider motion in a repulsive field, where 

U = air (a > 0). 

Here the effective potential energy is 

a M2 
Ueit = - + -—- 

r 2mr2 

(15.12) 

(15.13) 

and decreases monotonically from +oo to zero as r varies from zero to 

infinity. The energy of the particle must be positive, and the motion is always 

infinite. The calculations are exactly similar to those for the attractive field. 

The path is a hyperbola: 

pjr = —1 + ecos^, (15.14) 

where p and e are again given by (15.4). The path passes the centre of the 

field in the manner shown in Fig. 13. The perihelion distance is 

min = Pl(e~l) = a(e+1). 

The time dependence is given by the parametric equations 

r = a(e cosh f + 1), t = x/(maZ/*)(e sinh £ + £)> 

* = «(cosh i + e), y = «v'(c2 -1) sinh 

(15.15) 

(15.16) 
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To conclude this section, we shall show that there is an integral of the mo¬ 

tion which exists only in fields U = a/r (with either sign of a). It is easy to 

verify by direct calculation that the quantity 

vxM + ar/r (15.17) 

is constant. For its total time derivative is v xM+ av/r— ar(v • r)/r3 or, 

since M = mrxv, 

mr(\- v) — mv(r* v) + av/r — ar(v • r)/r3. 

Putting mv = ar/r3 from the equation of motion, we find that this expression 

vanishes. 

The direction of the conserved vector (15.17) is along the major axis from 

the focus to the perihelion, and its magnitude is m. This is most simply 

seen by considering its value at perihelion. 

It should be emphasised that the integral (15.17) of the motion, like M and 

E, is a one-valued function of the state (position and velocity) of the particle. 

IV e shall see in §50 that the existence of such a further one-valued integral 

is due to the degeneracy of the motion. 

PROBLEMS 

Problem 1. Find the time dependence of the co-ordinates of a particle with energy E — 0 
moving in a parabola in a field l3 = — afr. 

Solution. In the internal 

II_-_rdr 
J V[(2«/»i)r-(Jlf!,V)] 

w-e substitute r = +rf)/2ma = ip(l +ij2), obtaining the following parametric form of 
the required dependence: 

r = +&’ t = V(mp3/a.). I V(1 + i 
x = ip(l-v-), y = pv. 
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The parameter ij varies from — oo to + oo. 

Problem 2. Integrate the equations of motion for a particle in a central field 

U = —ct/r2 (a>0). 

Solution. From formulae (14.6) and (14.7) we have, if 4> and t are appropriately measured, 

(a) for E > 0 and M*/2« yjrfy cos[<\/ ( 1 

(b) f°r E > ° and M2/2m < “* \ = VSinh[^ &-1)] ’ 

(c) for E c 0 and M2/2m cosh[^V *)] 

In all three cases 

-*/[-(—£♦■) ]■ 
In cases (b) and (c) the particle “falls” to the centre along a path which approaches the 
origin as $ 00 • The fall from a given value of r takes place in a finite time, namely 

Problem 3. When a small correction 8l!(r) is added to the potential energy U = —ajr, 
the paths of finite motion are no longer closed, and at each revolution the perihelion is dis¬ 
placed through a small angle 8$. Find when (a) 817 = f}/r2, (b) 817 = y/r3. 

Solution. When r varies from rmin to rmax and back, the angle <j> varies by an amount 
(14.10), which we write as 

-2w rv[2”<E-[,>-^i]d'’ 
in order to avoid the occurrence of spurious divergences. We put U — — ajr + 8II, and 
expand the integrand in powers of 8U; the zero-order term in the expansion gives 2tt, and 
the first-order term gives the required change 8<fr. 

-VI2” 

’ (V*8t7d^, 

where we have changed from the integration over r to one over <f>, along the path of the “un¬ 
perturbed” motion. 

In case (a), the integration in (1) is trivial: 8<j> = -2-nfimlM2 = — ZnfS/ap, where 2p (15.4) 
is the latus rectum of the unperturbed ellipse. In case (b) r28U = y/r and, with l/rjgiven by 
(15.5), we have 8<j> = —(mayr^/M* = —biry/ap2. 



CHAPTER IV 

COLLISIONS BETWEEN PARTICLES 

§16. Disintegration of particles 

In many cases the laws of conservation of momentum and energy alone can 

be used to obtain important results concerning the properties of various mech¬ 

anical processes. It should be noted that these properties are independent of 

the particular type of interaction between the particles involved. 

Let us consider a “spontaneous” disintegration (that is, one not due to 

external forces) of a particle into two “constituent parts”, i.e. into two other 

particles which move independently after the disintegration. 

This process is most simply described in a frame of reference in which the 

particle is at rest before the disintegration. The law of conservation of momen¬ 

tum shows that the sum of the momenta of the two particles formed in the 

disintegration is then zero; that is, the particles move apart with equal and 

opposite momenta. The magnitude p0 of either momentum is given by the 
law of conservation of energy: 

P p . P°Z v P°2 Ei = Elt + — +E2i + —; 
2m1 2m2 

here mx and mg are the masses of the particles, Eu and E2i their internal 

energies, and Et the internal energy of the original particle. If £ is the “dis¬ 
integration energy”, i.e. the difference 

(16.1) 

■ = W-+-) = - 
\mi m^f (16.2) 

- = Ei-Eu-Eoi, 

which must obviously be positive, then 

P&_ 
Wi m2} 2m 

whmh determines p0; here m is the reduced mass of the two particles The 
velocities are v10 = po/mh v20 = p0/m2. 

Let us now change to a frame of reference in which the primary particle 

moves with velocity V before the break-up. This tame is usually caUed Se 
More,cry ryr.em, or L system, in conttadistinction ,0 the of JuZ 

sysun or C sjeuem, in whieh the total momentum is aero iZZ ^nZc, 

one of the resultmg par, cies, and le, , and be its veiocidi in d,™ttd 
the C system .respectively. Evidently v - V+*„, or v -V _ v„, «d so 

*'2+ V2 — 2vV cos0 = v02, 2) 

where 0 is the angle at which this particle moves relative to the direction of 
the velocity V. This equation gives the velocity of the particle as a function 
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of its direction of motion in the L system. In Fig. 14 the velocity v is repre¬ 

sented by a vector drawn to any point on a circlet of radius vo from a point 

A at a distance V from the centre. The cases V < v0 and V > v0 are shown 

in Figs. 14a, b respectively. In the former case 0 can have any value, but in 

the latter case the particle can move only forwards, at an angle 0 which does 

not exceed 0max, given by 

sin0max = vo/V 5 (16.4) 

this is the direction of the tangent from the point A to the circle. 

The relation between the angles 0 and 0o in the L and C systems is evi¬ 

dently (Fig. 14) 

tan0 = vq sin0o/(»o cos0O + V). (16.5) 

If this equation is solved for cos 6o, we obtain 

cos 0O = - — sin20 ± cos 0 I(l - — sin20 ). (16.6) 
»o V \ *>o2 / 

For vq > V the relation between 60 and 0 is one-to-one (Fig. 14a). The plus 

sign must be taken in (16.6), so that 0O = 0 when 0 = 0. If »o < V, however, 

the relation is not one-to-one: for each value of 0 there are two values of 0o> 

which correspond to vectors vo drawn from the centre of the circle to the 

points B and C (Fig. 14b), and are given by the two signs in (16.6). 
In physical applications we are usually concerned with the disintegration 

of not one but many similar particles, arid this raises the problem of the 

distribution of the resulting particles in direction, energy, etc. We shall 
assume that the primary particles are randomly oriented in space, i.e. iso¬ 

tropically on average. 
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In the C system, this problem is very easily solved: every resulting particle 

(of a given kind) has the same energy, and their directions of motion are 

isotropically distributed. The latter fact depends on the assumption that the 

primary particles are randomly oriented, and can be expressed by saying 

that the fraction of particles entering a solid angle element do0 is proportional 

to do0, i.e. equal to do0/47r. The distribution with respect to the angle 80 is 

obtained by putting do0 = 2tt sin 80 A80, i.e. the corresponding fraction is 

i sin 0O d0o. (16.7) 

The corresponding distributions in the L system are obtained by an 

appropriate transformation. For example, let us calculate the kinetic energy 

distribution in the L system. Squaring the equation v = v0 + V, we have 

v2 = v02+V2+2z'0Vcos 80, whence d(cos 80) = d(?;2)/2?;0F. Using the 

kinetic energy T = \mv2, where m is m\ or m2 depending on which kind of 

particle is under consideration, and substituting in (16.7), we find the re¬ 
quired distribution: 

(l/2mz-0V) AT. (16.8) 

The kinetic energy can take values between Tmin = - V)2 and 

T’max = lm(v0+Vf. The particles are, according to (16.8), distributed 
uniformly over this range. 

When a particle disintegrates into more than two parts, the laws of con¬ 

servation of energy and momentum naturally allow considerably more free¬ 

dom as regards the velocities and directions of motion of the resulting particles. 

In particular, the energies of these particles in the C system do not have 

determinate values. There is, however, an upper limit to the kinetic energy 

of any one of the resulting particles. To determine the limit, we consider 

the system formed by all these particles except the one concerned (whose 

mass is mx, say), and denote the “internal energy” of that system by E{. 

Then the kinetic energy of the particle mi is, by (16.1) and (16.2), 

io = po2j2vii = En ~ Ef) IM, where M is the mass of the 

primary particle. It is evident that T10 has its greatest possible value 

" en Ei is least. For this to be so, all the resulting particles except mi 

must be moving with the same velocity. Then F,-' is simply the sum of their 

internal energies, and the difference Ei~Eu~E{ is the disintegration 
energy €. Thus 

Fio.max = (16.5) 

Problem 1. Find the relation 
lion into two particles. 

PROBLEMS 

between the angles £5, 02 (in the L system) after disintegra- 

Solution. In the C system, the corresponding angles are related by 01O 
0io simply 0o and 
V+vio ci 
equations 

; formula (16.5) for 
»i. V-vx 

0o. To do s 

n —02o- Calling 
, we can put 
om these two 
in 0o, and then 
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form the sum of their squares, which is unity. Since mo/mo = mr/mi, we have finally, using 
(16.2), 

(mo/mi) sin202+(mi/m2) sin20i—2 sin 0i sin 02 cos(0i+02) 

2* 

('mi+mt)V2 
sin2(0i+02). 

Problem 2. Find the angular distribution of the resulting particles in the L system. 

Solution. When m > V, we substitute (16.6), with the plus sign of the radical, in (16.7), 
obtaining 

4 sin 
l+(F2/®o2)cos20 I 

A '[.l —(F2/®o2) sin20] J (0 « 0 < 7r). 

When vo < V, both possible relations between So and 6 must be taken into account. Since, 
when 8 increases, one value of 80 increases and the other decreases, the difference (not the 
sum) of the expressions d cos 80 with the two signs of the radical in (16.6) must be taken. 
The result is 

V[1 -(F2,foo2) sin20] 

Problem 3. Determine the range of possible values of the angle 0 between the directions 
of motion of the two resulting particles in the L system. 

Solution. The angle 0 = 01+02, where 0i and 0a are the angles defined by formula (16.5) 
(see Problem 1), and it is simplest to calculate the tangent of 0. A consideration of the extrema 
of the resulting expression gives the following ranges of 0, depending on the relative magni¬ 
tudes of V, vio and U20 (for definiteness, we assume mo > mo): 0 < 0 < w if mo < V < mo, 
„_0O < fl’< it if V < mo, 0 < 0 < 0o if V > mo- The value of 0o is given by 

sin 0o = V(vio+V2o)l( V2 +V10V20). 

§17. Elastic collisions 

A collision between two particles is said to be elastic if it involves no change 

in their internal state. Accordingly, when the law of conservation of energy 

is applied to such a collision, the internal energy of the particles may be 

neglected. . 
The collision is most simply described in a frame of reference in which the 

centre of mass of the two particles is at rest (the C system). As in §16, we 

distinguish by the suffix 0 the values of quantities in that system. The velo¬ 

cities of the particles before the collision are related to their velocities vx and 

v2 in the laboratory system by vio = wi2v/(mx+wi2), v2o = -r«iv/(»ix+m2), 

where v = vi—v2; see (13.2). 
Because of the law of conservation of momentum, the momenta of the two 

particles remain equal and opposite after the collision, and are also unchanged 

in magnitude, by the law of conservation of energy. Thus, in the C system 

the collision simply rotates the velocities, which remain opposite in direction 

and unchanged in magnitude. If we denote by n0 a unit vector m the direc¬ 

tion of the velocity of the particle mx after the collision, then the ve ocities 

of the two particles after the collision (distinguished by Prime > 

v10' = ni2vn0l'(in1 + m2), v2o' mivno!(nn + W2) (17.1) 
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In order to return to the L system, we must add to these expressions the 

velocity V of the centre of mass. The velocities in the L system after the 

collision are therefore 

vi' = m2vn0l(mi + mi) + (mm + m2\i)j{mi + mi), ^ ^ 

V2' = —mivnol(mi + mi) + (mivi + m2'vi)l(tni + mi). 

No further information about the collision can be obtained from the laws 

of conservation of momentum and energy. The direction of the vector no 

depends on the law of interaction of the particles and on their relative position 

during the collision. 

The results obtained above may be interpreted geometrically. Here it is 

more convenient to use momenta instead of velocities. Multiplying equations 

(17.2) by m\ and m2 respectively, we obtain 

Pi' = mvn0 + r«i(pi +p2)/(t«i + mi), ^ ^ 

p i = - mz:n0 + m2(pi + pi) I (mi + mi), 

where m = mim2j(tni+?n2) is the reduced mass. We draw a circle of radius 

mv and use the construction shown in Fig. 15. If the unit vector no is along 

OC, the vectors AC and CB give the momenta pi' and P2' respectively. 

When pi and p2 are given, the radius of the circle and the points A and B 

are fixed, but the point C may be anywhere on the circle. 

Fig. 15 

Let us consider in more detail the case where one of the particles (m2, say) is 
at rest before the collision. In that case the distance OB = mzpiftmi + mi) = mv 

is equal to the radius, i.e. B lies on the circle. The vector AB is equal to the 
momentum pi of the particle my before the collision. The point A lies inside 
or outside the circle, according as mx < m2 or m\ > m2. The corresponding 
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diagrams are shown in Figs. 16a, b. The angles 0i and 02 in these diagrams 

are the angles between the directions of motion after the collision and the 

direction of impact (i.e. of pi). The angle at the centre, denoted by x> which 

gives the direction of no, is the angle through which the direction of motion 

of m\ is turned in the C system. It is evident from the figure that 0i and 02 

can be expressed in terms of x by 

tan 0i 
m2 sinx 

mi + m2 cosx 
= *("-X). (17.4) 

(o) m, < mz (b) /7>| >mz 
AB = p, ; AO/OB- mt/mz 

Fig. 16 

We may give also the formulae for the magnitudes of the velocities of the 

two particles after the collision, likewise expressed in terms of x: 

V(WIi2 +w22 + 2wir«2 cosx) , 2miv 
v\ = -v, i)2 = -sin^x- (17.5) 

mi + m2 mi + m2 

The sum 0i + 02 is the angle between the directions of motion of the 

particles after the collision. Evidently 0i + 02 > \rr if mi < m2, and 0i + 02 < i77 

if mi > m2. 

When the two particles are moving afterwards in the same or in opposite 

directions (head-on collision), we have x = 17, i.e. the point C lies on the 

diameter through A, and is on OA (Fig. 16b; pi' and p2' in the same direc¬ 

tion) or on OA produced (Fig. 16a; pi' and p2' in opposite directions). 

In this case the velocities after the collision are 

mi — m2 2mi 
Vi' = -v, v2 = -v. 

mi + m2 mi + m2 

This value of v2' has the greatest possible magnitude, 

(17.6) 

and the maximum 
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energy which can be acquired in the collision by a particle originally at rest 

is therefore 

£2’max = hmlr2m -^i» 
(mi + m2)2 

(17.7) 

where £1 = is the initial energy of the incident particle. 

If mi < m2, the velocity of m\ after the collision can have any direction. 

If mi > m2, however, this particle can be deflected only'through an angle 

not exceeding 0max from its original direction; this maximum value of 6\ 

corresponds to the position of C for which AC is a tangent to the circle 

(Fig. 16b). Evidently 

sin 6>max = OC/OA = tn2jtni. (17.8) 

The collision of two particles of equal mass, of which one is initially at 

rest, is especially simple. In this case both B and A lie on the circle (Fig. 17). 

h = 02 = fa-X), (17.9) 

i'i = v cosv2 = v sin|y. (17.10) 

After the collision the particles move at right angles to each other. 

PROBLEM 

Express the velocity of each particle after a collision between a moving particle (mi) and 
another at rest (m2) in terms of their directions of motion in the L system. 

Solution. From Fig. 16 we have pi' — 2OB cos 82 or vi = 2®(m/m2) 1 
turn = AC is given by OC2 = ^02+pi'2-2^0 . pi cos 0i or 

— — '— «*«! + 

02. The momen- 

for 

v mi+m2 mi+m2 

the radical may have either sign, but for n 

1 sin2ft); 

t must be taken positive. 
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§18. Scattering 

As already mentioned in §17, a complete calculation of the result of a 

collision between two particles (i.e. the determination of the angle x) requires 

the solution of the equations of motion for the particular law of interaction 
involved. 

We shall first consider the equivalent problem of the deflection of a single 

particle of mass m moving in a field U(r) whose centre is at rest (and is at 

the centre of mass of the two particles in the original problem). 

As has been shown in §14, the path of a particle in a central field is sym¬ 

metrical about a line from the centre to the nearest point in the orbit (OA 

in Fig. 18). Hence the two asymptotes to the orbit make equal angles (<f>o, 

say) with this line. The angle x through which the particle is deflected as it 

passes the centre is seen from Fig. 18 to be 

X = |tt—2<£o|- (18.1) 

The angle <j>o itself is given, according to (14.7), by 

, = f W2)d>~ ,|R2x 
^ J \/{2m[E— U(r)] — M2jr2}’ ( ' ) 

taken between the nearest approach to the centre and infinity. It should be 

recalled that rmin is a zero of the radicand. 

For an infinite motion, such as that considered here, it is convenient to 

use instead of the constants E and M the velocity of the particle at infinity 

and the impact parameter p. The latter is the length of the perpendicular 

from the centre O to the direction of v«>, i.e. the distance at which the particle 

would pass the centre if there were no field of force (Fig. 18). The energy 
and the angular momentum are given in terms of these quantities by 

h. = \nvua?, M = mpvco, (18.3) 
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and formula (18.2) becomes 

F_(p/r2) dr 

J V[i-(p2A-2)-(2t//^)]' 
(18.4) 

Together with (18.1), this gives x as a function of p. 

In physical applications we are usually concerned not with the deflection 

of a single particle but with the scattering of a beam of identical particles 

incident with uniform velocity Voo on the scattering centre. The different 

particles in the beam have different impact parameters and are therefore 

scattered through different angles Let AN be the number of particles 

scattered per unit time through angles between x and x+dx- This number 

itself is not suitable for describing the scattering process, since it is propor¬ 

tional to the density of the incident beam. We therefore use the ratio 

da = dN/n, (18.5) 

where n is the number of particles passing in unit time through unit area of 

the beam cross-section (the beam being assumed uniform over its cross- 

section). This ratio has the dimensions of area and is called the effective 

scattering cross-section. It is entirely determined by the form of the scattering 

field and is the most important characteristic of the scattering process. 

We shall suppose that the relation between x and p is one-to-one; this is 

so if the angle of scattering is a monotonically decreasing function of the 

impact parameter. In that case, only those particles whose impact parameters 

lie between p(x) and p(x) + dp(x) are scattered at angles between x and 

X + dx- The number of such particles is equal to the product of n and the 

area between two circles of radii p and p + dp, i.e. AN = 2np dp . n. The 

effective cross-section is therefore 

da = 2irpAp. (18.6) 

In order to find the dependence of da on the angle of scattering, we need 

only rewrite (18.6) as 

da = 27rp(x)|dp(x)/dx|dx. (18.7) 

Here we use the modulus of the derivative dp/dx, since the derivative may 

be (and usually is) negative.f Often da is referred to the solid angle element 

do instead of the plane angle element dx- The solid angle between cones 

with vertical angles x and x + dx is do = 2ir sinx dx- Hence we have from 

do = 
P(x) I dpi 

(18.8) 

t If the function p(X) is many-valued, we must obviously take the si 
as (18.7) over all the branches of this function. of such expressions 
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Returning now to the problem of the scattering of a beam of particles, not 

by a fixed centre of force, but by other particles initially at rest, we can say 

that (18.7) gives the effective cross-section as a function of the angle of 

scattering in the centre-of-mass system. To find the corresponding expression 

as a function of the scattering angle 6 in the laboratory system, we must 

express x in (18.7) in terms of 6 by means of formulae (17.4). This gives 

expressions for both the scattering cross-section for the incident beam of 

particles (x in terms of 6\) and that for the particles initially at rest (x in terms 

of 6Z). 

PROBLEMS 

Problem 1. Determine the effective cross-section for scattering of particles from a perfectly 
rigid sphere of radius a (i.e. when the interaction is such that V = oo for r < a and U = 0 
for r > a). 

Solution. Since a particle moves freely outside the sphere and cannot penetrate into it, 
the path consists of two straight lines symmetrical about the radius to the point where the 
particle strikes, the sphere (Fig. 19). It is evident from Fig. 19 that 

P = a sin s&o = a sin ifit-x) = a cos ix- 

Fig. 19 

Substituting in (18.7) or (18.8), we have 

da = f™2 sin X dx = 1«2 do, (1) 

i.e. the scattering is isotropic in the C system. On integrating do over all angles, we find that 
the total cross-section o = to2, in accordance with the fact that the “impact area” which the 
particle must strike in order to be scattered is simply the cross-sectional area of the sphere. 

In order to change to the L system, x must be expressed in terms of 0i by (17.4). The 
calculations are entirely similar to those of §16, Problem 2, on account of the formal resemb¬ 
lance between formulae (17.4) and (16.5). For m\ < m2 (where mi is the mass of the particle 
and m2 that of the sphere) we have 

dcri = fa21 2(mi/m2) Qi-\-1 ±(—/—2->-2 CO-S ^1—] dol> 
V[1 -(mi/ms)2 sin20d J ’ 

n the other hand, r 

1 -Hmi/ms)2 c< 

= 201 from (17.9) in (1). 

\/[l — (mi/m2)2 sin20 ] 

= a2|cos 0i| dor, which can also be obtained directly by sub- 
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When va, -> oo the effective cross-section tends, of course, 
of the sphere. 

the geometrical cross-section 

Problem 7. Deduce the form of a scattering field U(r), given the effective cross-section 
as a function of the angle of scattering for a given energy E. It is assumed that U(r) decreases 
monotomcally with r (a repulsive field), with [7(0) > E and 77(oo) = 0 (O. B. Firsov 1953). 

Solution. Integration of da with respect to the scattering angle gives, according to the 

J (<Wd*) dx = up2, (1) 

the square of the impact parameter, so that p(x) (and therefore x(p)) is known. 
We put 

r=l/r, 1/p2, w = V/[l -(U/F)]. (2) 

Then formulae (18.1), (18.2) become 

H"-*<*)] (3) 

where $o(x) is the root of the equation xtu2(ro) —so2 = 0. 
Equation (3) is an integral equation for the function zv(s), and may be solved by a method 

similar to that used in §12. Dividing both sides of (3) by V(a~*) and integrating with respect 
to x from zero to a, we find 

a s0(x) 

‘>-.v) " J J V[(W-r2)(a-x)] 

so(a) a 

0 x(s0) 

ro(a) 

-J ^ 
or, integrating by parts on the left-hand side. 

*-*£*-. J ii. 

This relation is differentiated with respect to a, and then so(a) is replaced by r simply; 
accordingly a is replaced by s2/w2, and the result is, in differential form. 

ii d(r/^)-id(s2/^2) J 

n be integrated immediately if the order of integration on ^the right-hand 
1 (i.e. r -*■ oo) we must have tv = J i‘ e' ’ nave, 
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on returning to the original variables r and p, the following two equivalent forms of the final 

»' = exp{“ J cosh-V/™) (dx/dp) dpj 

= exp[_I f ). 
"r4 V(p2-r2tC’2)/ W 

This formula determines implicitly the function w(r) (and therefore £/(r)) for all r > rmm 
i.e. in the range of r which can be reached by a scattered particle of given energy E. 

§19. Rutherford’s formula 

One of the most important applications of the formulae derived above is 

to the scattering of charged particles in a Coulomb field. Putting in (18.4) 

V = a/r and effecting the elementary integration, we obtain 

. , a.jnwm2p 
4> 0 = cos-1--—— -, 

V[1 + (a/WP)2]’ 

whence p2 = (o^/mW) tan2^0, or, putting = i(tt-x) from (18.1), 

P2 = (a2/w2?™4) cot2Jx. (19.1) 

Differentiating this expression with respect to v and substituting in C18 71 
or (18.8) gives & K ■ ) 

do = 7r(a/W-oo2)2 cos|xdx/sin3^x (19-2) 

or 

da = (a/2w?t-co2)2do/sin%. (19.3) 

This is Rutherford's formula. It may be noted that the effective cross-section 

is independent of the sign of a, so that the result is equally valid for repulsive 
and attractive Coulomb fields. 

Formula (19.3) gives the effective cross-section in the frame of reference 

in which the centre of mass of the colliding particles is at rest. The trans- 

ormation to the laboratory system is effected by means of formulae (17.4). 

*or particles initially at rest we substitute x = tt-26>2 in (19.2) and obtain 

dcr2 = 27T(a/»2c'co2)2 sin 02 d02/cos302 

= (a/wDco2)2 do2/cos302. (19.4) 

The same transformation for the incident particles leads, in general to a very 
complex formula, and we shall merely note two particular cases 

If the mass m2 of the scattering particle is large compared with the mass 
of the scattered particle, then x .» ft and m « mu so that 

dai = (a^pdoi/sin^ft, (19.5) 

where £i = \mit'co2 is the energy of the incident particle. 
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If the masses of the two particles are equal (mi = m2, m = \m{), then by 

(17.9) x = 2#i, and substitution in (19.2) gives 

d<7i = 27r(a/£'i)2 cos 8i d#i/sin3#i 

= (a/E))2 cos 0i dor/sin4#!. (19.6) 

If the particles are entirely identical, that which was initially at rest cannot 

be distinguished after the collision. The total effective cross-section for all 

particles is obtained by adding doi and dci2, and replacing 8i and 62 by their 

common value 8: 

da = (a+ —1-~) cos 8 do. (19.7) 
\ sin4# cos4# / v 

Let us return to the general formula (19.2) and use it to determine the 

distribution of the scattered particles with respect to the energy lost in the 

collision. When the masses of the scattered (mi) and scattering (m2) particles 

are arbitrary, the velocity acquired by the latter is given in terms of the angle 

of scattering in the C system by v2 = [2mij(mi + m2)]z'«, sin see (17.5). 

The energy acquired by m2 and lost by mi is therefore e = \m2T22 

= (2m2jni2)v«>2 sin2-£x- Expressing sin \x in terms of e and substituting 

in (19.2), we obtain 

da = 2tt(ol2 m2Z'<xr) de/e2. (19.8) 

This is the required formula: it gives the effective cross-section as a function 

of the energy loss e, which takes values from zero to €max = 2mlVa?jm2. 

PROBLEMS 

Problem 1. Find the effective cross-section for scattering in a field U — cc/r2 (a > 0). 

Solution. The angle of deflection is 

Problem 2. Find the effective cross-section for scattering by a spherical “potential well” 
of radius a and “depth” Uo (i.e. a field with 0 = 0 for r > a and U = — Uo for r < a). 

Solution. The particle moves in a straight line which is “refracted” on entering and leav¬ 
ing the well. According to §7, Problem, the angle of incidence a and the angle of refraction 
8 (Fig. 21) are such that sin cc'sin 8 = «. where n =i 1 +2Uo!mv«>2). The angle of deflection 
is x = 2(ol-8). Hence 

Eliminating a from this equation and the relation a sin a = p, which is evident from the 
diagram, we find the relation between p and 
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Finally, differentiating, we have the effective cross-section: 

dc = (” cos lx-l)(n-cos |x) 
4 cos ix («2 + l-2«cosix)2 

The angle x varies from zero (for p — 0) to Xmax (for p = a), where cos ixmax = l In. 
The total effective cross-section, obtained by integrating d<7 over all angles within the cone 

X < Xmax, is, of course, equal to the geometrical cross-section naz. 

Fig. 21 

§20. Small-angle scattering 

The calculation of the effective cross-section is much simplified if only 

those collisions are considered for which the impact parameter is large, so 

that the field V is weak and the angles of deflection are small. The calculation 

can be carried out in the laboratory system, and the centre-of-mass system 

need not be used. 

We take the v-axis in the direction of the initial momentum of the scattered 

particle mi, and the vy-plane in the plane of scattering. Denoting by pi' the 

momentum of the particle after scattering, we evidently have sin 6i = piy'jpi'. 

For small deflections, sin f?i may be approximately replaced by 8\, and pi in 

the denominator by the initial momentum pi = imr»: 

6i * (20.i) 

Next, since py = Fy, the total increment of momentum in the j'-direction is 

Ply' = j Fydt. (20.2) 

The force Fy = -iU/dy = -(dU/dr^r/dy = -{dUjd^yjr. 

Since the integral (20.2) already contains the small quantity U, it can be 

calculated, in the same approximation, by assuming that the particle is not 

deflected at all from its initial path, i.e. that it moves in a straight line y ==jp 

with uniform velocity z.ro. Thus we put in (20.2) Fv = ~(dU/dr)Plr, 
d/ = d.v/woo. The result is 
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Finally, we change the integration over x to one over r. Since, for a straight 

path, r2 = x2+p2, when x varies from — oo to + oo, r varies from oo to p 

and back. The integral over x therefore becomes twice the integral over r 

from p to oo, and d.v = r dr/\/(r2 — p2). The angle of scattering 6\ is thus 

given by| 

2p r°° d U dr 

miVa? J dr \/{r2-p2) ’ 
(20.3) 

and this is the form of the function 8i(p) for small deflections. The effective 

cross-section for scattering (in the L system) is obtained from (18.8) with 6\ 

instead of x> where sin 8i may now be replaced by 8\: 

do- -= 
1 dP I p(ei) cL 
[dflil fli °1- 

(20.4) 

PROBLEMS 

Problem 1. Derive formula (20.3) from (18.4). 

Solution. In order to avoid spurious divergences, we write (18.4) in the form 

and take as the upper limit some large finite quantity R, afterwards taking the value as R -* co. 
Since U is small, we expand the square root in powers of U, and approximately replace 
rmin by p: 

= j- p dr 

rV(l —p2/r2) 

0 f U(r) dr 

Tp J rWv'U -Pzlr2) 

The first integral tends to Jw as R -*■ oo. The second integral is integrated by parts, giving 

= w-2^0 
2_a f V(r2-P2) dI7dj 

dp J mva? dr 

_ 2P [ d U dr 
mu®2 J dr V(r2—p2) 

This is equivalent to (20.3). 

Problem 2. Determine the effective cross-section for small-angle scattering in a field 
U = a/rn (n > 0). 

t If the above derivation is applied in the C system, the expression obtained for* is the 
same with m in place of mi, in accordance with the fact that the small angles «i 
related by (see (17.4)) Si = m2x!(mi+m2). 
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Solution. From (20.3) we have 

8 = 2pxn f__ 1 mii'*,2 J rn+lv/(r2_p2) * 

The substitution p2/r2 = u converts the integral to a beta function, which 
in terms of gamma functions: 

Expressing p in terms of 0i and 

8l = 2W7r . + 
miVx?pn r(in) 

substituting in (20.4), we obtain 

yVr(i„+4) a I2-'" „2/n 
I’(Jn) mifes? J 1 

be expressed 



CHAPTER V 

SMALL OSCILLATIONS 

§21. Free oscillations in one dimension 

A very common form of motion of mechanical systems is what are called 

small oscillations of a system about a position of stable equilibrium. We shall 

consider first of all the simplest case, that of a system with only one degree 

of freedom. . , . , . 
Stable equilibrium corresponds to a position of the system in which its 

potential energy U(q) is a minimum. A movement away from this position 

results in the setting up of a force -dUjdq which tends to return the system 

to equilibrium. Let the equilibrium value of the generalised co-ordinate 

q be q0. For small deviations from the equilibrium position, it is sufficient 

to retain the first non-vanishing term in the expansion of the difference 

U(q)-U(go) in powers of q-qo- In general this is the second-order term: 

U(q)-U(q0) = i%-9o)2, where k is a positive coefficient, the value of the 

second derivative U”(q) for q = q0. We shall measure the potential energy 

from its minimum value, i.e. put U(qo) = 0, and use the symbol 

x = q-qo (21-1) 

for-the deviation of the co-ordinate from its equilibrium value. Thus 

U(x) = \kx\ (21-2) 

The kinetic energy of a system with one degree of freedom is in general 

of the form \a{q)q2 = \a(q)x2. In the same approximation, it is sufficient to 

replace the function a(q) by its value at q = qo- Putting for brevity! a(q0) = m, 

we have the following expression for the Lagrangian of a system executing 

small oscillations in one dimension:! 

where 

= \mxl — \kx2. (21.3) 

of motion is 

mx + kx = 0, (21.4) 

x+ co2.v = 0, (21.5) 

to = V(kjm). 
(21.6) 

t It should be noticed that m is 
+ Such a system is often called a 
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Two independent solutions of the linear differential equation (21.5) are 

cos cot and sin iot, and its general solution is therefore 

x = ci cos cot + C2 sincu/. (21.7) 

This expression can also be written 

x = a cos(o)/ + a). (21.8) 

Since cos(a>/ + a) = cos cot cos a —sin tot sin a, a comparison with (21.7) 

shows that the arbitrary constants a and a are related to c\ and c2 by 

a = y/{c^ + c-22), tana m — c«!ci. (21.9) 

Thus, near a position of stable equilibrium, a system executes harmonic 

oscillations. The coefficient a of the periodic factor in (21.8) is called the 

amplitude of the oscillations, and the argument of the cosine is their phase] 

a is the initial value of the phase, and evidently depends on the choice of 

the origin of time. The quantity o> is called the angular frequency of the oscil¬ 

lations ; in theoretical physics, however, it is usually called simply the fre¬ 

quency, and we shall use this name henceforward. 

The frequency is a fundamental characteristic of the oscillations, and is 

independent of the initial conditions of the motion. According to formula 

(21.6) it is entirely determined by the properties of the mechanical system 

itself. It should be emphasised, however, that this property of the frequency 

depends on the assumption that the oscillations are small, and ceases to hold 

in higher approximations. Mathematically, it depends on the fact that the 

potential energy is a quadratic function of the co-ordinate.t 

The energy of a system executing small oscillations is E = \mx2 + \kx2 

= \m{x2 + oAv2) or, substituting (21.8), 

E = \moPaK (21.10) 

It is proportional to the square of the amplitude. 

The time dependence of the co-ordinate of an oscillating system is often 

conveniently represented as the real part of a complex expression: 

x = re [A exp(zwf)], (21.11) 

where A is a complex constant; putting 

A = a exp(/a), (21.12) 

we return to the expression (21.8). The constant A is called the complex 

amplitude-, its modulus is the ordinary amplitude, and its argument is the 
initial phase. 

The use of exponential factors is mathematically simpler than that of 

trigonometrical ones because they are unchanged in form by differentiation. 

+ It therefore does not 1, , . 
’ order, i.e. V ^ f good if the function U(x) has at if = 0 a minimum of 

h‘8he uh ’■ > 2; see §11, Problem 2(a). 
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So long as all the operations concerned are linear (addition, multiplication 

by constants, differentiation, integration), we may omit the sign re through¬ 

out and take the real part of the final result. 

PROBLEMS 

Problem 1. Express the amplitude and initial phase of the oscillations in terms of the 
initial co-ordinate xo and velocity vo. 

Solution, a = \/(xu2 +t>o2/<u2), tan a = —vo/toxo. 

Problem 2. Find the ratio of frequencies to and to' of the oscillations of two diatomic 
molecules consisting of atoms of different isotopes, the masses of the atoms being mi, ma and 

Solution. Since the atoms of the isotopes interact in the same way, we have k = k'. 
The coefficients m in the kinetic energies of the molecules are their reduced masses. Accord¬ 
ing to (21.6) we therefore have 

to' I mimrfrni Fm?) 

to V ?mW(mi+wi2) 

Problem 3. Find the frequency of oscillations of a particle of mass m which is free to 
move along a line and is attached to a spring whose other end is fixed at a point A (Fig. 22) 
at a distance l from the line. A force F is required to extend the spring to length /. 

Fig. 22 

Solution. The potential energy of the spring is (to within higher-order terms) equal to 
the force F multiplied by the extension SI of the spring. For x we have SI = \2(l2+x2) —l 
= x2l2l, so that U = Fx2l2l. Since the kinetic energy is \mx2, we have to = (F/tnl). 

Problem 4. The same as Problem 3, but for a particle of mass m moving on a circle of 
radius r (Fig. 23). 

Fig. 23 
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Solution. In this 
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case the extension of the spring is (if <f> 1) 

8/ = \'[r2+(f+r)2—2r(/+r) cos r(/+r)f/2/. 

The kinetic energy is T — hnrzjr, and the frequency is therefore io = \/[F(r +l)lmrl]. 

Problem 5. Find the frequency of oscillations of the pendulum shown in Fig. 2 (§5), 
whose point of support carries a mass mi and is free to move horizontally. 

Solution. For <j> 1 the formula derived in §14, Problem 3, gives 

T = hnivi2l2ij>2l(mi+mz), U = £m2gljP. 

Problem 6. Determine the form of a curve such that the frequency of oscillations of a 
particle on it under the force of gravity is independent of the amplitude. 

Solution. The curve satisfying the given condition is one for which the potential energy 
of a particle moving on it is U = Iks2, where s is the length of the arc from the position of 
equilibrium. The kinetic energy T = £mi2, where m is the mass of the particle, and the fre¬ 
quency is then oj = V (kjm) whatever the initial value of s. 

In a gravitational field U = mgy, where y is the vertical co-ordinate. Hence we have 
iks2 = mgy or y = io2s"~'2g. But ds2 = dx2+dy2, whence 

•v = J\/ [(ds/dy)2—1] dy = JVl(l?/2w2y)-l] dy. 

The integration is conveniently effected by means of the substitution y = g(l —cos £)/4<u2, 
which yields .v = g(f 4-sin £),'4<o2. These two equations give, in parametric form, the equation 
of the required curve, which is a cycloid. 

§22. Forced oscillations 

Let us now consider oscillations of a system on which a variable external 

force acts. These are called forced oscillations, whereas those discussed in 

§21 are free oscillations. Since the oscillations are again supposed small, it 

is implied that the external field is weak, because otherwise it could cause the 

displacement x to take too large values. 

The system now has, besides the potential energy \kx2, the additional 

potential energy Ue(x, t) resulting from the external field. Expanding this 

additional term as a series of powers of the small quantity x, we have 

Ue{x, t) s Ue(0, t) + x[8UeiSx]x=io- The first term is a function of time only, 

and may therefore be omitted from the Lagrangian, as being the total time 

derivative of another function of time. In the second term — [d Ue/dx]x=o is 

the external “force” acting on the system in the equilibrium position, and 

is a given function of time, which we denote by F(t). Thus the potential 

energy involves a further term —xF(t), and the Lagrangian of the system 

L = hnx2 — lkx2 + xF(t). (22.1) 

The corresponding equation of motion is mx + kx = F(t) or 

x + io2x = F(t)lm, (22.2) 

"^Tl^e'general6saf3111 intro^ucec' the frequency o) of the free oscillations. 

-th constant3 coefficient °f tWs inhomogeneous hnear differential equation 
w s ls x = A-o + vi, where v0 is the general solution of 
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the corresponding homogeneous equation and .%y is a particular integral of 

the inhomogeneous equation. In the present case .%-0 represents the free 
oscillations discussed in §21. 

Let us consider a case of especial interest, where the external force is itself 

a simple periodic function of time, of some frequency y: 

F{t) = /cos(yf+/3). (22.3) 

We seek a particular integral of equation (22.2) in the form xi = b cos(yt + /3), 

with the same periodic factor. Substitution in that equation gives 

b = — y2); adding the solution of the homogeneous equation, we 

obtain the general integral in the form 

x = a cos(cot + a) + [f/m(oj2 - y2)] cos (yt + j8). (22.4) 

The arbitrary constants a and a are found from the initial conditions. 

Thus a system under the action of a periodic force executes a motion which 

is a combination of two oscillations, one with the intrinsic frequency to of 

the system and one with the frequency y of the force. 

The solution (22.4) is not valid when resonance occurs, i.e. when the fre¬ 

quency y of the external force is equal to the intrinsic frequency cu of the 

system. To find the general solution of the equation of motion in this case, 

we rewrite (22.4) as 

x = a cos(mf+ a)+[//m(to2-y2)][cos(yf+/3)-cos(a>f + /3)], 

where a now has a different value. As y -> o>, the second term is indetermin¬ 

ate, of the form 0/0. Resolving the indeterminacy by L’Hospital’s rule, we 
have 

x = a cos(cuf+ a) + (//2mo) t sin(ajf + /3). (22.5) 

Thus the amplitude of oscillations in resonance increases linearly with the 

time (until the oscillations are no longer small and the whole theory given 

above becomes invalid). 

Let us also ascertain the nature of small oscillations near resonance, when 

y = io + e with c a small quantity. We put the general solution in the com¬ 
plex form 

x = A exp(iojt) + B exp[f(aj + e)f] = [A + B exp(irf)] exp(ia>t). (22.6) 

Since the quantity A + B exp(iet) varies only slightly over the period 2t7-/o> 

of the factor exp(zW), the motion near resonance may be regarded as small 

oscillations of variable amplitude.! Denoting this amplitude by C, we have 

C = \A + B exp(t"ef)|. Writing A and B in the form a exp(fa) and b exp(fjS) 
respectively, we obtain 

C2 = fl2 + 62 + 2ab cos(ct + f - a). (22-7) 

t The “constant” term in the phase of the oscillation also varies. 
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Thus the amplitude varies periodically with frequency e between the limits 

\a-b\ < C < a + b. This phenomenon is called beats.*- / J 

The equation of motion (22.2) can be integrated in a general form for an 

arbitrary external force F(t). This is easily done by rewriting the equation 

—(v + iaix) — ito(x + ia>x) = —F(t) 
dt m 

d£/dt - ioj£ = F(t)jm, (22.8) 

where 

£ = x + itox (22.9) 

is a complex quantity. Equation (22.8) is of the first order. Its solution when 

the right-hand side is replaced by zero is £ = A exp(iu>t) with constant A. 

As before, we seek a solution of the inhomogeneous equation in the form 

£ = A(t) exp (hot), obtaining for the function A(t) the equation A{t) 

= F(t) exp(—itmt)jtn. Integration gives the solution of (22.9): 

t 

£ = exp(i'ojf)|J—T(t)exp(-tW)df + £0 |, (22.10) 

where the constant of integration fo is the value of £ at the instant t = 0. 

This is the required general solution; the function x(t) is given by the imagin¬ 

ary part of (22.10), divided by a>.| 
The energy of a system executing forced oscillations is naturally not con¬ 

served, since the system gains energy from the source of the external field. 

Let us determine the total energy transmitted to the system during all time, 

assuming its initial energy to be zero. According to formula (22.10), wTith 

the lower limit of integration - oo instead of zero and with £(-<») = 0, 

we have for t -> oo 

S&oo)]2 == J Fit) exp(-iojt)dt | . 

The energy of the system is 

E = \m{x2 + co2x2) = lm\£\2. 

Substituting |f(oo)[2, we obtain the energy transferred: 

E = j J F(t) exp( — iot) dt | ; 

(22.11) 

122.12) 
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it is determined by the squared modulus of the Fourier component of the 

force F(t) whose frequency is the intrinsic frequency of the system. 

In particular, if the external force acts only during a time short in com¬ 

parison with l/oi, we can put exp( — iot) ~ 1. Then 

This result is obvious: it expresses the fact that a force of short duration 

gives the system a momentum J F df without bringing about a perceptible 
displacement. 

PROBLEMS 

PrOblem 1. Determine the forced oscillations of a system under a force Fft) of the follow¬ 
ing forms, if at time t = 0 the system is at rest in equilibrium fx = x — 0): (a) F = Fo, 
a constant, (b) F = at, (c) F = Fo exp ( — at), (d) F = Fo exp (—at) cos fit. 

Solution, (a) x = fFo'ma~)f\ —cos at). The action of the constant force results in a dis¬ 
placement of the position of equilibrium about which the oscillations take place. 

(b) .v = fa,'moF)fat—sin at). 

(c) x = [Fofmf w2+a2)] [exp( — at) — cos o/+(a» sin w/]. 

(d) .X = Fo{-fa2 + a2-/P) cos at + (a/a)(a?+a?+P) sin ct + 

+exp(-at)[(o)2+a2-^2) cos j8t-2aj8 sin JSt]};'»i[(i»2 + a2_j82)2+4a2j82]_ 

This last case is conveniently treated by writing the force iri the complex form 

F = Fo exp[( —a+tj8)t]. 

Problem 2. Determine the final amplitude for the oscillations of a system under a force 
which is zero for t < 0, Fot/T for 0 < t < T, and Fo for t > T (Fig. 24), if up to time 
t = 0 the system is at rest in equilibrium. 

Fig. 24 

Solution. During the interval 0 < t < T the oscillations are determined by the initial 
condition as .v = (FolmTa3)(at —sin at). For t > T we seek a solution in the form 

x — Ci cos aft — T)+C2 sin aft—T)+Fo!ma2. 

The continuity of * and x at t—T gives a = —fFelmTa3) sin aT, a = (Fo/tnTa*) x 
X (1 -cos aT). The amplitude is a = V(d2+C22) = (2F0/mTa3) sin iaT. This is the smaller, 
the more slowly the force Fo is applied (i.e. the greater T). 

Problem 3. The same as Problem 2, but for a constant force Fo which acts for a finite 
time T (Fig. 25). 
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Solution. As in Problem 2, or more simply by using formula (22.10). For t > T we have 
free oscillations about x = 0, and 

f = ~ exp(itol) J exp(—icol) dt 

= [1 —exp(—icoT)] e-xp(icol). 

Fig. 25 

The squared modulus of f gives the amplitude from the relation |f|2 = a2to2. The result is 

« ' (2Fo/mto2) sin iu>T. 

Problem 4. The same as Problem 2, but for a force FotjT which acts between t = 0 and 
t = T (Fig. 26). 

Fig. 26 

Solution. By the same method we obtain 

a = (Fo!Tma>3)V[a>^-2wT sin wT+2(1-cos coT)]. 

Problem 5. The same as Problem 2, but for a force Fo sin tot which acts between 1 = 0 
and t = T = 2ir/to (Fig. 27). 

Fig. 27 

Solution. Substituting in (22.10) F(t) = Fo sin wt = Fo[exp(t<of) — exp(—ia>t)]/2i and 
integrating from 0 to T, we obtain a = Fw.'mcoK 

§23. Oscillations of systems with more than one degree of freedom 

free filiations of systems with 5 degrees of freedom is 
analogous to that given L §21 ^ ^ , = j 
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Let the potential energy of the system U as a function of the generalised 

co-ordinates qi (i = 1,2,...,$) have a minimum for q-i = qto. Putting 

xi=qi-qi o (23.1) 

for the small displacements from equilibrium and expanding U as a function 

of the Xi as far as the quadratic terms, we obtain the potential energy as a 

positive definite quadratic form 

U = h%ki,Mxi; (23.2) 
i,k 

where we again take the minimum value of the potential energy as zero. 

Since the coefficients kik and kki in (23.2) multiply the same quantity XiXk, 

it is clear that they may always be considered equal: kik = kki. 

In the kinetic energy, which has the general form ^aik(q)qiqk(see (5.5)), 

we put qi = qm in the coefficients aik and, denoting au-(qo) by mu-, obtain 

the kinetic energy as a positive definite quadratic form 

<t 2 mik±i±k. (23.3) 
i,k 

The coefficients mik also may always be regarded as symmetrical: mik = mki. 

Thus the Lagrangian of a system executing small free oscillations is 

L = \'2imikxixk-kikxlxk). (23.4) 

Let us now derive the equations of motion. To determine the derivatives 

involved, we write the total differential of the Lagrangian: 

dL = h 2(mlkxt difc + mikxk dxf - k-u:Xi d.v* - kikxkdxi). 

i,k 

Since the value of the sum is obviously independent of the naming of the 

suffixes, we can interchange i and k in the first and third terms in the paren¬ 

theses. Using the symmetry of muc and kik, we have 

dL = ^(mikXkdxi-kikxkdxi). 

Hence 

dL/dxi = 2 tnacXk, cLjcxt = - ^kikxk. 

k k 

Lagrange’s equations are therefore 

^mikxk+ 2kikxk = 0 (i = 1, 2, ...,$); (23.5) 

k k 

they form a set of s linear homogeneous differential equations with constant 

coefficients. 
As usual, we seek the $ unknown functions xk(t) in the form 

x/; = Ak exp(iW), ,^23‘6) 

where Ak are some constants to be determined. Substituting (23‘ m the 
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equations (23.5) and cancelling exp(ftof), we obtain a set of linear homo¬ 

geneous algebraic equations to be satisfied by the Ak: 

2( ~ “>2mik+hk)A k = 0. (23.7) 

If this system has non-zero solutions, the determinant of the coefficients 

must vanish: 

\klk-a?mik\ = 0. (23.8) 

This is the characteristic equation and is of degree s in to2. In general, it has 

s different real positive roots to2 (« = 1,2,..., s); in particular cases, some of 

these roots may coincide. The quantities toa thus determined are the charac¬ 

teristic frequencies or eigenfrequencies of the system. 

It is evident from physical arguments that the roots of equation (23.8) are 

real and positive. For the existence of an imaginary part of a> would mean 

the presence, in the time dependence of the co-ordinates xk (23.6), and so 

of the velocities xk, of an exponentially decreasing or increasing factor. Such 

a factor is inadmissible, since it would lead to a time variation of the total 

energy E = U+ T of the system, which would therefore not be conserved. 

The same result may also be derived mathematically. Multiplying equation 

(23.7) by Ai* and summing over i, we have X( — to2mik + kik)Ai*Ak — 0, 

whence to2 = ^kikAi*AklHmikAi*Ak. The quadratic forms in the numerator 

and denominator of this expression are real, since the coefficients kik and 

mik are real and symmetrical: (LkikAi*Ak)* = HkikAtAk* = HkkiA{Ak* 

= HhikAkAi*. They are also positive, and therefore cu2 is positive.f 

The frequencies wa having been found, we substitute each of them in 

equations (23.7) and find the corresponding coefficients Ak. If all the roots 

wa of the characteristic equation are different, the coefficients Ak are pro¬ 

portional to the minors of the determinant (23.8) with to = toa. Let these 

minors be Aka. A particular solution of the differential equations (23.5) is 

therefore xk = AkaCa exp(iwat), where Ca is an arbitrary complex constant. 

The general solution is the sum of s particular solutions. Taking the real 

part, we write 

xk = re 2 AkaCa exp(icoat) = ^Aka@a, (23.9) 

where 

0a = re[Ca exp(ttoaf)]. (23.10) 

Thus the time variation of each co-ordinate of the system is a super¬ 

position of r simple periodic oscillations ©i, ©2,..., 0« with arbitrary ampli¬ 
tudes and phases but definite frequencies. 

quadratic form with the coefficients kit is positive definite is seen from 
thelj^cYtly as a*+ifc2^ f°r real vaIues of the variables. If the complex quantities At are written 

asain using the symmetry of k,t, ZkitAi*At = iii) X 
*1 which is the sum of two positive definite forms. 
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The question naturally arises whether the generalised co-ordinates can be 

chosen in such a way that each of them executes only one simple oscillation. 

The form of the general integral (23.9) points to the answer. For, regarding 

the s equations (23.9) as a set of equations for j unknowns 0a, we can 

express ©i, 02, ..., 0S in terms of the co-ordinates xj, *2, xs. The 

quantities 0a may therefore be regarded as new generalised co-ordinates, 

called normal co-ordinates, and they execute simple periodic oscillations, 

called normal oscillations of the system. 

The normal co-ordinates 0a are seen from their definition to satisfy the 

equations 

©a+^2©ct = 0. (23.11) 

This means that in normal co-ordinates the equations of motion become r 

independent equations. The acceleration in each normal co-ordinate depends 

only on the value of that co-ordinate, and its time dependence is entirely 

determined by the initial values of the co-ordinate and of the corresponding 

velocity. In other words, the normal oscillations of the system are completely 

independent. 

It is evident that the Lagrangian expressed in terms of normal co-ordinates 

is a sum of expressions each of which corresponds to oscillation in one dimen¬ 

sion with one of the frequencies o>a, i.e. it is of the form 

L = 2ima(0a8-»a80a8), (23.12) 

where the ma are positive constants. iMathematically, this means that the 

transformation (23.9) simultaneously puts both quadratic forms—the kinetic 

energy (23.3) and the potential energy (23.2)—in diagonal form. 

The normal co-ordinates are usually chosen so as to make the coefficients 

of the squared velocities in the Lagrangian equal to one-half. This can be 

achieved by simply defining new normal co-ordinates Qx by 

Oa = \/mJda. (23.13) 

Then 

The above discussion needs little alteration when some roots of the charac¬ 

teristic equation coincide. The general form (23.9), (23.10)- of the integral of 

the equations of motion remains unchanged, with the same number 5 of 

terms, and the only difference is that the coefficients corresponding to 

multiple roots are not the minors of the determinant, which in this case 
vanish, f 

t The impossibility of terms in the general integral which contain powers 
well as the exponential factors is seen from the same argument as that which so e 
frequencies are real: such terms would violate the law of conservation of ener 
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Each multiple (or, as we say, degenerate) frequency corresponds to a number 

of normal co-ordinates equal to its multiplicity, but the choice of these co¬ 

ordinates is not unique. The normal co-ordinates with equal toa enter the 

kinetic and potential energies as sums £0„2 and 2 which are transformed 

in the same way, and they can be linearly transformed in any manner which 
does not alter these sums of squares. 

The normal co-ordinates are very easily found for three-dimensional oscil¬ 

lations of a single particle in a constant external field. Taking the origin of 

Cartesian co-ordinates at the point where the potential energy U{x,y, z) is 

a minimum, we obtain this energy as a quadratic form in the variables x’yz 
and the kinetic energy T = i»i(.v2 + j2 + *2) (where m is the mass G’f 

particle) does not depend on the orientation of the co-ordinate axes. We 

therefore have only to reduce the potential energy to diagonal form by an 
appropriate choice of axes. Then 

L = 2 m(x2 + j>2+z2)~l (kxx2+k2y2 + k3z2), (23.14) 

and the normal oscillations take place in the x,y and 2 directions with fre¬ 

quencies wi = y/(kilm), oj2 = y/(k2/m), <x>3 = -\/(k3jm). In the particular 

case of a central field (k} = k2 = k3 = k, U = \kr*) the three frequencies 
are equal (see Problem 3). 

The use of normal co-ordinates makes possible the reduction of a problem 

of forced oscillations of a system with more than one degree of freedom to a 

series of problems of forced oscillation in one dimension. The Lagrangian of 

the system, including the variable external forceis, is 

L = Lo + 'ZFk(t)xlc, (23.15) 

where L0 is the Lagrangian for free oscillations. Replacing the co-ordinates 
x/c by normal co-ordinates, we have 

L = i JiOa2- “V’O/H 2/«(0<?a. (23.16) 

where we have put 

fjf) = 2Fk(t)&ka/\/ma. 

The corresponding equations of motion 

Qa+o>a*Qa=m (23.17) 

each involve only one unknown function QJt). 

Problem 
Lagrangian 
eigenfrequel 

PROBLEMS 

5 L « i(S>l+1;2)hl ?SClva^0nS, °f a SyStem with two Agrees of freedom whose 
cy ««o coupled b *too5;K +J' ) + “*>’ (two identical one-dimensional systems ol 

y an interaction — axy). 
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Solution. The equations of motion are x+oio~x = ay, y + atfy = ax. The substitution 
(23.6) gives 

Ax(cH)2 — to2) = a Av, Ay(cso~ — <o2) = aAx. (1) 

The characteristic equation is (too2 —w2)2 = «2, whence tor2 = too2—a, tu22 = too2+a. For 
to = tui, the equations (1) give Ax = Ay, and for to = 102, Ax = —Ay. Hence x = 
(0.+CW/V2, V = (Oi—(?s)/V2, the coefficients l/\/2 resulting from the normalisation 
of the normal co-ordinates as in equation (23.13). 

For a <g to02 (weak coupling) we: have to, ~ to0|— £a/to0, to2 ~ to0i+ £a/<o0. The 
variation of .v and y is in this case a superposition of two oscillations with almost equal 
frequencies, i.e. beats of frequency to2 — to, = a/to0 (see §22). The amplitude of y is a 
minimum when that of .v is a maximum, and vice versa. 

Problem 2. Determine the small oscillations of a coplanar double pendulum (Fig. 1, §5). 

Solution. For small oscillations (^i 1). l^e Lagrangian derived in §5, Problem 
1, becomes 

L = £(mi+TO2)/l2^l2+£tn2/22^22+m2/lf2^1^2 —£(»Wl+«I2)g/l^I2 —£tK2gfc^22. 

The equations of motion are 

(mi-\-mz)l1fi+m2kfa+(rni+m2)g<l>i = 0, liij> +h<j>z+g<fa o=A 

Substitution of (23.6) gives 

Ai(mi+m2)(g—/ito2)— Aziohndz — 0, —Ailia>2+A?{g—hi>fi) = 0. 

The roots of the characteristic equation are 

tu, 22 = —-—{(mi-l-m2)(/r+/2)± V(>m+tn2)V[(nu+m2)(/i-M2)2—4toi/i/2]}. 
’ 2mihh 

As mi -*■ oo the frequencies tend to the values V(glh) and V(glk), corresponding to indepen¬ 
dent oscillations of the two pendulums. 

Problem 3. Find the path of a particle in a central field U — \kr- (called a space oscillator). 

Solution. As in any central field, the path lies in a plane, which we take as the ary-plane. 
The variation of each co-ordinate x, y is a simple oscillation with the same frequency 
cu = V(*M: x = a cos(ot + a), y = b cos(ot+j8), or x = a cos <j>, y = b cos(<f> + 8) 
= b cos 8 cos <j> —b sin 8 sin 4>, where <j> = cut + a, 8 = j8 - a. Solving for cos <j> and sin ^ and 
equating the sum of their squares to unity, we find the equation of the path: 

This is an ellipse with its centre at the origin.! When 8 = 0 or it, the path degenerates to a 
segment of a straight line. 

§24. Vibrations of molecules 

If we have a system of interacting particles not in an external field, not all 

of its degrees of freedom relate to oscillations. A typical example is that of 

molecules. Besides motions in which the atoms oscillate about their positions 

of equilibrium in the molecule, the whole molecule can execute translational 

and rotational motions. 
Three degrees of freedom correspond to translational motion, and in general 

the same number to rotation, so that, of the 3n degrees of freedom of a mole¬ 
cule containing n atoms, 3m — 6 correspond to vibration. An exception is formed 

t The fact that the path in a field with potential energy U = ikr2 is a closed curve has 
already been mentioned in §14. 
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by molecules in which the atoms are collinear, for which there are only two 

rotational degrees of freedom (since rotation about the line of atoms is of no 

significance), and therefore 3«-5 vibrational degrees of freedom. 

In solving a mechanical problem of molecular oscillations, it is convenient 

to eliminate immediately the translational and rotational degrees of freedom. 

The former can be removed by equating to zero the total momentum of the 

molecule. Since this condition implies that the centre of mass of the molecule 

is at rest, it can be expressed by saying that the three co-ordinates of the 

centre of mass are constant. Putting ra = ra0 + ua, where rfl0 is the radius 

vector of the equilibrium position of the cth atom, and ua its deviation from 

this position, we have the condition 'Zmara = constant = Swzara0 or 

= 0. (24.1) 

To eliminate the rotation of the molecule, its total angular momentum 

must be equated to zero. Since the angular momentum is not the total time 

derivative of a function of the co-ordinates, the condition that it is zero can¬ 

not in general be expressed by saying that some such function is zero. For 

small oscillations, however, this can in fact be done. Putting again 

r« = r«0 + ua and neglecting small quantities of the second order in the 

displacements ua, we can write the angular momentum of the molecule as 

M = 2 = 2 maraO XU a = (d/di) £ ma ra0 x ufl. 

The condition for this to be zero is therefore, in the same approximation, 

I»w,0xu„ =4 (24.2) 

in which the origin may be chosen arbitrarily. 

The normal vibrations of the molecule may be classified according to the 

corresponding motion of the atoms on the basis of a consideration of the sym¬ 

metry of the equilibrium positions of the atoms in the molecule. There is 

a general method of doing so, based on the use of group theory, which we 

discuss elsewhere, j Here we shall consider only some elementary examples. 

If all n atoms in a molecule lie in one plane, we can distinguish normal 

vibrations in which the atoms remain in that plane from those where they 

do not. The number of each kind is readily determined. Since, for motion 

in a plane, there are 2n degrees of freedom, of which two are translational 

and one rotational, the number of normal vibrations which leave the atoms 

in the plane is 2n — 3. The remaining (3« — 6) — (2n — 3) = n — 3 vibrational 

degrees of freedom correspond to vibrations in which the atoms move out 
of the plane. 

aint -a linear molecule we can distinguish longitudinal vibrations, which 

Since a^^t- ^near f°rm> from vibrations which bring the atoms out of ljne 

0f which one°n °f n Particles in a line corresponds to n degrees of freedom, 
trarislational. the number of vibrations which leave the atoms 
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in line is n — 1. Since the total number of vibrational degrees of freedom of a 

linear molecule is 3m —5, there are 2n — 4 which bring the atoms out of line. 

These 2m —4 vibrations, however, correspond to only n — 2 different fre¬ 

quencies, since each such vibration can occur in two mutually perpendicular 

planes through the axis of the molecule. It is evident from symmetry that 

each such pair of normal vibrations have equal frequencies. 

PROBLEMS! 

Problem 1. Determine the frequencies of vibrations of a symmetrical linear triatomic 
molecule ABA (Fig. 28). It is assumed that the potential energy of the molecule depends 
only on the distances AB and BA and the angle ABA. 

3 L 2 L i 

ABA 

----—Mb) 

1-*-! M 

Fig. 28 

Solution. The longitudinal displacements vi, V2, .vs of the atoms are related, according 
to (24.1), by mA(xi+X3)+mBX2 = 0. Using this, we eliminate vs from the Lagrangian of the 
longitudinal motion 

L = imA(xi2+x32) +lniEX2~~lk1[(x1 —x2)2 + (v3—v2)2], 

and use new co-ordinates Qa = *i+v3, £?» = *i—*3- The result is 

fell*2 
" 4m u2^ 

where y = 2mA+mB is the mass of the molecule. Hence we see that Qa and Qt are normal 
co-ordinates (not yet normalised). The co-ordinate Qa corresponds to a vibration anti- 
symmetrical about the centre of the molecule (vi = vs; Fig. 28a), with frequency 
o>a = \/(fcip/m^ma). The co-ordinate Qt corresponds to a symmetrical vibration (vi = —vs; 
Fig. 28b), with frequency to,i = V (hW- 

The transverse displacements yi,yi, ys of the atoms are, according to (24.1) and (24.2), 
related by mA(yi+y>2) +msy2 = 0, yi = J>3 (a symmetrical bending of the molecule; Fig. 28c). 
The potential energy of this vibration can be written as ifoPS2, where 8 is the deviation of the 
angle ABA from the value it, given in terms of the displacements by 8 = [(yi—j>2)+(ys—V2)]/f- 
Expressing yi, j>2, V3 in terms of 8, we obtain the Lagrangian of the transverse motion: 

L = \mA(yr +J>32) +£mB.V22 — J^2/282 

whence the frequency is 

1 282—JfePS2, 

<*>.2 = VOkzylmjimB). 

t Calculations of the vibrations of more complex molecules are given by M. v-.Vo'l^*n' 
" , M. A. El’yashevich and B. I. Stepanov, Molecular Vibrations (Koleba,Jiyfaa_red a„j teIn, M. A. El’yashevich and V. 1. Stepanov, molecular flotations \™lejf red 

Moscow 1949; G. Herzberg, Molecular Spectra and Molecular Structure: 
Raman Spectra of Polyatomic Molecules, Van Nostrand, New York 1945. 
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Problem 2. The same as Problem 1, but for a triangular molecule ABA (Fig. 29). 

~B 

Fig. 29 

Solution. By (24.1) and (24.2) the 
atoms are related by 

and y components of the displacements of the 

mA(xi +x3) +mBx2 = 0, 

mA(yi+y3)+mny2 = 0, 

(yi— ys) Sin a—(*i+*s) cos a = 0. 

The changes £Ji and Sfe in the distances AB and BA are obtained by taking the components 
along these lines of the vectors Ui — U2 and 113—u2: 

8/1 = (*1-X2) sin a+Cyr-yjj) cos a, 

8/2 = —(x3—x2) sin ct+(j>3-y2) cos a. 

The change in the angle ABA is obtained by taking the components of those vectors 
pendicular to AB and BA: 

per- 

8 = y[(*i—*2) COS <*-(>-!_y2) sin «] +j[-(.v3-.v2) cos a-(y3-y2) sin a]. 

The Lagrangian of the molecule is 

We use the new co-ordinates Qa = .vi+.v3, qsl = ,n—.v3> qs2 = j>i+ys. The components 
ot the vectors u are given in terms of these co-ordinates by.n = £(£>■>+9«i), *3 = &(£><.-9.1), 
*2-mAQalmB, yi = i(9»a+0o cot a), y3 = l(qC2-Qa cot a), y2 = The 
Lagrangian becomes 

Sin=«+2*2 COSs«)-i<7.2a-^-(*i cos2a ‘ + 2*2 sin2a) + 
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Hence we see that the co-ordinate Q. corresponds to a normal vibration antisymmetrical 

about the y-axis (« = *3, yi = ->*; Fig. 29a) with frequency 

1 + 
2mA 

of the quadratic (in a?) characteristic equation 

When 2 a = rr, all three frequencies become equal to those derived in Problem 1. 

Problem 3. The same as Problem 1. but for an asymmetrical linear molecule ABC 

(Fig. 30). 

SOLUTION. The longitudinal (*) and transverse (y) displacements of the atoms are related 

mAX1+mBxz+mcx3 = 0, nuyi+mi^+mcyz = 0, 

mAliyi = m cky:>- 

The potential energy of stretching and bending cm be written asfW + 
where 21 = h+h■ Calculations similar to those in Problem 1 give 

kzP t -H- 4/2 ) 

<J"2 ~ h2h2 v me mA mB) 

for the transverse vibrations and the quadratic (in o?) equation 

for the frequencies ton, of the longitudinal vibrations. 

§25. Damped oscillations 

So far we have implied that all motion takes place in a vacuum, or else that 

♦he effect of the surrounding medium on the motion may be neglected. In 

reality when a body moves in a medium, the latter exerts a resistance which 

tends^to retard the motion. The energy of the moving body is finally dissipated 

bv being converted into heat. . 
Motion under these conditions is no longer a purely mechanical process, 

and allowance must be made for the motion of the medium itseU and for the 

internal thermal state of both the medium and the body. Jn particuiar w 

cannot in general assert that the acceleration of a moving body is a unction 

only of its co-ordinates and velocity at the instant considered; that is, there 

are no equations of motion in the mechanical sense. Thus the problem of the 

motion of a body in a medium is not one of mechanics. 
There exists, however, a class of cases where motion m a medium can be 

approximately described by including certain additional terms in the 
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mechanical equations of motion. Such cases include oscillations with fre¬ 

quencies small compared with those of the dissipative processes in the 

medium. When this condition is fulfilled we may regard the body as being 

acted on by a force of friction which depends (for a given homogeneous 
medium) only on its velocity. 

If, in addition, this velocity is sufficiently small, then the frictional force 

can be expanded in powers of the velocity. The zero-order term in the expan¬ 

sion is zero, since no friction acts on a body at rest, and so the first non¬ 

vanishing term is proportional to the velocity. Thus the generalised frictional 

force ftr acting on a system executing small oscillations in one dimension 

(co-ordinate x) may be written ftT = -ax, where a is a positive coefficient 

and the minus sign indicates that the force acts in the direction opposite to 

that of the velocity. Adding this force on the right-hand side of the equation 
of motion, we obtain (see (21.4)) 

mx^'-kx- ax. (25.1) 

We divide this by m and put 

kjm = too2, afm = 2A; (25.2) 

<o0 is the frequency of free oscillations of the system in the absence of friction, 

and A is called the damping coefficient or damping decrement,f 
Thus the equation is 

x + 2Ax+co02x = 0. (25.3) 

We again seek a solution x = exp(rt) and obtain r for the characteristic 

equation r2 + 2Ar+co02 = 0, whence r12 = -A + \/(^2-co02). The general 
solution of equation (25.3) is 

x = a exp(rif) + <?2 exp(r20- 

Two cases must be distinguished. If A < coo, we have two complex con- 

jugate values of r. The general solution of the equation of motion can then 
be written as 

x = re {A exp[—Af+iy/\(too2—A2)f]}, 

where A is an arbitrary complex constant, or as 

x = a exp( — At) cos(to£ + a), (25.4) 

with to = \/(co02 —A2) and a and a real constants. The motion described by 

these formulae consists of damped oscillations. It may be regarded as being 

harmonic oscillations of exponentially decreasing amplitude. The rate of 

decrease of the amplitude is given by the exponent A, and the “frequency” 

“ 1S !?*s than that of free oscillations in the absence of friction. For A co0, 

t,‘ ' ?r^e between to and co0 is of the second order of smallness. The 

retards motion^”07 3 result °f friction is to be expected, since friction 

| product Ar(vvher 2-tt/o} is the period) is called the logarithmic 
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If A u)0, the amplitude of the damped oscillation is almost unchanged 

during the period 2tt/o). It is then meaningful to consider the mean values 

(over the period) of the squared co-ordinates and velocities, neglecting the 

change in exp(- At) when taking the mean. These mean squares are evidently 

proportional to exp(-2At). Hence the mean energy of the system decreases 

£ = £bexp(-2A<), (25.5) 

where Eq is the initial value of the energy. 
Next, let A > oj0. Then the values of r are both real and negative. The 

general form of the solution is 

x=C! exp{- [A- V(A2-«*>2)]<} + £2 exp{ — [A+ V(*2~W9M- (25-6> 

We see that in this case, which occurs when the friction is sufficiently strong, 

the motion consists of a decrease in |x|, i.e. an asymptotic approach (as t -> cc) 

to the equilibrium position. This type of motion is called aperiodic damping. 

Finally, in the special case where A = t»o, the characteristic equation has 

the double root r = - A. The general solution of the differential equation is 

then 

:x = (C! + C2t) exp( - At). (25.7) 

This is a special case of aperiodic damping. 
For a system with more than one degree of freedom, the generalised 

frictional forces corresponding to the co-ordinates x> are linear functions of 

the velocities, of the form 

ftr.i = - 2a***■ (2.5.8) 
I: 

From purely mechanical arguments we can draw no conclusions concerning 

the symmetry properties of the coefficients ai* as regards the suffixes i and 

k, but the methods of statistical physicsf make it possible to demonstrate 

that in all cases 

at* = ajM. (25-9) 

Hence the expressions (25.8) can be written as the derivatives 

/fr,t = — BF/2xi (25.10) 

of the quadratic form 

F = l2a^, (25.11) 
i.fc 

which is called the dissipative function. 
The forces (25.10) must be added to the right-hand side of Lagrange’s 

equations: 
d /8L\ _ dL dF 

dt \ dxi) dxi 8xf 

(25.12) 

t See Statistical Physics, part 1, § 121, Pergamon Press. Oxford 1980. 
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The dissipative function itself has an important physical significance: it 

gives the rate of dissipation of energy in the system. This is easily seen by 

calculating the time derivative of the mechanical energy of the system. We 

have 

Since F is a quadratic function of the velocities, Euler’s theorem on homo¬ 

geneous functions shows that the sum on the right-hand side is equal to 2F. 

Thus 
dF/df = —2 F, (25.13) 

i.e. the rate of change of the energy of the system is twice the dissipative 

function. Since dissipative processes lead to loss of energy, it follows that 

F > 0, i.e. the quadratic form (25.11) is positive definite. 

The equations of small oscillations under friction are obtained by adding 

the forces (25.8) to the right-hand sides of equations (23.5): 

2mikXk+ 2^*** = ~ 2<W*- (25.14) 
k k k 

Putting in these equations Xu = Au exp(rf), we obtain, on cancelling exp(rf), 

a set of linear algebraic equations for the constants At: 

2 (mikr2 + <*.ikr + ki1c)Ak = 0. (25.15) 
k 

Equating to zero their determinant, we find the characteristic equation, which 

determines the possible values of r: 

\macr2+oi.iicr+kik\ = 0. (25.16) 

This is an equation in r of degree 2s. Since all the coefficients are real, 

its roots are either real, or complex conjugate pairs. The real roots must be 

negative, and the complex.roots must have negative real parts, since other¬ 

wise the co-ordinates, velocities and energy of the system would increase 

exponentially with time, whereas dissipative forces must lead to a decrease, 

of the energy. 

§26. Forced oscillations under friction 

The theory of forced oscillations under friction is entirely analogous to 
that fven in §22 for oscillations without friction. Here we shall consider 
jn e ai e case of a periodic external force, which is of considerable interest. 
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Adding to the right-hand side of equation (25.1) an external force / cos yt 

and dividing by m, we obtain the equation of motion: 

x + 2Xx+ lo02x = (Jim) cos yt. (26.1) 

The solution of this equation is more conveniently found in complex form, 

and so we replace cos yt on the right by exp(z'yf): 

x + 2Xx+ a><Jx = (fjm) exp(z’yt). 

We seek a particular integral in the form x — B exp(z'yf), obtaining for B 

the value 

B = //m( w o2 - y2 + 2 Ay). (26.2) 

Writing B = b exp(z'S), we have 

b = flm\/[(ojo2 - y2)2+4A2y2], tanS = 2Ay/(y2-w02). (26.3) 

Finally, taking the real part of the expression B exp(iyf) = b exp[z(yf+ 8)], 

we find the particular integral of equation (26.1); adding to this the general 

solution of that equation with zero on the right-hand side (and taking for 

definiteness the case wo > A), we have 

x = a exp( - At) cos(wt + a) + b cos(yf + 8). (26.4) 

The first term decreases exponentially with time, so that, after a sufficient 

time, only the second term remains: 

x = 8cos(yt + S). (26.5) 

The expression (26.3) for the amplitude b of the forced oscillation increases 

as y approaches wo, but does not become infinite as it does in resonance 

without friction. For a given amplitude / of the force, the amplitude of the 

oscillations is greatest when y = \/(wo2 — 2A2); for A wo, this differs from 

wo only by a quantity of the second order of smallness. 

Let us consider the range near resonance, putting y = wo+e with e small, 

and suppose also that A wo. Then we can approximately put, in (26.2), 

y2 — wo2 = (y + wo)(y — wo) ~ 2woc, 2Ay x 2/Awo, so that 

B = -//2m(e-A)w0 (26.6) 

b =//2mwo\/(*2 + A2), tan 8 = A/e. (26.7) 

A property of the phase difference 8 between the oscillation and the external 

force is that it is always negative, i.e. the oscillation “lags behind” the force. 

Far from resonance on the side y < wo, 8 -> 0; on the side y > wo, 8 -> — 77. 

The change of 8 from zero to —7t takes place in a frequency range near wo 

which is narrow (of the order of A in width); 8 passes through — £77- when 
y = wo- In the absence of friction, the phase of the forced oscillation changes 
discontinuously by 77- at y = wo (the second term in (22.4) changes sign), 

when friction is allowed for, this discontinuity is smoothed out. 
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In steady motion, when the system executes the forced oscillations given 

by (26.5), its energy remains unchanged. Energy is continually absorbed by 

the system from the source of the external force and dissipated by friction. 

Let 7(y) be the mean amount of energy absorbed per unit time, which depends 

on the frequency of the external force. By (25.13) we have I(y) = 2F, where 

F is the average value (over the period of oscillation) of the dissipative func¬ 

tion. For motion in one dimension, the expression (25.11) for the dissipative 

function becomes F = \olx2 — Amx2. Substituting (26.5), we have 

F = Xmb2y2 sin2(yf+ S). 

The time average of the squared sine is £, so that 

7(y) = Xmb2y2. (26.8) 

Near resonance we have, on substituting the amplitude of the oscillation 

from (26.7), 

7(e) = /2A/4m(e2 + A2). (26.9) 

This is called a dispersion-type frequency dependence of the absorption. 

The half-width of the resonance curve (Fig. 31) is the value of |c| for which 

1(e) is half its maximum value (e = 0). It is evident from (26.9) that in the 

present case the half-width is just the damping coefficient A. The height of 

the maximum is 7(0) = /2/4mA, and is inversely proportional to A. Thus, 

17/7(0) 

Fig. 31 

when the damping coefficient decreases, the resonance curve becomes more 

peaked. The area under the curve, however, remains unchanged. This area 

is given by the integral 

J 7(y) dy = J /(c) d* 
o -w. 

Since 7(c) diminishes rapidly with increasing |c|, the region where \e\ is 

large is of no importance, and the lower limit may be replaced by - co, and 

7(c) taken to have the form given by (26.9). Then we have 

^ f d‘ _ ^ 
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PROBLEM 

Determine the forced oscillations due to an external force / = /o exp(at) cos yt in the 
presence of friction. 

Solution. We solve the complex equation of motion 

3c+2Av+£oo?x = (/o/m) exp(a«+tY0 

and then take the real part. The result is a forced oscillation of the form 
x ~ b exp(at) cos(yt+8). 

b = /(■mV' [(wo2 + a2—y2+2<*A)z+4y2(oc+A)2]> 

tan 8 = — 2y(a+A)/(a>o2— y2+a2+2aA). 

§27. Parametric resonance 

There exist oscillatory systems which are not closed, but in which the 

external action amounts only to a time variation of the parameters.! 

The parameters of a one-dimensional system are the coefficients m and k 

in the Lagrangian (21.3). If these are functions of time, the equation of 

motion is 

d 
—(mx) + kx = 0. (27.1) 

We introduce instead of 1 a new independent variable t such that 

dT = dtjm(t); this reduces the equation to 

d2x/dr2 + mkx = 0. 

There is therefore no loss of generality in considering an equation of motion 

of the form 

d2x/df2 + o>2(f)x = 0 (27.2) 

obtained from (27.1) if m = constant. 

The form of the function a>(t) is given by the conditions of the problem. 

Let us assume that this function is periodic with some frequency y and period 

T = 2-njy. This means that co(t + T) = to(f), and so the equation (27.2) is 

invariant under the transformation t t+ T. Hence, if x(t) is a solution of 

the equation, so is x{t + T). That is, if xi(<) and xz{t) are two independent 

integrals of equation (27.2), they must be transformed into linear combina¬ 

tions of themselves when t is replaced by t+ T. It is possible! to choose xi 

and x2 in such a way that, when t -+t + T, they are simply multiplied by 

t A simple example is that of a pendulum whose point of support executes a given periodic 
motion in a vertical direction (see Problem 3). 

+ This choice is equivalent to reducing to diagonal form the matrix of the linear trans¬ 
formation of xi(t) and xz(t), which involves the solution of the corresponding quadratic 
secular equation. We shall suppose here that the roots of this equation do not coincide. 
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constants: xi(t + T) = ^xi(t), X2(t + T) = /x2xs(t). The most general functions 

having this property are 

*i(0 = Mt) = b2t!Tlh(t), (27.3) 

where ITi(/), 1I2(/) are purely periodic functions of time with period T. 

The constants /xi and /x2 in these functions must be related in a certain way. 

Multiplying the equations x\ + oj2{t)x\ = 0, £2 + co2(t)x2 = 0 by X2 and xi 

respectively and subtracting, we have xixo-xoXi = d(xtx2 — xix2)d£ = 0, or 

X1X2 — X1X2 = constant. (27.4) 

For any functions xi(t), x2{t) of the form (27.3), the expression on the left- 

hand side of (27.4) is multiplied by /zi/z2 when t is replaced by t + T. Hence 

it is clear that, if equation (27.4) is to hold, we must have 

WX2 4l. (27.5) 

Further information about the constants /xi, /x2 can be obtained from the 

fact that the coefficients in equation (27.2) are real. If x(t) is any integral of 

such an equation, then the complex conjugate function x*(t) must also be 

an integral. Hence it follows that /zi, [jl2 must be the same as /xi*, /x2*, i.e. 

either /xi = /x2* or /zi and /x2 are both real. In the former case, (27.5) gives 

/zi = 1 //xi*, i.e. l/zi |2 = |/x2|2 = 1: the constants /zi and /x2 are of modulus 

unity. 

In the other case, two independent integrals of equation (27.2) are 

*i(0 = lS/Tlh(t), x2(t) = (27.6) 

with a positive or negative real value of /x (|/z| ^ 1). One of these functions 

(xi or x2 according as |/z| > lor |/z| < 1) increases exponentially with time. 

This means that the system at rest in equilibrium (x = 0) is unstable: any 

deviation from this state, however small, is'sufficient to lead to a rapidly 

increasing displacement x. This is called parametric resonance. 

It should be noticed that, when the initial values of x and x are exactly 

zero, they remain zero, unlike what happens in ordinary resonance (§22), 

in which the displacement increases with time (proportionally to t) even from 

initial values of zero. 

Let us determine the conditions for parametric resonance to occur in the 

important case where the function tu(f) differs only slightly from a constant 

value wo and is a simple periodic function: 

wo2(l +h cos yt). 

wIiere the constant h 1; we shall suppose h positive, as may always be 
done y suitably choosing the origin of time. As we shall see below, para¬ 
metric resonance is strongest if the frequency of the function cu(t) is nearly 

we put „ _ j_, ^ .... 

metric resor 
twice wo. H 
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The solution of equation of motionf 

x + a)(r[l + 6 cos(2(oo + <:)(]x = 0 (27.8) 

may be sought in the form 

x = a(t) cos(coo+U)t + b(t)sin(wo+U)t, (27.9) 

where a(t) and 6(f) are functions of time which vary slowly in comparison 

with the trigonometrical factors. This form of solution is, of course, not 

exact. In reality, the function x(t) also involves terms with frequencies which 

differ from ojo+-U by integral multiples of 2coo + e; these terms are, how¬ 

ever, of a higher order of smallness with respect to h, and may be neglected 

in a first approximation (see Problem 1). 

We substitute (27.9) in (27.8) and retain only terms of the first order in 

e, assuming that d ~ ea, b ~ eb; the correctness of this assumption under 

resonance conditions is confirmed by the result. The products of trigono¬ 

metrical functions may be replaced by sums: 

COs(m0 + |e)* . Cos(2m0+e)f = i cos 3(o>o+ Ie)f +1 cos(m0 + Je)f, 

etc., and in accordance with what was said above we omit terms with fre¬ 

quency 3(coo + |e). The result is 

— (2a + 6e +ihai(fi)coo sin(mo + 2e)f + (26 — at + lha>0a)ioo cos(coo+-2«)f = 0. 

If this equation is to be justified, the coefficients of the sine and cosine must 

both be zero. This gives two linear differential equations for the functions 

a(t) and 6(f). As usual, we seek solutions proportional to exp(sf). Then 

sa + i(e + |6ojo)6 = 0, -l(<E~ -lhajQ)a — sb = 0, and the compatibility condition 

for these two algebraic equations gives 

s2 = ,i[(P«o)3-*2]. (27.10) 

The condition for parametric resonance is that s is real, i.e. s2 > O.t Thus 

parametric resonance occurs in the range 

— IhajQ < e < Ihtoo (27.11) 

on either side of the frequency 2coo. |j The width of this range is proportional 

to h, and the values of the amplification coefficient r of the oscillations in the 

range are of the order of h also. 

Parametric resonance also occurs when the frequency y with which the 

parameter varies is close to any value 2coqjn with n integral. The width of the 

t An equation of this form (with arbitrary y and h) is called in mathematical physics 
Mathieu’s equation. 

+ The constant /i in (27.6) is related to s by n = — exp(sir/too); when t is replaced by 
t+2rr/2£O0, the sine and cosine in (27.9) change sign. 

|| If we are interested only in the range of resonance, and not in the values of s in that 
range, the calculations may be simplified by noting that r = 0 at the ends of the range, t.e. 
the coefficients a and b in (27.9) are constants. This gives immediately « = ± i,lwa as ln 
(27.11). 
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resonance range (region of instability) decreases rapidly with increasing n, 

however, namely as hn (see Problem 2, footnote). The amplification co¬ 

efficient of the oscillations also decreases. 

The phenomenon of parametric resonance is maintained in the presence 

of slight friction, but the region of instability becomes somewhat narrower. 

As we have seen in §25, friction results in a damping of the amplitude of 

oscillations as exp( — Af). Hence the amplification of the oscillations in para¬ 

metric resonance is as exp[(s-A)f] with the positive s given by the solution 

for the frictionless case, and the limit of the region of instability is given by 

the equation s - A = 0. Thus, with s given by (27.10), we have for the resonance 

range, instead of (27.11), 

-V[(!^)2-4A2] < e < V[(-!W)2-4A2]. (27.12) 

It should be noticed that resonance is now possible not for arbitrarily 

small amplitudes h, but only when h exceeds a “threshold” value /z*. When 

(27.12) holds, hk = 4A/co0. It can be shown that, for resonance near the fre¬ 

quency 2a>oln, the threshold hu is proportional to A1/n, i.e. it increases with n. 

PROBLEMS 

Problem 1. Obtain an expression correct as far as the term in A2 for the limits of the region 
of instability for resonance near y — 2a>o. 

Solution. We seek the solution of equation (27.8) in the form 

'3f'*= ao cos(a>o+ie)l+bo sin(u)o+Ie)Z+<zi cos 3(ioo + |e)Z+Ai sin 3(<uo+Ie)f, 

which includes terms of one higher order in A than (27.9). Since only the limits of the region 
of instability are required, we treat the coefficients ao, bo, ai,bi as constants in accordance 
with the last footnote. Substituting in (27.8), we convert the products of trigonometrical 
functions into sums and omit the terms of frequency S(tuo + le) in this approximation. The 

[—ao( tuoe + Je2) + IA ioo2ao+IA e>o2ai ] cos( tuo + le)Z + 

+ [-6o(o>oe+ie2)-i/lO026c, + lW6l] sin(tuo +ie)1 + 

+ [|/i£oozao—8<uo2ai] cos 3(too+ie)z + 

+ [IAioo26o — 8iuo26i] sin 3(a)o+le)t = 0. 

In the terms of frequency tuo + lf we retain terms of the second order of smallness, but m 
those of frequency 3(tuo + le) only the first-order terms. Each of the expressions in brackets 
must separately vanish. The last two give «i = /uzo/16, f>i = /ifco/16, and then the first two 
give £ooe±l/i£oo2+ieZ—Ii2“)o2/32 = 0. 

Solving this as far as terms of order A2, we obtain the required limits of e: 

e = +\htoo—A2coo/32. 

Problem 2. Determine the limits of the region of instability in resonance near y = too. 

Solution. Putting y = £oo+e, we obtain the equation of motion 

x + ioo2[l +A cos(ioo+e)«]x = 0. 

the required limiting values of £ ~ A2, we seek a solution in the form 

o cos(coo+e)(+fco s£n(^0_|_£)t+ai cos 2(tuo+e)t+fcl sin 2(too+e)t+ct, 
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which includes terms of the first two orders. To determine the limits of instability, we again 
treat the coefficients as constants, obtaining 

[—2 woeao+ihuxrai +hw02ci] cos( too+c)t + 

+ [—2ioocbo+£ho>oBbi] sin(<«o+e)t+ 

+ [—3ioosai+£hu>osao] cos 2(«Jo+e)< + 

+ [-3«,o2fci+iWfco] sin 2(oj0+e)t+[ci«>o244Wao] . 

Hence ai = /iao/6, bi = hbojb, ci — —\hao, and the limits aret e = —5/t2teo/24, e = hBwo;24. 

Problem 3. Find the conditions for parametric resonance in small oscillations of a simple 
pendulum whose point of support oscillates vertically. 

Solution. The Lagrangian derived in §5, Problem 3(c), gives for small oscillations 
1) the equation of motion <f> + coo2[l+(4a//) cos(2co0+e)l]<£ = 0, where o>o2 = all. 

Hence we see that the parameter h is here represented by 4a//. The condition (27.11), for 
example, becomes |e| < 2ay/(gjP). 

§28. Anharmonic oscillations 

The whole of the theory of small oscillations discussed above is based on 

the expansion of the potential and kinetic energies of the system in terms of 

the co-ordinates and velocities, retaining only the second-order terms. The 

equations of motion are then linear, and in this approximation we speak of 

linear oscillations. Although such an expansion is entirely legitimate when 

the amplitude of the oscillations is sufficiently small, in higher approxima¬ 

tions (called anharmonic or non-linear oscillations) some minor but qualitatively 

different properties of the motion appear. 

Let us consider the expansion of the Lagrangian as far as the third-order 

terms. In the potential energy there appear terms of degree three in the co¬ 

ordinates Xi, and in the kinetic energy terms containing products of velocities 

and co-ordinates, of the form xfxkxi. This difference from the previous 

expression (23.3) is due to the retention of terms linear in x in the expansion 

of the functions a-ik(q). Thus the Lagrangian is of the form 

L = ^$(mikxpck-kikXiXk)+ 
i,k 

+ 1 2 - 3 2 liklXiXkXl, (28.1) 
i,k.l i,kl 

where niki, l-iki are further constant coefficients. 

If we change from arbitrary co-ordinates xt to the normal co-ordinates Oa 

of the linear approximation, then, because this transformation is linear, the 

third and fourth sums in (28.1) become similar sums with Qa and Qa in place 

t Generally, the width At of the region of instability in resonance near the frequency 
2too/n is given by 

Ac = nBn-3hnaio!23ln-1)[(n — 1) !j2, 
n result due to M. Bell (Proceedings of the Glasgow Mathematical Association 3, 132, 1957). 
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of the co-ordinates xt and the velocities X{. Denoting the coefficients in these 

new sums by and /x^, we have the Lagrangian in the form 

L = i2(0a2-«.2Ga2)+i 2 KfiyQaQtQv-i I l^yQaQfiQy (28.2) 
a a,0,y a,0.y 

We shall not pause to write out in their entirety the equations of motion 

derived from this Lagrangian. The important feature of these equations is 

that they are of the form 

Q.+^Q. =ue.0, Q). (28-3) 

where fa are homogeneous functions, of degree two, of the co-ordinates Q 

and their time derivatives. 

Using the method of successive approximations, we seek a solution of 

these equations in the form 

Q* = Qaa)+Qa2\ (28.4) 

where Qf2) £)aa>, and the Qaa) satisfy the “unperturbed” equations 

Qxa) + ioa2Qa(X'> = 0, i.e. they are ordinary harmonic oscillations: 

Q®> = aa cos(coat + aa). (28.5) 

Retaining only the second-order terms on the right-hand side of (28.3) in 

the next approximation, we have for the Qa(2) the equations 

QJ.2) + ojJQJV = fa(Qa\ Q(1\ Q1}), (28.6) 

where (28.5) is to be substituted on the right. This gives a set of inhomo¬ 

geneous linear differential equations, in which the right-hand sides can be 

represented as sums of simple periodic functions. For example, 

Q,xVQisl) = ao.afs C0S(°V + ocj cos(oj/;f + a„) 

= Jflafl/J{cos[(aia + <jjjj)t + <y.a + a^] + cos[(aia — <x>f)t + aa — cc^]}. 

Thus the right-hand sides of equations (28.6) contain terms corresponding 

to oscillations whose frequencies are the sums and differences of the eigen- 

frequencies of the system. The solution of these equations must be sought 

in a form involving similar periodic factors, and so we conclude that, in the 

second approximation, additional oscillations with frequencies 

(28.7) 

including the double frequencies 2ioa and the frequency zero (corresponding 

to a constant displacement), are superposed on the normal oscillations of the 

system. These are called combination frequencies. The corresponding ampli¬ 

tudes are proportional to the products aaap (or the squares a2) of the cor¬ 
responding normal amplitudes. 

*n f ^erTapproximati°ns, when further terms are included in the expan- 
a^ng'an, combination frequencies occur which are the sums 

and 1 e es ° more than two coa; and a further phenomenon also appears. 
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In the third approximation, the combination frequencies include some which 

coincide with the original frequencies ioa(= oia + oj/; — oj^). When the method 

described above is used, the right-hand sides of the equations of motion there¬ 

fore include resonance terms, which lead to terms in the solution whose 

amplitude increases with time. It is physically evident, however, that the 

magnitude of the oscillations cannot increase of itself in a closed system 

with no external source of energy. 

In reality, the fundamental frequencies ioa in higher approximations are 

not equal to their “unperturbed” values cua(0) which appear in the quadratic 

expression for the potential energy. The increasing terms in the solution 

arise from an expansion of the type 

cos(oia(0)-|- Aoja)t x cos coJ^H — tAcoa sin aja(0)t, 

which is obviously not legitimate when t is sufficiently large. 

In going to higher approximations, therefore, the method of successive 

approximations must be modified so that the periodic factors in the solution 

shall contain the exact and not approximate values of the frequencies. The 

necessary changes in the frequencies are found by solving the equations and 

requiring that resonance terms should not in fact appear. 

We may illustrate this method by taking the example of anharmonic oscil¬ 

lations in one dimension, and writing the Lagrangian in the form 

L = \mx2—\mu>02x2 — \myx2-\mfjx^. (28.8) 

The corresponding equation of motion is 

* + <o02* = -<xx2-jSx3. (28.9) 

We shall seek the solution as a series of successive approximations: 
x = x(1> + x(2> + x(3), where 

x(1)=acoscut, (28.10) 

with the exact value of w, which in turn we express as cu = cuo + cu(1) + cu(2 > +_ 

(The initial phase in x(1) can always be made zero by a suitable choice of the 

origin of time.) The form (28.9) of the equation of motion is not the most 

convenient, since, when (28.10) is substituted in (28.9), the left-hand side is 

not exactly zero. We therefore rewrite it as 

CU()2 / COn2 \ 
4 • - too2* = - ax2 - fix2 — ( 1-lx. (28.11) 

cu2 \ cu2 / 

Putting x = xQ) + x(2), oj = too + oj(1) and omitting terms of above the 

second order of smallness, we obtain for x<2) the equation 

x(2) + a>o2x(2) = — oca2 coszojt + 2toocoa)a cos cot 

= — \y.a2 — \ v.a2 cos 2cut + 2o>oo)(1)a cos cot. 

The condition for the resonance term to be absent from the right-hand side 
is simply oj(1) = 0, in agreement with the second approximation iscussed 
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at the beginning of this section. Solving the inhomogeneous linear equation 

in the usual way, we have 

oca2 aa2 
x(2) =--—H-cos2a>t. (28.12) 

2 too2 6aio2 

Putting in (28.11) X = .\'(1) + *(2) + x(3), w = oj0 + to<2), we obtain the equa¬ 

tion for *®> 

X<3) + DJ02a.(3) = _ 2ax^V - jS.v(1)3 + 2to0to<2»xa) 

or, substituting on the right-hand side (28.10) and (28.12) and effecting a 

simple transformation, 

.v<3>+.w02*(3) = fl3 [ 4/j----1 cos 3 cot -f 
L 6too2 J 

4- a [2o>oto(2) + — cos cot. 

Equating to zero the coefficient of the resonance term cos cot, we find the 

correction to the fundamental frequency, which is proportional to the squared 

amplitude of the oscillations: 

(——— 
\ 8coo 12o>03 / 

(28.13) 

The combination oscillation of the third order is 

—--(-—IB) cos3cot. 
16coo2\3co02 

(28.14) 

§29. Resonance in non-linear oscillations 

When the anharmonic terms in forced oscillations of a system are taken 

into account, the phenomena of resonance acquire new properties. 

Adding to the right-hand side of equation (28.9) an external periodic force 

of frequency y, we have 

x + 2M + wq2x = (f\m) cos yt- z.r2 - /3x3; (29.1) 

here the frictional force, with damping coefficient A (assumed small) has also 

been included. Strictly speaking, when non-linear terms are included in the 

equation of free oscillations, the terms of higher order in the amplitude of 

the external force (such as occur if it depends on the displacement x) should 

also be included. We shall omit these terms merely to simplify the formulae; 
they do not affect the qualitative results. 

Let y = O)0 + <E with e small, i.e. y be near the resonance value. To ascertain 
the resu ting type of motion, it is not necessary to consider equation (29.1) 
if we argue as follows. In tjle i;ncar approximation, the amplitude b is given 
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near resonance, as a function of the amplitude / and frequency y of the 

external force, by formula (26.7), which we write as 

b\e2 + A2) = f2j4m2u>o2. (29.2) 

The non-linearity of the oscillations results in the appearance of an ampli¬ 

tude dependence of the eigenfrequency, which we write as 

ojo + xb2, (29.3) 

the constant k being a definite function of the anharmonic coefficients (see 

(28.13)). Accordingly, we replace oj0 by cu0+ xb2 in formula (29.2) (or, more 

precisely, in the small difference y-cu0). With y- cu0 = e, the resulting 
equation is 

b2[{e _ Kb2}2 + A2] = /2/4m2wo2 (29.4) 

or 

e = Kb- ± \/[(Jj2m(o&b)2—A2]. 

Equation (29.4) is a cubic equation in b2, and its real roots give the ampli¬ 

tude of the forced oscillations. Let us consider how this amplitude depends 

on the frequency of the external force for a given amplitude / of that force. 

When / is sufficiently small, the amplitude b is also small, so that powers 

of b above the second may be neglected in (29.4), and we return to the form 

°f b(e) given by (29.2), represented by a symmetrical curve with a maximum 

at the point e = 0 (Fig. 32a). As / increases, the curve changes its shape, 

though at first it retains its single maximum, which moves to positive e if 

K > 0 (Fig. 32b). At this stage only one of the three roots of equation (29.4) 
is real. 

When / reaches a certain value fk (to be determined below), however, the 

nature of the curve changes. For all / > fk there is a range of frequencies in 

which equation (29.4) has three real roots, corresponding to the portion 
BCDE in Fig. 32c. 

The limits of this range are determined by the condition dbjde = oo which 

holds at the points D and C. Differentiating equation (29.4) with respect to 
e, we have 

dbjde = {-eb + Kbs)l(e2 + A2 - \Keb2 + 3*264). 

Hence the points D and C are determined by the simultaneous solution of 
the equations 

«2 - 4(c62<r+3*264 + A2 = 0 (29.5) 

and (29.4). The corresponding values of e are both positive. The greatest 

amplitude is reached where dbjde = 0. This gives e = Kb2, and from (29.4) 
we have 

6max — fj2ma>oX; 

this is the same as the maximum value given by (29.2). 

(29.6) 
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It may be shown (though we shall not pause to do so heref) that, of the 

three real roots of equation (29.4), the middle one (represented by the dotted 

part CD of the curve in Fig. 32c) corresponds to unstable oscillations of the 

system: any action, no matter how slight, on a system in such a state causes 

it to oscillate in a manner corresponding to the largest or smallest root (J3C 

or DE). Thus only the branches ABC and DEF correspond to actual oscil¬ 

lations of the system. A remarkable feature here is the existence of a range of 

frequencies in which two different amplitudes of oscillation are possible. For 

example, as the frequency of the external force gradually increases, the ampli¬ 

tude of the forced oscillations increases along ABC. At C there is a dis¬ 

continuity of the amplitude, which falls abruptly to the value corresponding 

to E, afterwards decreasing along the curve EE as the frequency increases 

further. If the frequency is now diminished, the amplitude of the forced 

oscillations varies along FD, afterwards increasing discontinuously from D 

to B and then decreasing along BA. 

Fig. 32 

To calculate the value of fk, we notice that it is the value of / for which 

the two roots of the quadratic equation in b2 (29.5) coincide; for / = fk, the 

section CD reduces to a point of inflection. Equating to zero the discriminant 

totic Method?i^Sth™£E by> for example, N. N. Bogoliubov andY. A. Mitropolsky, Asymp- 
pelhi 1961. eory of Non-Linear Oscillations, Hindustan Publishing Corporation, 
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of (29.5), we find e2 = 3 A2, and the corresponding double root is Kb2 = 2e/3. 

Substitution of these values of b and e in (29.4) gives 

32mWA3/3V3|4 (29.7) 

Besides the change in the nature of the phenomena of resonance at fre¬ 

quencies y x oj0, the non-linearity of the oscillations leads also to new 

resonances in which oscillations of frequency dose to oj0 are excited by an 

external force of frequency considerably different from ojo. 

Let the frequency of the external force y x \cu0, i.e. y = Jcuo + e. In the 

first (linear) approximation, it causes oscillations of the system with the same 

frequency and with amplitude proportional to that of the force: 

x(1) = (4//3wZo>02) cos(-|too + e)t 

(see (22.4)). When the non-linear terms are included (second approximation), 

these oscillations give rise to terms of frequency 2y x oj0 on the right-hand 

side of the equation of motion (29.1). Substituting x(1) in the equation 

. t x(2> + 2Ai(2) + co02xf2) + ax,m + fix1*2* = - aW>2, 

using the cosine of the double angle and retaining only the resonance term 

on the rigljt-hand side, we have 

x'2') + 2Ai<2) + ojo2x<2> + ax<2)2 + /N(2>3 = — (8a/2/9m2aio4) cos(aio + 2e)t. 

(29.8) 

This equation differs from (29.1) only in that the amplitude / of the force is 

replaced by an expression proportional to /2. This means that the resulting 

resonance is of the same type as that considered above for frequencies 

y x coo, but is less strong. The function b(e) is obtained by replacing / by 

— 8a/2/9mcoo4, and e by 2e, in (29.4): 

b2[(2c-Kb2)2 + A2] = 16a2/4/81mW°. (29.9) 

Next, let the frequency of the external force be y = 2oj0 + e. In the first 

approximation, we have jc(1) = — (//3w2aj02) cos(2a>o+e)f. On’substituting 

x = xa) + x(2) in equation (29.1), we do not obtain terms representing an 

external force in resonance such as occurred in the previous case. There is, 

however, a parametric resonance resulting from the third-order term pro¬ 

portional to the product x(1)x(2). If only this is retained out of the non-linear 

terms, the equation for x(2) is 

x<2> + 2Ax(2> + ojo2*® = - 2a.taV2> 

or 

x<2> + 2Ax<2> + o>o2 [ 1 - „ 2°^ - cos(2oj0 + g)/l x<2> = 0, (29.10) 
L 3wzoj04 J 

i.e. an equation of the type (27.8) (including friction), which leads, as we 
have seen, to an instability of the oscillations in a certain range of frequencies. 
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This equation, however, does not suffice to determine the resulting ampli¬ 

tude of the oscillations. The attainment of a finite amplitude involves non¬ 

linear effects, and to include these in the equation of motion we must retain 

also the terms non-linear in x(2): 

X®+2Ai(2) + m02x<2) + a.t®2+= (2a//3mcu02)x(2) eos(2cu0+ e)t. (29.11) 

The problem can be considerably simplified by virtue of the following fact. 

Putting on the right-hand side of (29.11) x(2) = b cos[(oj0 + |e)f+ 8], where 

b is the required amplitude of the resonance oscillations and 8 a constant 

phase difference which is of no importance in what follows, and writing the 

.product of cosines as a sum, we obtain a term (a/8/3mojo2) cos[(ojo + \c)t — 8] 

of the ordinary resonance type (with respect to the eigenfrequency oj0 of the 

system). The problem thus reduces to thaf considered at the beginning of 

this section, namely ordinary resonance in a non-linear system, the only 

differences being that the amplitude of the external force is here represented 

by o/?)/3ojo2, and e is replaced by \c. Making this change in equation (29.4), 

we have 

82[(1c-k82)2 + A2] = a2/262/36m2ojo6. 

Solving for b, we find the possible values of the amplitude: 

b = 0, (29.12) 

82 = i[ie + V{(«//6moio3)2-A2}], (29.13) 

b2 = i[ie-V{(o-//6mai03)2-A2}]. (29.14) 

Figure 33 shows the resulting dependence of b on e for k > 0; for k < 0 

the curves are the reflections (in the 8-axis) of those shown. The points B 

and C correspond to the values e = ± \/{(a//3mcoo3)2 — 4A2}. To the left of 

B, only the value b = 0 is possible, i.e. there is no resonance, and oscillations 

of frequency near ojo are not excited. Between B and C there are two roots, 

b = 0(BC) and (29.13) (BE). Finally, to the right of C there are three roots 

(29.12)-(29.14). Not all these, however, correspond to stable oscillations. 

The value b = 0 is unstable on BC, | and it can also be shown that the middle 

root (29.14) always gives instability. The unstable values of b are shown in 

Fig. 33 by dashed lines. 
Let us examine, for example, the behaviour of a system initially “at rest”! 

as the frequency of the external force is gradually diminished. Until the point 

T This segment corresponds to the region of parametric resonai 

Pahichnth°ef h910) and (27'8) giveS 1*1 = 2“//3»W. The conditio 
" + It should'b>lnenon can exist corresponds to h > hk. 
phenomena are that onIV resonance phenomena are undei 
Pf frequency y. ' h system is not literally at rest, but executes 

nee (27.12), and a com- 
>n |2a//3mcuo3| > 4A for 

r consideration. If these 
small fc reed oscillations 
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C is reached, b = 0, but at C the state of the system passes discontinuously 

to the branch EB. As e decreases further, the amplitude of the oscillations 

decreases to zero at B. When the frequency increases again, the amplitude 

increases along BE 

The cases of resonance discussed above are the principal ones which may 

occur in a non-linear oscillating system. In higher approximations, resonances 

appear at other frequencies also. Strictly speaking, a resonance must occur 

at every frequency y for which ny+mu>o = ojo with n and m integers, i.e. for 

every y = pioo/q with p and q integers. As the degree of approximation 

increases, however, the strength of the resonances, and the widths of the 

frequency ranges in which they occur, decrease so rapidly that in practice 

only the resonances at frequencies y x, pioo/q with small p and q can be ob¬ 

served. 

PROBLEM 

Determine the function 6(e) for resonance at frequencies y x 3o>o. 

Solution. In the first approximation, x*1* = —(//8tno>o2) cos(3c«o+e)f. For the second 
approximation x^ we have from (29.1) the equation 

x<2> +2Ax<‘> + woV2) + <«<2>2 +/3*(2>3 = ~3pjXWx^, 

where only the term which gives the required resonance has been retained on the right-hand 
side. Putting jc(2) = 6 cos[(w0+i«)f+8] and taking the resonance term out of the product 
of three cosines, we obtain on the right-hand side the expression 

(3/362//32»W) cosKwo+Hf—28], 

Hence it is evident that 6(e) is obtained by replacing/by 3)36^/32 o>o2, and e by le, in 
(29.4): 

62[Qe-*62)2 + A2] = (9/32/2/212mW)64 = Ab*. 

The roots of this equation are 

Fig. 34 shows a graph of the function 6(e) for k > 0. Only the value 6 = 0 (the e-axis) and 
the branch AB corresponds to stability. The point A corresponds to e* = 3(4—A2)/4kA, 

t It must be noticed, however, that all the formulae derived here are valid °nl^ 
amplitude 6 (and also e) is sufficiently small. In reality, the curves BE and CX me , at 
their point of intersection the oscillation ceases; thereafter, 6 = 0. 
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6*2 = (4K2A2+y42)/4kM. Oscillations exist only for e > **, and then b > 6*. Since the state 
6 = 0 is always stable, an initial “push” is necessary in order to excite oscillations. 

The formulae given above are valid only for small t. This condition is satisfied if A is small 
and also the amplitude of the force is such that kA2/wo A kwq. 

Fig. 34 

§30. Motion in a rapidly oscillating field 

Let us consider the motion of a particle subject both to a time-independent 

field of potential U and to a force 

/ = /x cos tot 4-/2 sin iot (30.1) 

which varies in time with a high frequency a> (/i,/s being functions of the 

co-ordinates only). By a “high” frequency we mean one such that o> 1/X1, 

where T is the order of magnitude of the period of the motion which the 

particle would execute in the field U alone. The magnitude of/ is not assumed 

small in comparison with the forces due to the field U, but we shall assume 

that the oscillation (denoted below by £) of the particle as a result of this 

force is small. 
To simplify the calculations, let us first consider motion in one dimension 

in a field depending only on the space co-ordinate x. Then the equation of 

motion of the particle isf 

mx = -dU/dx+f. (30.2) 

It is evident, from the nature of the field in which the particle moves, that 

it will traverse a smooth path and at the same time execute small oscillations 

of frequency 10 about that path. Accordingly, we represent the function x(t) 

as a sum: 

X(t) = x(t)+m (30-3) 

where £(t) corresponds to these small oscillations. 
The mean value of the function £(t) over its period 27t/oj is zero, and the 

function _Xf<) changes only slightly in that time. Denoting this average by a 

bar, we therefore have x = X(t), i.e. X(t) describes the “smooth” motion of 

t Th® co-ordinate * 
sarily the mass of the 
assumption, however, < 

eed not be Cartesian, and the coefficient m is therefore not neces- 
rticle, nor need it be constant as has been assumed in (30.2). This 
“s not affect the final result (see the last footnote to this section). 
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the particle averaged over the rapid oscillations. We shall derive an equation 

which determines the function 

Substituting (30.3) in (30.2) and expanding in powers of £ as far as the 
first-order terms, we obtain 

,. v d U d2t/ df 

<30-4> 

This equation involves both oscillatory and “smooth” terms, which must 

evidently be separately equal. For the oscillating terms we can put simply 

m$=flX,ty, (30.5) 

the other terms contain the small factor £ and are therefore of a higher order 

of smallness (but the derivative £ is proportional to the large quantity to2 

and so is not small). Integrating equation (30.5) with the function/ given by 

(30.1) (regarding Zasa constant), we have 

| = -flma(30.6) 

Next, we average equation (30.4) with respect to time (in the sense discussed 

above). Since the mean values of the first powers of/ and £ are zero, the result 
is 

d U df 
mX = --+£— 

AX dX 

d U 1 df 

AX mco^dX ’ 

which involves only the function X{t). This equation can be written 

mX = -AUen!AX, (30.7) 

where the “effective potential energy” is defined asj 

Ven = U+p,!2mco2 

= t/+(/i2+/22)/4moA (30.8) 

Comparing this expression with (30.6), we easily see that the term added to 

U is just the mean kinetic energy of the oscillatory motion: 

Uett = U+\m£2. (30.9) 

Thus the motion of the particle averaged over the oscillations is the same 

as if the constant potential U were augmented by a constant quantity pro¬ 

portional to the squared amplitude of the variable field. 

t The principle of this derivation is due to P. L. Kapitza (1951). 
J By means of somewhat more lengthy calculations it is easy to show that form«,ae (3°-7) 

and (30.8) remain valid even if m is a function of x. 
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The result can easily be generalised to the case of a system with any number 

of degrees of freedom, described by generalised co-ordinates q\. The effective 

potential energy is then given not by (30.8), but by 

Ueti = U+ —— 2 ^ W</k 

= U+ZimM, (30-10) 
i,tc 

where the quantities a~hk, which are in general functions of the co-ordinates, 

are the elements of the matrix inverse to the matrix of the coefficients aik in 

the kinetic energy (5.5) of the system. 

PROBLEMS 

Problem 1. Determine the positions of stable equilibrium of a pendulum whose point of 
support oscillates vertically with a high frequency y O V(glO)- 

Solution. From the Lagrangian derived in §5, Problem 3(c), we see that in this case the 
variable force is / = -mlay* cos yt sin * (the quantity * being here represented by the angle 
A). The “effective potential energy” is therefore Lett — mgl[ —cos <j>+(a y I4gl) sin 9J- 1 “e 
positions of stable equilibrium correspond to the minima of this function. The vertically 
downward position ($ = 0) is always stable. If the condition > 2gl holds, the vertically 
upward position (<f> = w) is also stable. 

Problem 2. The same as Problem 1, but for a pendulum whose point of support oscillates 

horizontally. 

Solution. 
cos 4> and Uei 
If a2y2 > 2gl, 

From the Lagrangian derived in §5, Problem 3(b), we find / = mlay* cos yt 
, = ,„£/[-COS ^+(«V/4g/) cos2^]. If nV < 2gl, the position ^ = 0 is stable, 
on the other hand, the stable equilibrium position is given by cos <j> — 2glla y . 



CHAPTER VI 

MOTION OF A RIGID BODY 

§31. Angular velocity 

A rigid body may be defined in mechanics as a system of particles such that 

the distances between the particles do not vary. This condition can, of course, 

be satisfied only approximately by systems which actually exist in nature. 

The majority of solid bodies, however, change so little in shape and size 

under ordinary conditions that these changes may be entirely neglected in 

considering the laws of motion of the body as a whole. 

In what follows, we shall often simplify the derivations by regarding a 

rigid body as a discrete set of particles, but this in no way invalidates the 

assertion that solid bodies may usually be regarded in mechanics as continu¬ 

ous, and their internal structure disregarded. The passage from the formulae 

which involve a summation over discrete particles to those for a continuous 

body is effected by simply replacing the mass of each particle by the mass 

p dV contained in a volume element dV (p being the density) and the sum¬ 

mation by an integration over the volume of the body. 

To describe the motion of a rigid body, we use two systems of co-ordinates: 

a “fixed” (i.e. inertial) system XYZ, and a moving system xi = x, = y, 

X3 = z which is supposed to be rigidly fixed in the body and to participate 

in its motion. The origin of the moving system may conveniently be taken 

to coincide with the centre of mass of the body. 

The position of the body with respect to the fixed system of co-ordinates 

is completely determined if the position of the moving system is specified. 

Let the origin O of the moving system have the radius vector R (Fig. 35). 

The orientation of the axes of that system relative to the fixed system is given 

by three independent angles, which together with the three components of 

the vector R make six co-ordinates. Thus a rigid body is a mechanical system 

with six degrees of freedom. 

Let us consider an arbitrary infinitesimal displacement of a rigid body. 

It can be represented as the sum of two parts. One of these is an infinitesimal 

translation of the body, whereby the centre of mass moves to its final position, 

but the orientation of the axes of the moving system of co-ordinates is un¬ 

changed. The other is an infinitesimal rotation about the centre of mass, 

whereby the remainder of the body moves to its final position. 

Let r be the radius vector of an arbitrary point P in a rigid body in the 
moving system, and t the radius vector of the same point in the fixed system 
(Fig. 35). Then the infinitesimal displacement dt of P consists of a displace¬ 
ment dR, equal to that of the centre of mass, and a displacement d<|>xr 
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relative to the centre of mass resulting from a rotation through an infinitesimal 

angle d</> (see (9.1)): dr = dR + d«J>xr. Dividing this equation by the time 

dt during which the displacement occurs, and putting! 

dr/d* = v, dR/d* = V, d«j>/d* = £2, (31.1) 

we obtain the relation 
v = V+flxr. (31.2) 

Fig. 35 

The vector V is the velocity of the centre of mass of the body, and is also 

the translational velocity of the body. The vector £2 is called the angular 

velocity of the rotation of the body; its direction, like that of d«J>, is along the 

axis of rotation. Thus the velocity v of any point in the body relative to the 

fixed system of co-ordinates can be expressed in terms of the translational 

velocity of the body and its angular velocity of rotation. 

It should be emphasised that, in deriving formula (31.2), no use has been 

made of the fact that the origin is located at the centre of mass. The advan¬ 

tages of this choice of origin will become evident when we come to calculate 

the energy of the moving body. 

Let us now assume that the system of co-ordinates fixed in the body is 

such that its origin is not at the centre of mass O, but at some point O' at 

a distance a from O. Let the velocity of O' be V', and the angular velocity 

of the new system of co-ordinates be £2'. We again consider some point P 

in the body, and denote by r' its radius vector with respect to O'. Then 

r = r' + a, and substitution in (31.2) gives v = V+£2xa + £2xr'. The 

definition of V' and £2' shows that v = V' + £2'xr'. Hence it follows that 

V' = V+£2 x a, £2'= £2. (31.3) 

The second of these equations is very important. We see that the angular 
velocity of rotation, at any instant, of a system of co-ordinates fixed in 
the body iS independent of the particular system chosen. All such systems 
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rotate with angular velocities £2 which are equal in magnitude and parallel 

in direction. This enables us to call £2 the angular velocity of the body. The 

velocity of the translational motion, however, does not have this “absolute” 

property. 

It is seen from the first formula (31.3) that, if V and £2 are, at any given 

instant, perpendicular for some choice of the origin O, then V' and £2' are 

perpendicular for any other origin O'. Formula (31.2) shows that in this case 

the velocities v of all points in the body are perpendicular to £2. It is then 

always possible-]- to choose an origin O' whose velocity V' is zero, so that the 

motion of the body at the instant considered is a pure rotation about an axis 

through O'. This axis is called the instantaneous axis of rot at ion.% 

In what follows we shall always suppose that the origin of the moving 

system is taken to be at the centre of mass of the body, and so the axis of 

rotation passes through the centre of mass. In general both the magnitude 

and the direction of £2 vary during the motion. 

§32. The inertia tensor 

To calculate the kinetic energy of a rigid body, we may consider it as a 

discrete system of particles and put T = 'Zbnv2, where the summation is 

taken over all the particles in the body. Here, and in what follows, we simplify 

the notation by omitting the suffix which denumerates the particles. 

Substitution of (31.2) gives 

T =2>(V+£2xr)2 =2-^tZwV • £2xr + 2iw(^xr)2. 

The velocities V and £2 are the same for every point in the body. In the first 

term, therefore, \V2 can be taken outside the summation sign, and Ycni is 

just the mass of the body, which we denote by p. In the second term we put 

XwV • £2 x r = Yjnx • V x £2 = V x £2 • Xwr. Since we take the origin of the 

moving system to be at the centre of mass, this term is zero, because £wr = 0. 
Finally, in the third term we expand the squared vector product. The result 

T = -hi V2 +1 2 "W*1 ~ (& • r)2] • (32.1) 

Thus the kinetic energy of a rigid body can be written as the sum of two 

parts. The first term in (32.1) is the kinetic energy of the translational motion, 

and is of the same form as if the whole mass of the body were concentrated 

■'’■t the centre of mass. The second term is the kinetic energy of the rotation 

with angular velocity £2 about an axis passing through the centre of mass. 

It should be emphasised that this division of the kinetic energy into two parts 

is possible only because the origin of the co-ordinate system fixed in the 

body has been taken to be at its centre of mass. 

t O' may, of course, lie outside the body. hosen 
+ In the general case where V and £2 are not perpendicular, the origin may k^jon^of' 

as to make V and £2 parallel, i.e. so that the motion consists (at the instant in <Jue ' 
rotation about some axis together with a translation along that axis. 
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We may rewrite the kinetic energy of rotation in tensor form, i.e. in terms 

of the components! Xi and of the vectors r and 52. We have 

Trot = i ^ m(Q^xi2‘-0.ixi0.kxk) 

= 2 2 m(QiQk&ikXl2 - D.iD.kXiXk) 

= i Q&k 2 m(x{zSik-XiXk). 

Here we have used the identity Q* = SikQk, where 8ik is the unit tensor, 

whose components are unity for i = k and zero for i ^ k. In terms of the 

tensor 

hk = 2 m{x?hik-xixk) (32.2) 

we have finally the following expression for the kinetic energy of a rigid 

body: 

T = (32.3) 

The Lagrangian for a rigid body is obtained from (32.3) by subtracting 

the potential energy: 

L = l^+lh^iiik-U. (32.4) 

The potential energy is in general a function of the six variables which define 

the position of the rigid body, e.g. the three co-ordinates X, Y, Z of the 

centre of mass and the three angles which specify the relative orientation of 

the moving and fixed co-ordinate axes. 

The tensor is called the inertia tensor of the body. It is symmetrical, 

Iik = hi, (32.5) 

as is evident from the definition (32.2). For clarity, we may give its com¬ 

ponents explicitly: 

2 m(y2 + z2) 

-2 rnyx 

—2 mzx 

— 2 mxy 

2m(x2 + z2) 

— 2 mzy 

“2 mxz 

— 2myz 

2 m{x2+y2) 

(32.6) 

The components IXx, lyy, hz are called the moments of inertia about the 

corresponding axes. 
The inertia tensor is evidently additive: the moments of inertia of a body 

are the sums of those of its parts. 

t In this Chapter, the letters t, k, l are 
summation rule win always be used> ;.e. sv 

thf. a 3 I‘LlrnP,ied whenever a sufl 
ca"e v eft F°r cxample. A,Bt - dummy an be replaced b oth 
elsewhere in the expression concerned 

nsor suffixes and take the values 1, 2, 3. The 
mation signs are omitted, but summation over 
occurs twice in any expression. Such a suffix is 
\ . B, At2 = AiAi = A2, etc. It is obvious that 
like suffixes, except ones which already appear 
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If the body is regarded as continuous, the sum in the definition (32.2) 

becomes an integral over the volume of the body: 

lik — J p(xi28nc- xixk) dV. (32.7) 

Like any symmetrical tensor of rank two, the inertia tensor can be reduced 

to diagonal form by an appropriate choice of the directions of the axes 

*i, X2, xs. These directions are called the principal axes of inertia, and the 

corresponding values of the diagonal components of the tensor are called the 

principal moments of inertia-, we shall denote them by h,h,h- When the 

axes xi, X2, X3 are so chosen, the kinetic energy of rotation takes the very 

simple form 

Trot = HhW+W+W). (32.8) 

None of the three principal moments of inertia can exceed the sum of the 

other two. For instance, 

h+h = 2 m(xi2 + x22 + 2*32) > 2 m(xi2+X22) = I3. (32.9) 

A body whose three principal moments of inertia are all different is called 

an asymmetrical top. If two are equal (h = /2 ^ /3), we have a symmetrical 

top. In this case the direction of one of the principal axes in the xia^-plane 

may be chosen arbitrarily. If all three principal moments of inertia are equal, 

the body is called a spherical top, and the three axes of inertia may be chosen 

arbitrarily as any three mutually perpendicular axes. 

The determination of the principal axes of inertia is much simplified if 

the body is symmetrical, for it is clear that the position of the centre of mass 

and the directions of the principal axes must have the same symmetry as 

the body. For example, if the body has a plane of symmetry, the centre of 

mass must lie in that plane, which also contains two of the principal axes of 

inertia, while the third is perpendicular to the plane. An obvious case of this 

kind is a coplanar system of particles. Here there is a simple relation between 

the three principal moments of inertia. If the plane of the system is taken as 

the xiV2-plane, then x3 — 0 for every particle, and so I\ = Swzv22,12 = Swzvi2, 

h = Sm(xi2 + x22), whence 

h = h+h- (32.10) 

If a body has an axis of symmetry of any order, the centre of mass must lie 

on that axis, which is also one of the principal axes of inertia, while the other 

two are perpendicular to it. If the axis is of order higher than the second, 

the body is a symmetrical top. For any principal axis perpendicular to the 

axis of symmetry can be turned through an angle different from 180° about the 

latter, i.e. the choice of the perpendicular axes is not unique, and this can 

happen only if the body is a symmetrical top. 

A particular case here is a collinear system of particles. If the line of the 
system is taken as the x3-axis, then *1 = x2 = 0 for every particle, an So 
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two of the principal moments of inertia are equal and the third is zero: 

h = h='Zmx#t /3 = 0. (32.11) 

Such a system is called a rotator. The characteristic property which distin¬ 

guishes a rotator from other bodies is that it has only two, not three, rotational 

degrees of freedom, corresponding to rotations about the and x2 axes: it 

is clearly meaningless to speak of the rotation of a straight line about itself. 

Finally, we may note one further result concerning the calculation of the 

inertia tensor. Although this tensor has been defined with respect to a system 

of co-ordinates whose origin is at the centre of mass (as is necessary if the 

fundamental formula (32.3) is to be valid), it may sometimes be more con¬ 

veniently found by first calculating a.similar tensor I'ik = Yitn(x'i28uc — x'ix'k), 

defined with respect to some other origin O'. If the distance OO' is repre¬ 

sented by a vector a, then r = r'+a, x4 = x'i + ai; since, by the definition 

of O, Yitnr = 0, we have 

I’ik = Iik+p(a28ik — aiak). (32.12) 

Using this formula, we can easily calculate Iik if Tik is known. 

PROBLEMS 

Problem 1. Determine the principal moments of inertia for the following types of mole¬ 
cule, regarded as systems of particles at fixed distances apart: (a) a molecule of collinear 
atoms, (b) a triatomic molecule which is an isosceles triangle (Fig. 36), (c) a tetratomic 
molecule which is an equilateral-based tetrahedron (Fig. 37). 

Fig. 36 Fig. 37 

Solution, (a) 

h = h = - ^ mambW, h = 0, 

where ma is the mass of the ath atom, lab the dista'nce between the nth and 6th atoms, and 
the summation includes one term for every pair of atoms in the molecule. 

For a diatomic molecule there is only one term in the sum, and the result is obvious: it is 
the product of the reduced mass of the two atoms and the square of the distance between 
them: h = I2 = mimsl2i(mi +m2>. 

(b) The centre of mass is on the axis of symmetry of the triangle, at a distance X2 — mzhln 
from its base (6 being the height of the triangle). The moments of inertia are Ii = 2»m»!262/u, 
h = imia2, = /i+/2. 

(c) The ee'iire of mass is on tjie axjs Df symmetry of the tetrahedron, at a distance 
= s ase being the height of the tetrahedron). The moments of inertia 
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are h = h = 3mimdi2lmia2, I3 — mia2. If vti = m2, h — \f(2/3)a, the molecule is a 
regular tetrahedron and /1 = h = I3 = mia2. 

Problem 2. Determine the principal moments of inertia for the following homogeneous 
bodies: (a) a thin rod of length Z, (b) a sphere of radius R, (c) a circular cylinder of radius R 
and height h, (d) a rectangular parallelepiped of sides a, b, and c, (e) a circular cone of height 
h and base radius R, (f) an ellipsoid of semiaxes a, b, c. 

Solution, (a) h = I2 = 1hid2, I3 = 0 (we neglect the thickness of the rod). 
(b) ii = h = h = tuR2 (found by calculating the sum /1+/2+/3 = 2pf r2 dV). 
(c) h = I2 —-i/t(jR2-HZj2), I3 = IpR2 (where the xs-axis is along the axis of the cylinder). 
(d) h = hp-{b2+c2), I2 = i\m(u2+c2), h — iljp.(a2+b2) (where the axes xi, x2, X3 are 

along the sides a, b, c respectively). 
(e) We first calculate the tensor I'tk with respect to axes whose origin is at the vertex of 

the cone (Fig. 38). The calculation is simple if cylindrical co-ordinates are used, and the result 
is /' 1 = /'2 = ip-(iR2+h2), I'3 = f oP-R2. The centre of mass is easily shown to be on the 
axis of the cone and at a distance a = ih from the vertex. Formula (32.12) therefore'gives 
Ii = h = I'l—p-a2 = .?tln(R2+lh2), h = I'3 = iV-R2- 

Fig. 38 

(f) The centre of mass is at the centre of the ellipsoid, and the principal axes of inertia are 
along the axes of the ellipsoid. The integration over the volume of the ellipsoid can be reduced 
to one over a sphere by the transformation x = af, y = bt), z — c(t which converts the equa¬ 
tion of the surface of the ellipsoid x2la2-\-y2jb2-{-z2lc2 = 1 into that of the unit sphere 
f2+i?2+C2= 1. 

For example, the moment of inertia about the x-axis is 

h SSS (y2+z2) dx dy Az 

* ^.j>abciU{^r,2+c2l2)A(Ar)Ai 

= iabcIW+c2), 

where I' is the moment of inertia of a sphere of unit radius. Since the volume of the ellipsoid 
is 4troic/3, we find the moments of inertia /1 = ip-(b2+c2), I2 = in(a2+c2), I3 = lpi(a2+b2). 

Problem 3. Determine the frequency of small oscillations of a compound pendulum (a 
rigid body swinging about a fixed horizontal axis in a gravitational field). 

Solution. Let / be the distance between the centre of mass of the pendulum 
about which it rotates, and a, ft y the angles between the principal axes of int 
axis of rotation. We take as the variable co-ordinate the angle <f> between 
and a fine through the centre of mass perpendicular to the axis of ' rru 
the centre of mass is V = lj>, and the components of the angular vi 

and the axis 
;rtia and the 

The velocity of 
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axes of inertia are ^ cos a, <fi cos /?, <f> cos y. Assuming the angle <j> to be small, we find the 
potential energy U = nsK 1 —cos <f>) ~ Ifjgty2. The Lagrangian is therefore 

L = inlty+Kh cos2a+/2 cos2|3+/3 cosZy)*2-lusty*- 

The frequency of the oscillations is consequently 

u,2 = cos2a +/2 cos2/3+/3 cos2y). 

Problem 4. Find the kinetic energy of the system shown in Fig. 39: OA and AB are thin 
uniform rods of length l hinged together at A. The rod OA rotates (in the plane of the diagram) 
about O, while the end B of the rod AB slides along Ox. 

O 

Fig. 39 

Solution. The velocity of the centre of mass of the rod OA (which is at the middle of 
the rod) is ity, where # is the angle AOB. The kinetic energy of the rod OA is therefore 
Ti = | p.lty2 +1 ty2, where ft is the mass of each rod. 

The Cartesian co-ordinates of the centre of mass of the rod AB are X = JZ cos <j>, Y 
= ll sin Since the angular velocity of rotation of this rod is also <f>, its kinetic energy is 
T2 — lfj.(X2+Y2)+lty2 = i/iZ2(l +8 sin2$)^2+\ty2. The total kinetic energy of this 
system is therefore T = 1 +3 sintyty2, since I = /opZ2 (see Problem 2(a)). 

Problem S. Find the kinetic energy of a cylinder of radius R rolling on a plane, if the mass 
of the cylinder is so distributed that one of the principal axes of inertia is parallel to the axis 
of the cylinder and at a distance a from it, and the moment of inertia about that principal 

Solution. Let be the angle between the vertical and a line from the centre of mass 
perpendicular to the axis of the cylinder (Fig. 40). The motion of the cylinder at any instant 

Fig. 40 

may be regarded as a pure rotation about an instantaneous axis which coincides with the 
line where the cylinder touches the plane. The angular velocity of this rotation is 4>, since 
the angular velocity of rotation about all parallel axes is the same. The centre of mass is at a 
distance V(‘lZ+-R2—2aR cos 4>) from the instantaneous axis, and its velocity is therefore 
V = $^/(a-+R-—2aR cos 4>). The total kinetic energy is 

T ~ i/4ji2+H2~2n}{ cos 4,)<f>2 + iH‘2- 
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Problem 6. Find the kinetic energy of a homogeneous cylinder of radius a rolling inside 
a cylindrical surface of radius R (Fig. 41). 

Fig. 41 

Solution. We use the angle <fi between the vertical and the line joining the centres of the 
cylinders. The centre of mass of the rolling cylinder is on the axis, and its velocity is V = 
ij>(R—a). We can calculate the angular velocity as that of a pure rotation about an instantaneous 
axis which coincides with the line Of contact of the cylinders; it is D = V/a = ^(R—a)la. 
If Is is the moment of inertia about the axis of the cylinder, then 

T = MR-aW+hHR-aWVa* = itfR-aW, 
Is being given by Problem 2(c). 

Problem 7. Find the kinetic energy of a homogeneous cone rolling on a plane. 

Solution. We denote by 6 the angle between the line OA 'in which the cone touches the 
plane and some fixed direction in the plane (Fig. 42). The centre of mass is on the axis of the 
cone, and its velocity V = a& cos a, where 2 a is the vertical angle of the cone and a the 

distance of the centre of mass from the vertex. The angular velocity can be calculated as 
that of a pure rotation about the instantaneous axis OA: D = V/a sin a = 6 cot a. One of 
the principal axes of inertia (*s) is along the axis of the cone, and we take another (xz) perpen¬ 
dicular to the axis of the cone and to the line OA. Then the components of the vector S2 
(which is parallel to OA) along the principal axes of inertia are Si sin a, 0, Si cos a. The kinetic 
energy is thus 

r = tout* cc .■o+Hk* cos*a+|/,tf»^J 

= 3iih262(l +5 cos2a)/40, 

where h is the height of the cone, and h, h and a have been given in Problem 2(e). 

Problem 8. Find the kinetic energy of a homogeneous cone whose base rolls on a plane 
and whose vertex is fixed at a height above the plane equal to the radius of the base, so that 
the axis of the cone is parallel to the plane. 

SOLUTION. We use the angle 8 between a fixed direction in the plane and the prelection 
of the axis of the cone on the plane (Fig. 43). Then the velocity of the centre of mass is ° . 
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the notation being as in Problem 7. The instamtaneous axis of rotation is the generator OA 
which passes through the point where the cone touches the plane. The centre of mass is at a 
distance a sin a from this axis, and so O = V/a sin o = 0/sin o. The components of the 
vector Si along the principal axes of inertia are, if the %2-axis is taken perpendicular to the 
axis of the cone and to the line OA, D sin a = 6, 0, Cl cos a = 6 cot a. The kinetic energy 
is therefore 

T = }^202+}/i02+J/302 cot2a 

= 3;dj202(sec2a+5)/40. 

Problem 9. Find the kinetic energy of a homogeneous ellipsoid which rotates about one 
of its axes (AB in Fig. 44) while that axis itself rotates about a line CD perpendicular to it 
and passing through the centre of the ellipsoid. 

Solution. Let the angle of rotation about CD be 6, and that about AB (i.e. the angle 
between CD and the xi-axis of inertia, which is perpendicular to AB) be <f>. Then the com¬ 
ponents of S2 along the axes of inertia are 6 cos 4>, 6 sin <f>, <j>, if the x3-axis is AB. Since the 
centre of mass, at the centre of the ellipsoid, is at rest, the kinetic energy is 

T = i(h cos^+h sin2^)02+^2. 

4- 

4? 
Fig. 44 Fig. 45 

Problem 10. The same as Problem 9, but for the case where the axis AB is not perpendicu¬ 
lar to CD and is an axis of symmetry of the ellipsoid (Fig. 45). 

Solution. The components of SI along the axis AB and the other two principal axes of 
inertia, which are perpendicular to AB but otherwise arbitrary, are 0cos a cos<f>, 6 cos ax 
* sin <t>, <f>+6 sin a. The kinetic energy is T= Jiitf2 cos 2a+J/3(^+0 sin a)2. 

§33. Angular momentum of a rigid body 

The value of the angular momentum of a system depends, as we know, on 

the point with respect to which it is defined. In the mechanics of a rigid body, 
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the most appropriate point to choose for this purpose is the origin of the 

moving system of co-ordinates, i.e. the centre of mass of the body, and in 

what follows we shall denote by M the angular momentum so defined. 

According to formula (9.6), when the origin is taken at the centre of mass 

of the body, the angular momentum M is equal to the “intrinsic” angular 

momentum resulting from the motion relative to the centre of mass. In the 

definition M = Smrxv we therefore replace v by £2 X r: 

M = ]> mrx (Slxr) =^m[r2Sl— r(r-£2)], 

or, in tensor notation, 

Mi = ^ m(xr£ti—XiXifh) = XI* 2m(xj2S,*— 

Finally, using the definition (32.2) of the inertia tensor, we have 

Mt = /ifefifc. (33.1) 

If the axes xi, *2, *3 are the same as the principal axes of inertia, formula 

(33.1) gives 

Mi = hili, M2 = hSh, M3 = /3O3. (33.2) 

In particular, for a spherical top, where all three principal moments of inertia 

are equal, we have simply 

M = ISi, (33.3) 

i.e. the angular momentum vector is proportional to, and in the same direc¬ 

tion as, the angular velocity vector. For an, arbitrary body, however, the 

vector M is not in general in the same direction as £2; this happens only 

when the body is rotating about one of its principal axes of inertia. 

Let us consider a rigid body moving freely, i.e. not subject to any external 

forces. We suppose that any uniform translational motion, which is of no 

interest, is removed, leaving a free rotation of the body. 

As in any closed system, the angular momentum of the freely rotating body 

is constant. For a spherical top the condition M = constant gives £2 = con¬ 

stant ; that is, the most general free rotation of a spherical top is a uniform 

rotation about an axis fixed in space. 

The case of a rotator is equally simple. Here also M = ISI, and the vector 

Si is perpendicular to the axis of the rotator. Hence a free rotation of a rotator 

is a uniform rotation in one plane about an axis perpendicular to that plane. 

The law of conservation of angular momentum also suffices to determine 

the more complex free rotation of a symmetrical top. Using the fact that the 

principal axes of inertia xi, x2 (perpendicular to the axis of symmetry (X3) 

of the top) may be chosen arbitrarily, we take the x2-axis perpendicular to 

the plane containing the constant vector M and the instantaneous position 

of the X3-axis. Then M2 = 0, and formulae (33.2) show that Q2 = 0. This 

means that the directions of M, £2 and the axis of the top are at every 

in one plane (Fig. 46). Hence, in turn, it follows that the velocity v ==^ tha* 
of every point on the axis of the top is at every instant perpendicu ar 
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plane. That is, the axis of the top rotates uniformly (see below) about the 

direction of M, describing a circular cone. This is called regular precession 

of the top. At the same time the top rotates uniformly about its own axis. 

The angular velocities of these two rotations' can easily be expressed in 

terms of the given angular momentum M and the angle 8 between the axis 

of the top and the direction of M. The angular velocity of the top about its 

own axis is just the component Q3 of the vector fi along the axis: 

Q3 = M3//3 = (M/h) cos8. (33.4) 

To determine the rate of precession Qpr, the vector fi must be resolved into 

components along x3 and along M. The first of these gives no displacement 

of the axis of the top, and the second component is therefore the required 

angular velocity of precession. Fig. 46 shows that Qpr sin 8 = Qi, and, since 

Qi = M1//1 = (M/h) sin 8, we have 

Qpr = M/h. (33.5) 

§34. The equations of motion of a rigid body 

Since a rigid body has, in general, six degrees of freedom, the general 

equations of motion must be six in number. They can be put in a form which 
gives the time derivatives of two vectors, the momentum and the angular 
momentum of the body. 

The first equation is obtained by simply summing the equations p = f 
for each partic e m the body, p being the momentum of the particle and f the 
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force acting on it. In terms of the total momentum of the body P = 2p = /xV 

and total force acting on it F = 2f, we have 

dP/d t = F. (34.1) 

Although F has been defined as the sum of all the forces f acting on the 

various particles, including the forces due to other particles, F actually 

includes only external forces: the forces of interaction between the particles 

composing the body must cancel out, since if there are no external forces 

the momentum of the body, like that of any closed system, must be conserved, 

i.e. we must have F = 0. 

If U is the potential energy of a rigid body in an external field, the force 

F is obtained by differentiating U with respect to the co-ordinates of the 

centre of mass of the body: 

F = -8U/8R. (34.2) 

For, when the body undergoes a translation through a distance SR, the radius 

vector r of every point in the body changes by SR, and so the change in the 

potential energy is 

8U = JfdUIBt) • Sr = SR ■ JdUjdt = -SR ■ ]>f = -F • SR. 

It may be noted that equation (34.1) can also be obtained as Lagrange’s 

equation for the co-ordinates of the centre of mass, (d/dt)8LI8\ = 8Lj8R, 

with the Lagrangian (32.4), for which 

8L/8W = (i\ = P, 8L/8R = -8U/BR = F. 

Let us now derive the second equation of motion, which gives the time 

derivative of the angular momentum M. To simplify the derivation, it is 

convenient to choose the “fixed” (inertial) frame of reference in such a way 

that the centre of mass is at rest in that frame at the instant considered. 

We have M = (d/df)2rxp = Sr xp + Srxp. Our choice of the frame of 

reference (with V = 0) means that the value of r at the instant considered is 

the same as v = t- Since the vectors v and p = mv are parallel, rxp = 0. 

Replacing p by the force f, we have finally 

dM/d t = K, (34.3) 

where 

K = ]>rxf. (34.4) 

Since M has been defined as the angular momentum about the centre of 

mass (see the beginning of §33), it is unchanged when we go from one inertial 

frame to another. This is seen from formula (9.5) with R = 0. We can there¬ 

fore deduce that the equation of motion (34.3), though derived for a particular 

frame of reference, is valid in any other inertial frame, by Galileo’s relativity 

principle. totaj 
The vector rxf is called the moment of the force f, and so K is ^ 

torque, i.e. the sum of the moments of all the forces acting on the ° 
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the total force F, the sum (34.4) need include only the external forces: by 

the law of conservation of angular momentum, the sum of the moments of 

the internal forces in a closed system must be zero. 

The moment of a force, like the angular momentum, in general depends on 

the choice of the origin about which it is defined. In (34.3) and (34.4) the 

moments are defined with respect to the centre of mass of the bocly. 

When the origin is moved a distance a, the new radius vector r' of each 

point in the body is equal to r-a. Hence K = Srxf = Dr'xf+Saxf or 

K = K' + axF. (34.5) 

Hence we see, in particular, that the value of the torque is independent of 

the choice of origin if the total force F = 0. In this case the body is said to 

be acted on by a couple. 

Equation (34.3) may be regarded as Lagrange’s equation (d/dt) 8L/8Q. 

= dL/dtJ> for the “rotational co-ordinates”. Differentiating the Lagrangian 

(32.4) with respect to the components of the vector £J, we obtain dL/dClt 

= lufd-k = The change in the potential energy resulting from an 

infinitesimal rotation 8cJ> of the body is hU = — Sf• 8r = — Sf• 8cJ> xr 

= — 8cJ>-Srxf= -K-8<j>, whence 

K = — at//c4>, (34.6) 

so that dL/difr = —dUjdfy = K. 

Let us assume that the vectors F and K are perpendicular. Then a vector a 

can always be found such that K' given by formula (34.5) is zero and 

K = axF. (34.7) 

The choice of a is not unique, since the addition to a of any vector parallel 

to F does not affect equation (34.7). The condition K' = 0 thus gives a straight 

line, not a point, in the moving system of co-ordinates. When K is perpendi¬ 

cular to F, the effect of all the applied forces can therefore be reduced to that 

of a single force F acting along this line. 

Such a case is that of a uniform field of force, in which the force on a particle 

is f = eE, with E a constant vector characterising the field and e characterising 

the properties of a particle with respect to the field.f Then F = E2e, 

K = Ser x E. Assuming that ^ 0, we define a radius vector ro such that 

*o = 2>/2> (34.8) 

Then the total torque is simply 

K = r0 x F. (34.9) 

Thus, when a rigid body moves in a uniform field, the effect of the field 

reduces to the action of a single force F applied at the point whose radius 

vector is (34.8). The position of this point is entirely determined by the 

t For example, m a un;form electric field E is the field strength and e the charge; in a 
uniform gravi a ional field E is the acceleration g due to gravity and e is the mass m. 
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properties of the body itself. In a gravitational field, for example, it is the 

centre of mass. 

§35. Eulerian angles 

As has already been mentioned, the motion of a rigid body can be described 

by means of the three co-ordinates of its centre of mass and any three angles 

which determine the orientation of the axes »i, x3, X3 in the moving system of 

co-ordinates relative to the fixed system X, Y, Z. These angles may often be 

conveniently taken as what are called Eulerian angles. 

Since we are here interested only in the angles between the co-ordinate 

axes, we may take the origins of the two systems to coincide (Fig. 47). The 

moving xiX2-plane intersects the fixed XT-plane in some line ON, called the 

line of nodes. This line is evidently perpendicular to both the Z-axis and the 

.x*3-axis; we take its positive direction as that of the vector product ZXX3 

(where z and X3 are unit vectors along the Z and X3 axes). 

We take, as the quantities defining the position of the axes #1, *2, *3 

relative to the axes X, Y, Z the angle 6 between the Z and x3 axes, the angle <f> 

between the X-axis and ON, and the angle $ between the xi-axis and ON. 

The angles <f> and ip are measured round the Z and x3 axes respectively in the 

direction given by the corkscrew rule. The angle 6 takes values from 0 to ir, 

and <f> and ip from 0 to 2n.f 

t The angles 8 and are respectively the polar angle and azimuth of the direction 
*3 with respect to the axes X, Y, Z. The angles 8 and i■*-<!> are respectively the polar angle 
and azimuth of the direction Z with respect to the axes xi, *2, *3. 
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Let us now express the components of the angular velocity vector SI along 

the moving axes Xi, xo, X3 in terms of the Eulerian angles and their derivatives. 

To do this, we must find the components along those axes of the angular 

velocities 8, <j>, >p. The angular velocity 8 is along the line of nodes ON, and 

its components are 61 = 8 cos ifi, 62 = —8 sin ip, 83 = 0. The angular velo¬ 

city <f> is along the Z-axis; its component along the x3-axis is $3 = <j> cos 8, and 

in the xiX2-plane <j> sin 8. Resolving the latter along the xi and X2 axes, we 

have <f>\ = (j> sin 8 sin ip, <p2 = <p sin 8 cos ip. Finally, the angular velocity >p 

is along the x3-axis. 

Collecting the components along each axis, we have 

Qi = <p sin# sintp + 8 cosi/i, -> 

Q2 = ^ sin0 cos0—0 sim/i, J (35.1) 

CI3 = <j> cos 8+ip. ' 

If the axes xi, X2, X3 are taken to be the principal axes of inertia of the body, 

the rotational kinetic energy in terms of the Eulerian angles is obtained by 

substituting (35.1) in (32.8). 

For a symmetrical top (7i == /2 ^ I3), a simple reduction gives 

Trot = Ui(<£2 sin20 + e2)+i/3(^ cos 0 +VO2. (35.2) 

This expression can also be more simply obtained by using the fact that the 

choice of directions of the principal axes Xi, X2 is arbitrary for a symmetrical 

top. If the Xi axis is taken along the line of nodes ON, i.e. ip — 0, the compo¬ 

nents of the angular velocity are simply 

Qi = 8, Q2 = <j> sin0, Q.3 = <j> cos 8 + ip. (35.3) 

As a simple example of the use of the Eulerian angles, we shall use them 

to determine the free motion of a symmetrical top, already found in §33. 

We take the Z-axis of the fixed system of co-ordinates in the direction of the 

constant angular momentum M of the top. The X3-axis of the moving system 

is along the axis of the top; let the xi-axis coincide with the line of nodes at 

the instant considered. Then the components of the vector M are, by 

formulae (35.3), Ml = /i^l = h8, M2 = Ii^2 = Ivj> sin 8, M3 = 

= /3(<£ cos 8 + ip). Since the xi-axis is perpendicular to the Z-axis, we have 

Mi = 0, M2 = M sin 8, M3 = M cos 8. Comparison gives 

0 = 0, h<i> = M, 73(^ cos 8+tp) = M cos 8. (35.4) 

The first of these equations gives 8 = constant, i.e. the angle between the 

axis of the top and the direction of M is constant. The second equation gives 
the angular velocity of precession <p = Mjl\, in agreement with (33.5). 
Finally, the third equation gives the angular velocity with which the top 
rotates about its own axis: Q3 = (M/73) cos 8. 
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PROBLEMS 

Problem 1. Reduce to quadratures the problem of the motion of a heavy 
top whose lowest point is fixed (Fig. 48). 

Solution. We take the common origin of the moving and fixed systems of 
at the fixed point O of the top, and the Z-axis vertical. The Lagrangian of the top 
tional field is L = i(/i + ft/2) (02 +^2 sin20) + £/3(^+^ cos 6)2—figl cos 8, where , 
of the top and l the distance from its fixed point to the centre of mass. 

The co-ordinates <p and 4> are cyclic. Hence we have two integrals of the moti 

= 8L/dtjj — Iscos 8) = constant = Ms 

pj, = dL/8<l>— (/'i sin28+Is cos20)^+/s^ cos 8 — constant = Mz, 

where /'i = Ii+gl2; the quantities p$ and p^ are the components of the 
momentum about O along the xs and Z axes respectively. The energy 

E = iI'i((P+42 sin20) +lh(<!i+<j> cos 8)2+,igl cos 8 

is also conserved. 
From equations (1) and (2) we find 

Eliminating <j> and <ji from 

4> = (Mz-Ms cos 8)11’i sin20, 

Ms Mz-MscosB 

Is C°S I'l sin20 ’ 

the energy (3) by means of equations (4) and (5), we i 

E’ = iI\^+Uet,(8), 

(Mz-Ms cos 8)2 
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Thus we have 

J V{2[£,'-C/c„(e)]//,i} ’ (/) 

this is an elliptic integral. The angles <ji and <j> are then expressed in terms of 8 by means of 
integrals obtained from equations (4) and (5). 

The range of variation of 8 during the motion is determined by the condition E' > UeU(8). 
The function Uett(8) tends to infinity (if Ms =£ Mz) when 8 tends to 0 or -tt, and has a minimum 
between these values. Hence the equation E' = Ueti(8) has two roots, which determine the 
limiting values 8i and 82 of the inclination of the axis of the top to the vertical. 

When 8 varies from 61 to 82, the derivative <l> changes sign if and only if the difference 
Mt—Ms cos 6 changes sign in that range of 6. If it does not change sign, the axis of the top 
precesses monotonically about the vertical, at the same time oscillating up and down. The 
latter oscillation is called nutation-, see Fig. 49a, where the curve shows the track of the axis 
on the surface of a'sphere whose centre is at the fixed point of the top. If <j> does change sign, 
the direction of precession is opposite on the two limiting circles, and so the axis of the top 
describes loops as it moves round the vertical (Fig. 49b). Finally, if one of 81, 82 is a zero of 
Mi—Ms cos 8, <j) and 6 vanish together on the corresponding limiting circle, and the path 
of the axis is of the kind shown in Fig. 49c. 

Fig. 49 

Problem 2. Find the condition for the rotation of a top about a vertical axis to be stable. 

Solution. For 0 = 0, the *3 and Z axes coincide, so that M3 = Mi, E' = 0. Rotation 
about this axis is stable if 8 = 0 is a minimum of the function t/err(0). For small 8 we have 
Ueti ~ (Mszl8I'i — ifr-gl)82, whence the condition for stability is M32 > 4-I'iugl or H32 
> M'mljh2. 

Problem 3. Determine the motion of a top when the kinetic energy of its rotation about 
its axis is large compared with its energy in the gravitational field (called a “fast” top). 

Solution. In a first approximation, neglecting gravity, there is a free precession of the 
axis of the top about the direction of the angular momentum M, corresponding in this case 
to the nutation of the top; according to (33.5), the angular velocity of this precession is 

firm = M/i'l. (1) 

In the next approximation, there is a slow precession of the angular momentum M about 
the vertical (Fig. SO). To determine the rate of this precession, we average the exact equation 
of motion (34.3) dM/df = K over the nutation period. The moment of the force of gravity 
on the top »s K==MfnaXg, where 113 is a unit vector along the axis of the top. It is evident 
from symmetry that the result of averaging K over the “nutation cone” is to replace 113 by 
its componen '_t™) cos a in the direction of M, where a is the antrle between M and the 
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§36. Euler’s equations 

The equations of motion given in §34 relate to the fixed system of co¬ 

ordinates: the derivatives dP/dt and dM/dt in equations (34.1) and (34.3) 

are the rates of change of the vectors P and M with respect to that system. 

The simplest relation between the components of the rotational angular 

momentum M of a rigid body and the components of the angular velocity 

occurs, however, in the moving system of co-ordinates whose axes are the 

principal axes of inertia. In order to use this relation, we must first transform 

the equations of motion to the moving co-ordinates x\, X2, X3. 

Let dA/dt be the rate of change of any vector A with respect to the fixed 

system of co-ordinates. If the vector A does not change in the moving system, 

its rate of change in the fixed system is due only to the rotation, so that 

dA/d t = Six A; see §9, where it has been pointed out that formulae such as 

(9.1) and (9.2) are valid for any vector. In the general case, the right-hand 

side includes also the rate of change of the vector A with respect to the moving 

system. Denoting this rate of change by d'A/d/, we obtain 

dA 

~d7 
d'A 

+ ^ 
d t 

xA. (36.1) 
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Using this general formula, we can immediately write equations (34.1) and 

(34.3) in the form 

d'P d'M 
-+£2 xP = F, -+ flxM = K. (36.2) 
df df ’ 

Since the differentiation with respect to time is here performed in the moving 

system of co-ordinates, we can take the components of equations (36.2) along 

the axes of that system, putting (d'P/dt)i = dPi/dt,..., (d'M/df)i = dMyjdt, 

..., where the suffixes 1, 2, 3 denote the components along the axes *i, x2, *3- 

In the first equation we replace P by /xV, obtaining 

/x(^+Q2U3-Q3U2) = Fu 

/dU2 \ 
^- + ^3^1-fIiU3 j = F2, - (36.3) 

/dV3 \ 
H——f QiF2—Q2Fij = F3. 

If the axes *1, x2, x3 are the principal axes of inertia, we can put M\ = /1Q1, 

etc., in the second equation (36.2), obtaining 

h dD.ijdt+(I3 — 72)Q2Q3 = Ki, 1 

h dfi2/df + (7i - /3)Q3Q 1 = K2, l (36.4) 

I3 dfl3/dt + (I2 — 7i)Qi02 = K3. J 

These are Euler’s equations. 

In free rotation, K = 0, so that Euler’s equations become 

dQi/dt + (/3 —- /2)Q2Q3//1 = 0, 

dQ2/df + (/1-/3)Q3Qi//2 = 0, (36.5) 

dQ3/d£ + (/2 — 7i)QiQ2//3 = 0. 

As an example, let us apply these equations to the free rotation of a sym¬ 

metrical top, which has already been discussed. Putting I\ = /2, we find from 

the third equation £>3 = 0, i.e. Q3 = constant. We then write the first two 

equations as £li = — toQ2, £l2 = ojQi, where 

= Q3(/3-/i)//i (36.6) 

is a constant. Multiplying the second equation by i and adding, we have 

d(Q1 + jQ2)/dt = ja>(0i + f02), so that Qi + f02 = A exp(icot), where A is a 

constant, which may be made real by a suitable choice of the origin of time. 
Thus 

= A cos tot Q.2 = A sin cot. (36.7) 
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This result shows that the component of the angular velocity perpendicular 

to the axis of the top rotates with an angular velocity co, remaining of constant 

magnitude A = \/(Qi2 + Q22). Since the component 03 along the axis of the 

top is also constant, we conclude that the vector £2 rotates uniformly with 

angular velocity co about the axis of the top, retraining unchanged in magni¬ 

tude. On account of the relations Mi = h^i, M2 = /202, M3 = 73£i3 be¬ 

tween the components of £2 and M, the angular momentum vector M evidently 

executes a similar motion with respect to the axis of the top. 

This description is naturally only a different view of the motion already 

discussed in §33 and §35, where it was referred to the fixed system of co¬ 

ordinates. In particular, the angular velocity of the vector M (the Z-axis in 

Fig. 48, §35) about the x3-axis is, in terms of Eulerian angles, the same as 

the angular velocity — Using equations (35.4), we have 

M cos 6 / 1 1 \ 
1p = ——-—<j> cos6 = Mcos0| —-L 

73 \ I3 hi 

or —1p = Q3(Is — Ii)/I\, in agreement with (36.6). 

§37. The asymmetrical top 

We shall now apply Euler’s equations to the still more complex problem 

of the free rotation of an asymmetrical top, for which all three moments of 

inertia are different. We assume for definiteness that 

h > h > h- (37.1) 

Two integrals of Euler’s equations are known already from the laws of 

conservation of energy and angular momentum: 

/1Q12 + /2U22 + /3Q32 = 2E, 

7i2Qi2 + /22Q22 + /32Q32 = M\ 

where the energy E and the magnitude M of the angular momentum are given 

constants. These two equations, written in terms of the components of the 

vector M, are 

Mi2 M22 M32 

h h Is 

Mi2 + M22 + M32 = M2. 

(37.3) 

(37.4) 

From these equations we can already draw some conclusions concerning 

the nature of the motion. To do so, we notice that equations (37.3) and (37.4), 

regarded as involving co-ordinates Mi, Mo, M3, are respectively the equation 

of an ellipsoid with semiaxes \/(2EIi), \/{2Elo), \/(2EI3) and that of a sphere 
of radius M. When the vector M moves relative to the axes of inertia of the 
top, its terminus moves along the line of intersection of these two surfaces. 
Fig. 51 shows a number of such lines of intersection of an ellips01 with 
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spheres of various radii. The existence of an intersection is ensured by the 

obviously valid inequalities 

2Eh < M2 < 2EIS, (37.5) 

which signify that the radius of the sphere (37.4) lies between the least and 

greatest semiaxes of the ellipsoid (37.3). 

Let us examine the way in which these “paths”! °f the terminus of the 

vector M change as M varies (for a given value of E). When M2 is only slightly 

greater than 2EIi, the sphere intersects the ellipsoid in two small closed curves 

round the .vi-axis near the corresponding poles of the ellipsoid; as M2 -»■ 2EIi, 

these curves shrink to points at the poles. When M2 increases, the curves 

become larger, and for M2 = 2Eh they become two plane curves (ellipses) 

which intersect at the poles of the ellipsoid on the a^-axis. When M2 increases 

further, two separate closed paths again appear, but now round the poles on 

the x3-axis; as M2 2Eh they shrink to points at these poles. 

First of all, we may note that, since the paths are closed, the motion of the 

vector M relative to the top must be periodic; during one period the vector 

M describes some conical surface and returns to its original position. 

Next, an essential difference in the nature of the paths near the various 

poles of the ellipsoid should be noted. Near the xi and *3 axes, the paths lie 

entirely in the neighbourhood of the corresponding poles, but the paths which 

pass near the poles on the x2-axis go. elsewhere to great distances from those 

poles. This difference corresponds to a difference in the stability of the rota¬ 

tion of the top about its three axes of inertia. Rotation about the Xi and X3 
axes (corresponding to the least and greatest of the three moments of inertia) 

t The corresponding curves described by the terminus of the vector SI are called polhodes. 
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is stable, in the sense that, if the top is made to deviate slightly from such a 

state, the resulting motion is close to the original one. A rotation about the 

x2-axis, however, is unstable: a small deviation is sufficient to give rise to a 

motion which takes the top to positions far from its original one. 

To determine the time dependence of the components of £2 (or of the com¬ 

ponents of M, which are proportional to those of £2) we use Euler’s equations 

(36.5). We express Qi and U3 in terms of Q2 by means of equations (37.2) 

and (37.3): 

= [(2E73 - M2) - 72(73 - Wh2Mh{h - h), 

£V = [(M2 - 2Eh) - I2(h ~ Ii)m}jh{h ~ h), ( ' 

and substitute in the second equation (36.5), obtaining 

d£22/dt = (73 — 7i)QiQ3//2 

= V{[(2EI3 - M2) - /2(/3 - 72)Q22] x 

x [(M2 - 2Eh) - h{h - h)Q?]}!h\/{hh). (37.7) 

Integration of this equation gives the function t(Q2) as an elliptic integral. 

In reducing it to a standard form we shall suppose for definiteness that 

M2 > 2Eh; if this inequality is reversed, the suffixes 1 and 3 are interchanged 

in the following formulae. Using instead of t and Q2 the new variables 

r - WKh-hXMZ-lEhyiM], 

S = Q2V/[/2(/3-/2)/(2M3-M2)], ^ ' } 

and defining a positive parameter k2 < 1 by 

k2 = (I2 - h){2Eh - M2)/(/3 - 72)(M2 - 2 Eh), (37.9) 

we obtain 

ds 

J V[(l-s2Xl-k2s2)]’ 

the origin of time being taken at an instant when Q2 = 0. When this integral 

is inverted we have a Jacobian elliptic function s = snr, and this gives U2 

as a function of time; Qi(t) and Qft) are algebraic functions of Q2(t) given 

by (37.6). Using the definitions cn r = v/(l -sn2r), dn r = ^/(l - k2 sn2r), 

we find 

Qi = V[(2£/3-M2)/71(73-71)]cnr, , 
Q2 = V[(2£73-M2)/72(73-72)]snr, 

Q3 = V[(M2-2E7i)/73(73 —7i)]dnr. ' 

These are periodic functions, and their period in the variable 

where K is a complete elliptic integral of the first kind: 

K 3 
f ds 

J V[(i-*2)(i-*2*2)] V(l-k2si n*u) 

(37.10) 

r is 4A', 

(37.11) 
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The period in t is therefore 

T = AK^ihhh'Xh-hm^-lEh)]. (37.12) 

After a time T the vector Si returns to its original position relative to the 

axes of the top. The top itself, however, does not return to its original position 

relative to the fixed system of co-ordinates; see below. 

For h = h, of course, formulae (37.10) reduce to those obtained in §36 

for a symmetrical top: as h ->h, the parameter k2 ->0, and the elliptic 

functions degenerate to circular functions: snr^ sin r, cn r -> cos r, 

dn r -> 1, and we return to formulae (36.7). 

When M2 = 2EI3 we have Q: = Q2 = 0, Q3 = constant, i.e. the vector Si 

is always parallel to the „Y3-axis. This case corresponds to uniform rotation of 

the top about the v3-axis. Similarly, for M2 = 2EI\ (when r = 0) we have 

uniform rotation about the vi-axis. 

Let us now determine the absolute motion of the top in space (i.e. its 

motion relative to the fixed system of co-ordinates X, Y, Z). To do so, we 

use the Eulerian angles ip, <p, 6, between the axes vi, x%, x3 of the top and the 

axes X, Y, Z, taking the fixed Z-axis in the direction of the constant vector M. 

Since the polar angle and azimuth of the Z-axis with respect to the axes 

*i, X2, x3 are respectively 6 and ^rr—tp (see the footnote to §35), we obtain on 

taking the components of M along the axes „%’i, x2, x3 

M sin 6 sin ip = M\ = ZiQi, 1 

M sin 6 cos ip = M2 = I202, L 

M cos 6 = M3 — I303. J 

(37.13) 

Hence 

cos 6 = I303jM, tan ip = Ii0ijl202, (37.14) 

and from formulae (37.10) 

cos6 = \/[I3(M2 - 2EIi)jM2(I3 - A)] dn r, 

tan ip = \/[/i(/3— /2)//2(/3-/i)] cnr/snr, 
(37.15) 

which give the angles 6 and ip as functions of time; like the components of the 

vector £2, they are periodic functions, with period (37.12). 

The angle <p does not appear in formulae (37.13), and to calculate it we 

must return to formulae (35.1), which express the components of £2 in terms 

of the time derivatives of the Eulerian angles. Eliminating 6 from the equa¬ 

tions Q,i = <j> sin 6 sin ip + 6 cos ip, = <p sin 6 cos ip—6 sin ip, we obtain 

<£ = (CiL sin ip + O2 cos ip)jsin 6, and then, using formulae (37.13), 

d<p/dt = (I1012 + I2022)MI(I12012 + I22022). (37.16) 

The function is obtained by integration, but the integrand involves 
elliptic functions in a complicated way. By means of some fairly complex 
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transformations, the integral can be expressed in terms of theta functions; 

we shall not give the calculations,f but only the final result. 

The function <j>(t) can be represented (apart from an arbitrary additive 
constant) as a sum of two terms: 

m 7 Ut)+Mt), (37.17) 

one of which is given by 

exp[2*M0] = £01 -«*■}/■ ®oi (~ + fa j, (37.18) 

where &01 is a theta function and a a real constant such that 

sn(2£a/Q = iy/[Is(M* - 2EIx)lh{2EI3 - M2)]; (37.19) 

K and T are given by (37.11) and (37.12). The function on the right-hand side 

of (37.18) is periodic, with period \T, so that 4>x(t) varies by 2tt during a time 
T. The second term in (37.17) is given by 

M*) = 
= M___i 9oi'(i«.) 

T' 2ttIi kT &oi(fa) 
(37.20) 

This function increases by 2tt during a time T'. Thus the motion in ^ is a 

combination of two periodic motions, one of the periods (T) being the same 

as the period of variation of the angles 4> and 6, while the other (T') is incom¬ 

mensurable with T. This incommensurability has the result that the top does 

not at any time return exactly to its original position. 

PROBLEMS 

Problem 1. Determine the free rotation of a top about an axis near the x3-axis or the 

Solution. Let the *3-axis be near the direction of M. Then the components Mi and M2 
are small quantities, and the component M3 = M (apart from quantities of the second and 
higher orders of smallness). To the same accuracy the first two Euler’s equations (36 5) can 
be written dAfi/df = n0M2{l-I3/h), dM2/dt = n0Mi(73//i-l), where Cl0 = M/h As 
usual we seek solutions for Mi and M2 proportional to exp(ia>f), obtaining for the frequency w 

•-‘s/KI-'HI-i)]. 
The values of Mi and M2 ai 

Mi =MaJ (I_i) “s “*• m-1)sin “*• 
where a is an arbitrary small constant. These formulae give the motion of the vector 
relative to the top. In Fig. SI, the terminus of the vector M describes, with frequency 
a small ellipse about the pole on the x3-axis. , H 3 

To determine the absolute motion of the top in space, we calculate its Euleri 
In the present case the angle 6 between the *3-axis »nd the .Z-axis (directi 

uienan angles. 
Df M) is small. 

t These are given by E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles 
and Rigid Bodies, 4th ed.. Chapter VI, Dover, New York 1944. 
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and by formulae (37.14) tan ^ = Mi/Mz, 02 a 2(1 -cos 0) = 2(1 -M3/M) x (Mi2+M£)IM2-, 
substituting (2), we obtain 

tan 4 = V[/i(/3-/2)//2(/3-/i)] cot tu/. 

To find <f>, we note that, by the third formula (35.1), we have, for 6> 1, O0 SS Oa ~ 
Hence 

= Clot—i/i, (4) 

omitting an arbitrary constant of integration. 
A clearer idea of the nature of the motion of the top is obtained if we consider the change 

in direction of the three axes of inertia. Let ni, n2, n3 be unit vectors along these axes. The 
vectors m and n2 rotate uniformly in the A"F-plane with frequency fi0, and at the same time 
execute small transverse oscillations with frequency tu. These oscillations are given by the 
Z-components of the vectors: 

mz x MJM ~ a\/(hlh-l) cos tut, 

mz X, M2/M = aVih/h-l) sin tut. 

For the vector n3 we have, to the same accuracy, mx X 6 sin </>, nsy x —6 cos ns: x 1. 
(The polar angle and azimuth of n3 with respect to the axes X, Y, Z are 6 and iw; see 
the footnote to §35.) We also write, using formulae (37.13), 

nzx = 0 sin( Clot—ip) 

= 0 sin fiot cos —0 cos flot sin 

= (M2/M) sin n0t-(Mi/M) cos fi0t 

=aj (i_i)sin sin wt~a*j a_i) c°s ^ c°s 

= ~iaU (t! -i)+V (I-1)] c°s(fio+“)'+ 
(I (I -1)] cos(fi°-‘o)t- 

Similarly 

"• - (I -*W (I ->)] *»<“"+">'+ 
+t"[V (i, -*W (y, -i)] 

From this we see that the motion of n3 is a superposition of two rotations about the Z-axis 
with frequencies H0± tu. 

Problem 2. Determine the free rotation of a top for which M2 = 2Eh. 

Solution. This case corresponds to the movement of the terminus of M along a curve 
through the pole on the xa-axis (Fig. 51). Equation (37.7) becomes ds/dr = 1 -j*, 
T = tVKh—/i)(/3— /2)//i/3]no, t = D2/Do, where Do = Mjh = 2E/M. Integration of 
this equation and the use of formulae (37.6) gives 

fii = n0V[/2(/3-/2)//i(/3-/i)] sech t, 
fi2 = Do tanh t, J (1) 

Da = DoV[/2(/2-h)!h(h -/i)J sech r. ’ 

To motion of the top, we use Eulerian angles, defining 0 as the angle 
between ’T^!,orl,of M) and the xs-axis (not the xa-axis as previously). In formulae 
(37.14) an“ ' ' * relate the components of the vector £2 to the Eulerian angles, we 
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must cyclically permute the suffixes 1, 2, 3 to 3, 1, 2. Substitution of (1) in these formulae 
then gives cos 6 = tanh t, <j> = fi0«+constant, tan f w V[h{h— h)/h(h—/a)]. 

It is seen from these formulae that, as t —> co, the vector S2 asymptotically approaches the 
*2-axis, which itself asymptotically approaches the Z-axis. 

§38. Rigid bodies in contact 

The equations of motion (34.1) and (34.3) show that the conditions of 

equilibrium for a rigid body can be written as the vanishing of the total force 

and total torque on the body: 

F = ^ f = 0, K=2rxf=0. (38.1) 

Here the summation is over all the external forces acting on the body, and r 

is the radius vector of the “point of application”; the origin with respect to 

which the torque is defined may be chosen arbitrarily, since if F = 0 the 

value of K does not depend on this choice (see (34.5)). 

If we have a system of rigid bodies in contact, the conditions (38.1) for 

each body separately must hold in equilibrium. The forces considered must 

include those exerted on each body by those with which it is in contact. These 

forces at the points of contact are called reactions. It is obvious that the mutual 

reactions of any two bodies are equal in magnitude and opposite in direction. 

In general, both the magnitudes and the directions of the reactions are 

found by solving simultaneously the equations of equilibrium (38.1) for all the 

bodies. In some cases, however, their directions are given by the conditions 

of the problem. For example, if two bodies can slide freely on each other, the 

reaction between them is normal to the surface. 

If two bodies in contact are in relative motion, dissipative forces of friction 

arise, in addition to the reaction. 

There are two possible types of motion of bodies in contact—sliding and 

rolling. In sliding, the reaction is perpendicular to the surfaces in contact, 

and the friction is tangential. Pure rolling, on the other hand, is characterised 

by the fact that there is no relative motion of the bodies at the point of 

contact; that is, a rolling body is at every instant as it were fixed to the point 

of contact. The reaction may be in any direction, i.e. it need not be normal 

to the surfaces in contact. The friction in rolling appears as an additional 

torque which opposes rolling. 

If the friction in sliding is negligibly small, the surfaces concerned are 

said to be perfectly smooth. If, on the other hand, only pure rolling without 

sliding is possible, and the friction in rolling can be neglected, the surfaces 

are said to be perfectly rough. 

In both these cases the frictional forces do not appear explicitly in the pro¬ 

blem, which is therefore purely one of mechanics. If, on the other hand, the 

properties of the friction play an essential part in determining the motion, 

then the latter is not a purely mechanical process (cf. §25). 
Contact between two bodies reduces the number of their degrees of freedom 

as compared with the case of free motion. Hitherto, in discussing such 
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problems, we have taken this reduction into account by using co-ordinates 

which correspond directly to the actual number of degrees of freedom. In 

rolling, however, such a choice of co-ordinates may be impossible. 

The condition imposed on the motion of rolling bodies is that the velocities 

of the points in contact should be equal; for example, when a body rolls on a 

fixed surface, the velocity of the point of contact must be zero. In the general 

case, this condition is expressed by the equations of constraint, of the form 

% CaiQi = 0, (38.2) 

where the cai are functions of the co-ordinates only, and the suffix a denumer- 

ates the equations. If the left-hand sides of these equations are not the total 

time derivatives of some functions-of the co-ordinates, the equations cannot 

be integrated. In other words, they cannot be reduced to relations between the 

co-ordinates only, which could be used to express the position of the bodies 

in terms of fewer co-ordinates, corresponding to the actual number of degrees 

of freedom. Such constraints are said to be non-holonomic, as opposed to 

holonomic constraints, which impose relations between the co-ordinates only. 

Let us consider, for example, the rolling of a sphere on a plane. As usual, 

we denote by V the translational velocity (the velocity of the centre of the 

sphere), and by £2 the angular velocity of rotation. The velocity of the point 

of contact with the plane is found by putting r = - an in the general formula 

v = V + £2xr; a is the radius of the sphere and n a unit vector along the 

normal to the plane. The required condition is that there should be no sliding 

at the point of contact, i.e. 

V-flfixn = 0. (38.3) 

This cannot be integrated: although the velocity V is the total time derivative 

of the radius vector of the centre of the sphere, the angular velocity is not in 

general the total time derivative of any co-ordinate. The constraint (38.3) is 

therefore non-holonomic. f 
Since the equations of non-holonomic constraints cannot be used to reduce 

the number of co-ordinates, when such constraints are present it is necessary 

to use co-ordinates which are not all independent. To derive the correspond¬ 

ing Lagrange’s equations, we return to the principle of least action. 

The existence of the constraints (38.2) places certain restrictions on the 

possible values of the variations of the co-ordinates: multiplying equations 

(38.2) by St, we find that the variations 8# are not independent, but are 

related by 

2 caisqi = 0. (38.4) 

t It may be noted that the similar constraint in the rolling of a cylinder is holonomic. In 
that case the axis of rotation has a fixed direction in space, and hence ft — d^/df is the total 
derivative of the angle <$> of rotation of the cylinder about its axis. The condition (38.3) can 
therefore be ^tegrated, and gives a relation between the angle <j> and the co-ordinate of the 
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This must be taken into account in varying the action. According to 

Lagrange’s method of finding conditional extrema, we must add to the inte¬ 

grand in the variation of the action 

the left-hand sides of equations (38.4) multiplied by undetermined coeffici¬ 

ents Xa (functions of the co-ordinates), and then equate the integral to zero. 

In so doing the variations 8qt are regarded as entirely independent, and the 
result is 

d 

d7 ©-Irl- (38.5) 

These equations, together with the constraint equations (38.2), form a com¬ 

plete set of equations for the unknowns qt and Xa. 

The reaction forces do not appear in this treatment, and the contact of 

the bodies is fully allowed for by means of the constraint equations. There 

is, however, another method of deriving the equations of motion for bodies in 

contact, in which the reactions are introduced explicitly. The essential feature 

of this method, which is sometimes called d'Alembert's principle, is to write 

for each of the bodies in contact the equations. 

dP/dt = 2 f> dM/dt = 2 r xf, (38.6) 

wherein the forces f acting on each body include the reactions. The latter 

are initially unknown and are determined, together with the motion of the 

body, by solving the equations. This method is equally applicable for both 

holonomic and non-holonomic constraints. 

PROBLEMS 

Problem 1. Using d’Alembert’s principle, find the equations of motion of a homogeneous 
sphere rolling on a plane under an external force F and torque K. 

Solution. The constraint equation is (38.3). Denoting the reaction force at the point of 
contact between the sphere and the plane by R, we have equations (38.6) in the form 

h dV/df = F+R, (1) 

I dSl/'dt = K— an xR, (2) 

where we have used the facts that P = and, for a spherical top, M = ISl. Differentiating 
the constraint equation (38.3) with respect to time, we have V = a£lx n. Substituting in 
equation (1) and eliminating S2 by means of (2), we obtain (7/aM)(F+R) = Kxn-oR+ 
+an(n- R), which relates R, F and K. Writing this equation in components and substitut¬ 
ing I = iiia2 ( §32, Problem 2(b)), we have 

Rz = -Ky--Fx. Ry=--Kz--Fy, Rz=-Fl, 

where the plane is taken as the xy-plane. Finally, substituting these expressi«ns 1 
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the equations of motion involving only 

dVx | / 

Jdf~ 7 7fi\ 

% JtiVy 5 / 

df ~7fV 

unponents fix, n„ of the angular velocity are given in terms of Vx, Vv by the constraint 
Dn (38.3); for fix we have the equation f/ia2 dfi*/dt = Kz, the ^-component of equa- 

presented by a force P vertically downwards, 
1 Rc are respectively vertically upwards and 

the other end B on 
;trings AD and BC, 
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the latter being in the same vertical plane as AB. Determine the reactions of the planes and 
the tensions in the strings. 

Solution. The tensions Ta and Tv, are from A to D and from B to C respectively. The 
reactions Ra and Rr are perpendicular to the corresponding planes. The solution of the 
equations of equilibrium gives Rb = P, Tb = iP cot a, Ra = Tb sin /3, Ta = 1B cos g. 

Problem 4. Two rods of length / and negligible weight are hinged together, and their ends 
are connected by a string AB (Fig. 54). They stand on a plane, and a force F is applied 
at the midpoint of one rod. Determine the reactions. 

Fig. 54 

Solution. The tension T acts at A from A to B, and at B from B to A. The reactions Ra 
and Rb at A and B are perpendicular to the plane. Let Rc be the reaction on the rod AC at 
the hinge; then a reaction —Rc acts on the rod BC. The condition that the sum of the moments 
of the forces Rb, T and —Rc acting on the rod BC should be zero shows that Rc acts along 
BC. The remaining conditions of equilibrium (for the two rods separately) give Ra = $F, 
Rb = IF, Rc = IF cosec a, T = JFcot a, where a is the angle CAB. 

§39. Motion in a non-inertial frame of reference 

Up to this point we have always used inertial frames of reference in discuss¬ 

ing the motion of mechanical systems. For example, the Lagrangian 

L0 = -|-mvo2- U, (39.1) 

and the corresponding equation of motion m dvo/df = — 8Uj8r, for a single 

particle in an external field are valid only in an inertial frame. (In this section 

the suffix 0 denotes quantities pertaining to an inertial frame.) 

Let us now consider what the equations of motion will be in a non-inertial 

frame of reference. The basis of the solution of this problem is again the 

principle of least action, whose validity does not depend on the frame of 

reference chosen. Lagrange’s equations 

d /dL\ _ dL 

df l dv ) 8r 

(39.2) 

are likewise valid, but the Lagrangian is no longer of the form 
derive it we must carrv out the necessary transformation of the s,. 
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This transformation is done in two steps. Let us first consider a frame of 

reference K' which moves with a translational velocity V(f) relative to the 

inertial frame Ko. The velocities vo and v' of a particle in the frames Ko and 

K' respectively are related by 

vo = v' + V(0. (39.3) 

Substitution of this in (39.1) gives the Lagrangian in K 

L’ = \m\'2 + m\ • V + \mX2 — U. 

Now V2(f) is a given function of time, and can be written as the total deriva¬ 

tive with respect to t of some other function; the third term in L' can there¬ 

fore be omitted. Next, v' = dr'jdt, where r' is the radius vector of the par¬ 

ticle in the frame K’. Hence 

m\(t)‘v' = mX• dr'jdt = d(raV • r’)jdt - mr ■ dXjdt. 

Substituting in the Lagrangian and again omitting the total time derivative, 

we have finally 

L' = \mv2 - m\V(t) • r' - U, (39.4) 

where W = dXjdt is the translational acceleration of the frame K'. 

The Lagrange’s equation derived from (39.4) is 

dv' dU 
m-=-m\V{t). (39.5) 

dt ?r' 

Thus an accelerated translational motion of a frame of reference is equivalent, 

as regards its effect on the equations of motion of a particle, to the application 

of a uniform field of force equal to the mass of the particle multiplied by the 

acceleration W, in the direction opposite to this acceleration. 

Let us now bring in a further frame of reference K, whose origin coincides 

with that of K’, but which rotates relative to K’ with angular velocity £2(/). 

Thus K executes both a translational and a rotational motion relative to the 

inertial frame Ko. 

The velocity v' of the particle relative to IC is composed of its velocity v 

relative to K and the velocity £2Xr of its rotation with K: v' = v+£2xr 

(since the radius vectors r and r' in the frames K and K’ coincide). Substitut¬ 

ing this in the Lagrangian (39.4), we obtain 

L = imv2 + «v • £2 X r + v,?«(£2 x r)2 — niW • r — U. (39.6) 

This is the general form of the Lagrangian of a particle in an arbitrary, not 
necessarily inertial, frame of reference. The rotation of the frame leads to the 
appearance in the Lagrangian of a term linear in the velocity of the particle. 

To calculate the derivatives appearing in Lagrange’s equation, we write 
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the total differential 

d L = /nvdv+mdvfi xr + mvfi xdr + 

+ m(Sl xt)-(Six dr) - mW-dr - (dU/dr). dr 

= /nv*dv + mdvS2 xr + mdr-v xS2 + 

+ m(Sl x r) x fi • dr - mW-dr - (8 Ujdr) • dr. 

The terms in dv and dr give 

BL/dv = mv+mSlxr, 

BLjBr = mvxfi + m(Sl x r) x fi - mW- BU/Br. 

Substitution of these expressions in (39.2) gives the required equation of 
motion: 

mdvjdt = - BUjdr - mW+mrxSl + 2m\ x S2 + mSl x (r x S2). (39.7) 

We see that the “inertia forces” due to the rotation of the frame consist 

of three terms. The force mrxSl is due to the non-uniformity of the rotation, 

but the other two terms appear even if the rotation is uniform. The force 

2mvxSl is called the Coriolis force; unlike any other (non-dissipative) force 

hitherto considered, it depends on the velocity of the particle. The force 

mSl x (r x S2) is called the centrifugal force. It lies in the plane through r and 

S2, is perpendicular to the axis of rotation (i.e. to S2), and is directed away 

from the axis. The magnitude of this force is mpD.2, where p is the distance 

of the particle from the axis of rotation. 

Let us now consider the particular case of a uniformly rotating frame with 

no translational acceleration. Putting in (39.6) and (39.7) S2 = constant 

W = 0, we obtain the Lagrangian 

L = Imz^ + mv-Sl xr + \m(Sl xr)2- U (39.8) 

and the equation of motion 

wzdv/d< = ~ BUfdt | 2mv x fi t- mSl x (r x S2). (39.9) 

The energy of the particle in this case is obtained by substituting 

p = BLjdv = m\+mSlxr (39.10) 

in E = p-v—L, which gives 

E = —lm(Sl x r)2 + U. (39.11) 

It should be noticed that the energy contains no term linear in the velocity. 

The rotation of the frame simply adds to the energy a term depending only 

on the co-ordinates of the particle arid proportional to the square of the 

angular velocity. This additional term -\m(SlxTf is called the centrifugal 
potential energy. 

The velocity v of the particle relative to the uniformly rotating frame of 
reference is related to its velocity vo relative to the inertial frame Ko by 

v0 = v + fixr. (39.12) 
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The momentum p (39.10) of the particle in the frame K is therefore the same 

as its momentum po = m\0 in the frame Kq. The angular momenta 

M0 = rxpo and M = rxp are likewise equal. The energies of the particle 

in the two frames are not the same, however. Substituting v from (39.12) in 

(39.11), we obtain E = \nw<f-wzv0• S2xr+C/ = \mv(?+ U-mrxv0• S2. 

The first two terms are the energy E0 in the frame K0. Using the angular 
momentum M, we have 

E = (39.13) 

This formula gives the law of transformation of energy when we change to a 

uniformly rotating frame. Although it has been derived for a single particle, 

the derivation can evidently be generalised immediately to any system of 

particles, and the same, formula (39.13) is obtained. 

PROBLEMS 

Problem 1. Find the deflection of a freely falling body from the vertical caused by the 
Earth’s rotation, assuming the angular velocity of this rotation to be small. 

Solution. In a gravitational field U = —wig. r, where g is the gravity acceleration 
vector; neglecting the centrifugal force in equation (39.9) as containing the square of SI, we 
have the equation of motion 

v = 2v x£2-f g. (1) 

This equation may be solved by successive approximations. To do so, we put v = V1+V2, 
where v,is the solution of the equation Vi = g, i.e. vi = gt-f v0 (v0 being the initial velocity)! 
Substituting v =■ vi+v2 in (1) and retaining only vi on the right, we have for v2 the equation 
v-2 = 2vix£2 - 2fgxS2+2vox£2. Integration gives 

r = h+v0t+igt2+h3g xS2+t2v0 x£2, (2) 

where h is the initial radius vector of the particle. 
Let the z-axis be vertically upwards, and the x-axis towards the pole; then gx = gy = 0, 
~ ~S> = ^ cos K Hy = 0, Cli = Q sin A, where A is the latitude (which for definite¬ 

ness we take to be north). Putting vo = 0 in (2), we find * = 0, y = —IfigQ cos A. Substitu¬ 
tion of the time of fall t ~ V(2h/g) gives finally x = 0, y = - i(2h’g'^!ZgQ. cos A, the negative 
value indicating an eastwaid deflection. 

Problem 2. Determine the deflection from coplanarity of the path of a particle thrown 
from the Earth’s surface with velocity vo. 

Solution. Let the xz-plane be such as to contain the velocity v0. The initial altitude 
n — 0. The lateral deviation is given by (2), Problem 1: y = — lt3gQz+<-(fizJ'oz—fizfox) 
or, substituting the time of flight t x 2v0zlg, y = 4o022(ivoS-lx -t>o*-Q*)/g2. 

Problem 3. Determine the effect of the Earth’s rotation on small oscillations of a pendulum 
(the problem of Foucault’s pendulum). 

Solution. Neglecting the vertical displacement of the pendulum, as being a quantity 
of the second order of smallness, we can regard the motion as taking place in the horizontal 
-cv-plane. ^™‘‘mB terms In Cl2, we have the equations of motion jt+cu2* = 2thy, y + uizy 

“ the frequency of oscillation of the pendulum if the Earth’s rotation is 
equation by i and adding, we obtain a single equation 

_jne. Omittii 
_ —2ClzX, where r 
neglected. Multipiying the ^ 
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£+2t'Ozf + cu2! == 0 for the complex quantity f = x+iy. For fiz to, the solution of this 
equation is 

i = exp(—iClzt)[Ai exp(fo)t)+y32 <xp(— iiot)] 

x+iy = (.vo+iyo) exp(-ifht), 

where the functions xo(f), yo(f) give the path of the pendulum when the Earth’s rotation is 
neglected. The effect of this rotation is therefore to turn the path about the vertical with 
angular velocity fiz. 



CHAPTER VII 

THE CANONICAL EQUATIONS! 

§40. Hamilton’s equations 

The formulation of the laws of mechanics in terms of the Lagrangian, and 

of Lagrange’s equations derived from it, presupposes that the mechanical 

state of a system is described by specifying its generalised co-ordinates and 

velocities. This is not the only possible mode of description, however. A 

number of advantages, especially in the study of certain general problems of 

mechanics, attach to a description in terms of the generalised co-ordinates 

and momenta of the system. The question therefore arises of the form of 

the equations of motion corresponding to that formulation of mechanics. 

The passage from one set of independent variables to another can be 

effected by means of what is called in mathematics Legendre's transformation. 

In the present case this transformation is as follows. The total differential 

of the Lagrangian as a function of co-ordinates and velocities is 

2£L c L 

. oqi ^ £qt 

This expression may be written 

AL = 2 Pi d?i+ 2 Pi d9«> (40.1) 

since the derivatives 8Lj£qt are, by definition, the generalised momenta, and 

dLjdqi = pi by Lagrange’s equations. Writing the second term in (40.1) as 

dqt = d(S/>i5i) — fLiji dpi, taking the differential d(fLpiqi) to the left-hand 

side, and reversing the signs, we obtain from (40.1) 

d(Zpi<ii-L) = -^Pidqi + ^qidpt. 

The argument of the differential is the energy of the system (cf. §6); 

expressed in terms of co-ordinates and momenta, it is called the Hamilton's 

function or Hamiltonian of the system: 

q> t) m %pjgi-L. 
rT _ i 

t The reader may find useful the following table showing certain differences betw< 
nomenclature Used in this book and that which is generally used in the English litera 

Here Elseuhere 
Principle of least action Hamilton’s principle 

(40.2) 
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From the equation in differentials 

dH = -^Pi&qt + ^qi dpt, (40.3) 

in which the independent variables are the co-ordinates and momenta, we 

have the equations 

cji = cH. cpi. Pi = -dHjdqi. (40.4) 

These are the required equations of motion in the variables p and q, and 

are called Hamilton's equations. They form a set of 2s first-order differential 

equations for the 2s unknown functions pi(t) and q-i(t), replacing the s second- 

order equations in the Lagrangian treatment. Because of their simplicity and 

symmetry of form, they are also called canonical equations. 

The total time derivative of the Hamiltonian is 

Substitution of cji and pi from equations (40.4) shows that the last two terms 

cancel, and so 

d HISt = cHjdt. (40.5) 

In particular, if the Hamiltonian does not depend explicitly on time, then 

dHjdt 0, and we have the law of conservation of energy. 

As well as the dynamical variables q, q or q, p, the Lagrangian and the 

Hamiltonian involve various parameters which relate to the properties of the 

mechanical system itself, or to the external forces on it. Let A be one such 

parameter. Regarding it as a variable, we have instead of (40.1) 

dL = T pi dqi + ypi dqi + (dL!dX) dA, 

and (40.3) becomes 

dll = —^pi dqt + qt dpi-(cL!clX) dA. 

Hence 

(ell cX)Ptq = -(«£/!%,5, (40.6) 

which relates the derivatives of the Lagrangian and the Hamiltonian with 

respect to the parameter A. The suffixes to the derivatives show the quantities 

which are to be kept constant in the differentiation. 

This result can be put in another way. Let the Lagrangian be of the form 

L = L0 + L', where L' is a smail correction to the function Lq. Then the 

corresponding addition H’ in the Hamiltonian H = Ho + H’ is related to L’ 

by 

(//');>,,= ~(L')iq. (40'7) 

It may be noticed that, in transforming (40.1) into (40.3), vve ^je^0t 
include a term in dt to take account of a possible explicit time- CP Ce 
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of the Lagrangian, since the time would there be only a parameter which 

would not be involved in the transformation. Analogously to formula (40.6), 

the partial time derivatives of L and H are related by 

(dHldt)PiQ= -(dLI8t)i,Q. (40.8) 

PROBLEMS 

Problem 1. Find the Hamiltonian for a single particle in Cartesian, cylindrical and 
spherical Co-ordinates. 

Solution. In Cartesian co-ordinates x, y, z, 

H = — (px2 +py2 +pP) + U(x, y, 2); 

in cylindrical co-ordinates r, <f>, z, 

in spherical co-ordinates r, 6, <f>, 

Problem 2. Find the Hamiltonian for a particle in a uniformly rotating frame of reference. 

Solution. Expressing the velocity v in the energy (39.11) in terms of the momentum p 
by (39.10), we have H = p2j2m-£l- rxp+U. 

Problem 3. Find the Hamiltonian for a system comprising one particle of mass M and n 
particles each of mass m, excluding the motion of the centre of mass (see §13, Problem). 

Solution. The energy E is obtained from the Lagrangian found in §13, Problem, by 
changing the sign of U. The generalised momenta are 

pa - cL/CVa 

= mva - (m2ln) ^ vc. 

2p“= m 2- ~ 2v° 

= {mM/fj.) 2v0, 

Va = pjm + (l/MJ^Pc- 

Substitution in E gives 

h=—2 p°2 h— (2 p°)+v- 2m 2M / 

§41. The Routhian 

In some cases it is convenient, in changing to new variables, to replace 

only some, and not all, of the generalised velocities by momenta. The trans¬ 

formation is entirely similar to that given in §40. 

To simplify the formulae, let us at first suppose that there are only two 
co-ordinates q and £, say, and transform from the variables q, £, q, £ to 

?. I. P' wbere p is the generalised momentum corresponding to the co¬ 
ordinate q■ 
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The differential of the Lagrangian L(q, $, q, £) is 

dL = (dLjdq) ds+(0L/0$) dq+{8L/8$) df+(«L/#) df 
= p dq+p dq+{8L/8$) di+(8LI8i) d£ 

whence 

d(L -/>?) = p dq - q dp + (8L/8$) d$ + {81,18$) d$. 

If we define the Routhian as 

R(q,p,$J)=M-L> (41-1) 
in which the velocity j is expressed in terms of the momentum p by means 

of the equation/) = 8L/8q, then its differential is 

dR = -P dq + q dp-{8L/8$) d$-{8Lj8i) d£. (41.2) 

Hence q = 8R/8p, p = -8R/8q, (41.3) 

8Lj8$ = —8R/8$, 8h[8i= -8R/8& (41.4) 

Substituting these equations in the Lagrangian for the co-ordinate £, we have 

d /8R\ _ 8R 

UK#) ~ ~8$‘ 
(41.5) 

Thus the Routhian is a Hamiltonian with respect to the co-ordinate q 

(equations (41.3)) and a Lagrangian with respect to the co-ordinate $ (equation 

(41.5)). 
According to the general definition the energy of the system is 

E = q 8L/8q+i 8L18$-L = pq + £ 8L\8$-L. 

In terms of the Routhian it is 

E = R—$ 8Rj8$, (41.6) 

as we find by substituting (41.1) and (41.4). 

The generalisation of the above formulae to the case of several co-ordinates 

q and $ is evident. 
The use of the Routhian may be convenient, in particular, when some of 

the co-ordinates are cyclic. If the co-ordinates q are cyclic, they do not appear 

in the Lagrangian, nor therefore in the Routhian, so that the latter is a func¬ 

tion of p, $ and $. The momenta p corresponding to cyclic co-ordinates are 

constant, as follows also from the second equation (41.3), which in this sense 

contains no new information. When the momenta p are replaced by their 

given constant values, equations (41.5) (d/di) 8R(p, £, $)j8$ = 8R(p, $, $)/8£ 
become equations containing only the co-ordinates $, so that the cyclic co¬ 

ordinates are entirely eliminated. If these equations are solved for the func¬ 

tions f(i), substitution of the latter on the right-hand sides of the equations 

q = 8R(p, $, £)l8p gives the functions q{t) by direct integration. 

PROBLEM 

Find the Routhian for a symmetrical top in an external field 6), eliminating the ychc 
co-ordinate i/> (where xfi, <j>, 8 are Eulerian angles). 



§42 Poisson brackets 135 

Solution. The Lagrangian is L = £/'i(02+^2sin20)+i/3(^+^cos 6)2—U(<j>, 6); see 
§35, Problem 1. The Routhian is 

R = p'id’—L = --pytj> cos 0—il'i(62+(j)2 sin2#) + 0); 

the first term is a constant and may be omitted. 

§42. Poisson brackets 

Let / (p, q, t) be some function of co-ordinates, momenta and time. Its 

total time derivative is 

if = 
dt 

——Qk + "7 Pk 1 

Substitution of the values of qk and pk given by Hamilton’s equations (40.4) 

leads to the expression 
dfjdt = df/dt+[H,f], (42.1) 

where 8H df 8H df \ 

= 8Pk\ (42-2) 

This expression is called the Poisson bracket of the quantities H and/. 

Those functions of the dynamical variables which remain constant during 

the motion of the system are, as we know, called integrals of the motion. 

We see from (42.1) that the condition for the quantity/to be an integral of 

the motion (d//dt = 0) can be written 

8fl8t + [H,f] = 0. (42.3) 

If the integral of the motion is not explicitly dependent on the time, then 

[H,f] = 0, (42.4) 

i.e. the Poisson bracket of the integral and the Hamiltonian must be zero. 

For any two quantities/and g, the Poisson bracket is defined analogously 

t0(42‘2): , W df % 0/ Sg \ 

= (42'5) 

The Poisson bracket has the following properties, which are easily derived 

from its definition. 

If the two functions are interchanged, the bracket changes sign; if one of 

the functions is a constant c, the bracket is zero: 

U.g]= -[*./]. (42.6) 

[/, c] = 0. (42.7) 

Also [fi+/2,g] = [fug] + [f2,gl (42.8) 

[/1/2, g] = /i[/2. g] +/2[/i, gl (42.9) 

Taking the partial derivative of (42.5) with respect to time, we obtain 

S - - - \*f 1 . r, 
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If one of the functions/and g is one of the momenta or co-ordinates, the 

Poisson bracket reduces to a partial derivative: 

[/, qk] = Wn> (42-n) 

[/,/*]=-»• (42-12) 

Formula (42.11), for example, may be obtained by putting £ = qk in (42.5); 

the sum reduces to a single term, since SqjJdqi = 8/a and dqjjdpi = 0. Put¬ 

ting in (42.11) and (42.12) the function/equal to qt and pi we have, in parti¬ 

cular, 

[qu qk] = 0, [pi, pk] =0, [pu qk] = &ik- (42.13) 

The relation 

[/, [g, h]] + [g, \h,f]] + [h, [/, g]] = 0, (42.14) 

known as Jacobi's identity, holds between the Poisson brackets formed from 

three functions /, g and h. To prove it, we first note the following result. 

According to the definition (42.5), the Poisson bracket [/, g] is a bilinear 

homogeneous function of the first derivatives of / and g. Hence the bracket 

[h, [/ £]], for example, is a linear homogeneous function of the second 

derivatives of/ and g. The left-hand side of equation (42.14) is therefore a 

linear homogeneous function of the second derivatives of all three functions 

/, g and h. Let us collect the terms involving the second derivatives of /. 

The first bracket contains no such terms, since it involves only the first 

derivatives of/. The sum of the second and third brackets may be symboli¬ 

cally written in terms of the linear differential operators Di and D2, defined by 

DM) = b> 4>l DM) = \h, 4>\. Then 

b. [*,/]]+[*. [/.£]] = b. [*./]]-[*. b>/]] 
= D1[D2(J)]-D2[D1(f)] 

= {DiD2—D2Di)f. 

It is easy to see that this combination of linear differential operators cannot 

involve the second derivatives of/. The general form of the linear differential 

operators is 

^ d ^ e 
D2“2*5? 

where $k and rjk are arbitrary functions of the variables *1, x2,.... Then 

M2=i &+i 
^ B2 % d 

and the difference of these, 
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D1D2-D2Dl = 2( 

k,i- 

dyi \ 8 

dxic Bxjc/dxi’ 

is again an operator involving only single differentiations. Thus the terms in 

the second derivatives of / on the left-hand side of equation (42.14) cancel 

and, since the same is of course true of g and h, the whole expression is identi¬ 

cally zero. 
An important property of the Poisson bracket is that, if / and g are two 

integrals of the motion, their Poisson bracket is likewise an integral of the 

motion: 

[f,g] = constant. (42.15) 

This is Poisson's theorem. The proof is very simple if / and g do not depend 

explicitly on the time. Putting h = H in Jacobi’s identity, we obtain 

[H, [/, g]] + [/, \g, If]] + lg, = 0. 
Hence, if [H, £] = 0 and [//,/] = 0, then [H, [/,£]] = 0, which is the 

required result. 
If the integrals / and g of the motion are explicitly time-dependent, we 

put, from (42.1), 

^[f,g\ = + [/,£]]• 

Using formula (42.10) and expressing the bracket [H, [/,£]] in terms of two 

others by means of Jacobi’s identity, we find 

(42.16) 

which evidently proves Poisson’s theorem. 

Of course, Poisson’s theorem does not always supply further integrals of 

the motion, since there are only 2s— 1 of these (s being the number of degrees 

of freedom). In some cases the result is trivial, the Poisson bracket being a 

constant. In other cases the integral obtained is simply a function of the ori¬ 

ginal integrals / and g. If neither of these two possibilities occurs, however, 

then the Poisson bracket is a further integral of the motion. 

PROBLEMS 

Problem 1. Determine the Poisson brackets formed from the Cartesian components of 
the momentum p and the angular momentum M = rxp of a particle. 

Solution. Formula (42.12) gives [Mx,py\ = —SMJdy = —d(ypi—zpy)!Sy = —pt, 
and similarly [Mx, px] = 0, [Mx, pz~\ = py. The remaining brackets are obtained by cyclically 
permuting the suffixes x, y, z. 
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Problem 2. Determine the Poisson brackets formed from the components of M. 

Solution. A direct calculation from formula (42.5) gives [Mx, Mt] = —Mz, [My, Mz] 
= -Mx, [Mz, Mx] = -My. 

Since the momenta and co-ordinates of different particles are mutually independent variables, 
it is easy to see that the formulae derived in Problems 1 and 2 are valid also for the total 
momentum and angular momentum of any system of particles. 

Problem 3. Show that [<t>, Mt] = 0, where <j> is any function, spherically symmetrical 
about the origin, of the co-ordinates and momentum of a particle. 

Solution. Such a function <j> can depend on the components of the vectors 
through the combinations r2, p2, r • p. Hence 

and p only 

and similarly for 8<j>/8p. The required relation may be verified by direct calculation from 
formula (42.5), using these formulae for the partial derivatives. 

Problem 4. Show that [f, Mz] = fixn, where f is a vector function of the co-ordinates 
and momentum of a particle, and n is a unit vector parallel to the z-axis. 

Solution. An arbitrary vector f(r, p) may be written as f = r^i+p^+rxp^j, where 
<S>i, <h, <h are scalar functions. The required relation may be verified by direct calculation 
from formulae (42.9), (42.11), (42.12) and the formula of Problem 3. 

§43. The action as a function of the co-ordinates 

In formulating the principle of least action, we have considered the integral 

«2 

5 = j L dt, (43.1) 

h 

taken along a path between two given positions qa) and q{2) which the system 

occupies at given instants h and t2. In varying the action, we compared the 

values of this integral for neighbouring paths with the same values of tf(fi) 

and q(t2). Only one of these paths corresponds to the actual motion, namely 

the path for which the integral S has its minimum value. 

Let us now consider another aspect of the concept of action, regarding S 

as a quantity characterising the motion along the actual path, and compare 

the values of S for paths having a common beginning at q{t\) = qa\ but 

passing through different points at time t2. In other w’ords, we consider the 

action integral for the true path as a function of the co-ordinates at the upper 

limit of integration. 
The change in the action from one path to a neighbouring path is given 

(if there is one degree of freedom) by the expression (2.5): 

8S 
d 8L 

"d7"a^. 
\8q dt. 

Since the paths of actual motion satisfy Lagrange’s equations, the integral 

in 8S is zero. In the first term we put 8q(ti) = 0, and denote the value of 
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b{H) by hq simply. Replacing BLjdq by p, we have finally 8S = phq or, in 
the general case of any number of degrees of freedom, 

85 = 2 PiS9i- (43.2) 

From this relation it follows that the partial derivatives of the action with 

respect to the co-ordinates are equal to the corresponding momenta: 

dSIdqi = pi. (43.3) 

The action may similarly be regarded as an explicit function of time, by 

considering paths starting at a given instant t± and at a given point q<*\ and 

ending at a given point se> at various times t2 = t. The partial derivative 

dS[8t thus obtained may be found by an appropriate variation of the integral. 

It is simpler, however, to use formula (43.3), proceeding as follows. 

From the definition of the action, its total time derivative along the path is 

dS/dt = L. (434) 

Next, regarding S as a function of co-ordinates and time, in the sense des¬ 
cribed above, and using formula (43.3), we have 

A comparison gives dSjdt = L — Yipiqi or 

SS,'8t = -H. (43.5) 

Formulae (43.3) and (43.5) may be represented by the expression 

d5 = 'LPi dqt-H dt (43.6) 

for the total differential of the action as a function of co-ordinates and time 

at the upper limit of integration in (43.1). Let us now suppose that the co¬ 

ordinates (and time) at the beginning of the motion, as well as at the end, 

are variable. It is evident that the corresponding change in S will be given 

by the difference of the expressions (43.6) for the beginning and end of the 
path, i.e. 

dS = 2/>i(2) dq^-HG) d/(2)_2/>f<i> dqiM+m\dt<». (43.7) 

This relation shows that, whatever the external forces on the system during 

its motion, its final state cannot be an arbitrary function of its initial state; 

only those motions are possible for which the expression on the right-hand 
side o equation (43.7) is a perfect differential. Thus the existence of the 

rmnnLc aC.tion’ quite aPart from an7 particular form of the Lagran- 
cular itPis pos restri.ctions on the range of possible motions. In parti- 

of the externalSfieiH<*°fderuiVe 3 nu4nber of general properties, independent 
» tor beams of particles diverging from given points in 



140 The Canonical Equations §44 

space. The study of these properties forms a part of the subject of geometrical 

°P\t\so{ interest to note that Hamilton’s equations can be formally derived 

from the condition of minimum action in the form 

5= Jq>d«?*-tfd0, (43-8) 

which follows from (43.6), if the co-ordinates and momenta are varied inde¬ 

pendently. Again assuming for simplicity that there is only one co-ordinate 

and momentum, we write the variation of the action as 

SS = | [8p dq+pd8q-(3Hjtq)8q dt-[dHldp)8p dt]. 

An integration by parts in the second term gives 

8S = J 8p{dq-{SHI8p) dt} + [p8q]-j 8q{dp+{8BJBq) d<}. 

At the limits of integration we must put 8q = 0, so that the integrated term 

is zero. The remaining expression can be zero only if the two integrands 

vanish separately, since the variations 8p and 8q are independent and arbitrary: 

dq = (blim dt, dp = -(bH/bq)dt, which, after division by dt, are 

Hamilton’s equations. 

§44. Maupertuis’ principle 

The motion of a mechanical system is entirely determined by the principle 

of least action: by solving the equations of motion which follow from that 

principle, we can find both the form of the path and the position on the path 

as a function of time. . , 
If the problem is the more restricted one of determining only the path, 

without reference to time, a simplified form of the principle of least action 

may be used. We assume that the Lagrangian, and therefore the Hamilton¬ 

ian, do not involve the time explicitly, so that the energy of the system is 

conserved: H(p, q) = E = constant. According to the principle of least action, 

the variation of the action, for given initial and final co-ordmates and times 

(to and t, say), is zero. If, however, we allow a variation of the final time t, 

the initial and final co-ordinates remaining fixed, we have (cf.(43.7)) 

8S = -H8t. (44.1) 

We now compare, not all virtual motions of the system, but only those 

which satisfy the law of conservation of energy. For such paths we can 

replace H in (44.1) by a constant E, which gives 

8S+E8t = 0. <44-2) 

t See The Classical The of Fields, Chapter 7, Pergamon Press, Oxfor 
1975. 
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Writing the action in the form (43.8) and again replacing H by E, we have 

5= ( 3>ds,-£(*-*>)• (44.3) 
J i 

The first term in this expression, 

So=j2>d?<, l44'4) 

is sometimes called the abbreviated action. 

Substituting (44.3) in (44.2), we find that 

SSo = 0. (44.5) 

Thus the abbreviated action has a minimum with respect to all paths which 

satisfy the law of conservation of energy and pass through the final point 

at any instant. In order to use such a variational principle, the momenta 

(and so the whole integrand in (44.4)) must be expressed in terms of the 

co-ordinates q and their differentials dq. To do this, we use the definition of 

momentum: 

(44.6) 

and the law of conservation of energy: 

' (447) 
Expressing the differential dt in terms of the co-ordinates q and their differen¬ 

tials dq by means of (44.7) and substituting in (44.6), we have the momenta 

in terms of q and dq, with the energy E as a parameter. The variational prin¬ 

ciple so obtained determines the path of the system, and is usually called 

Maupertuis' principle, although its precise formulation is due to Euler and 

The above calculations may be carried out explicitly when the Lagrangia 

takes its usual form (5.5) as the difference of the kinetic and potential energies: 

L = \ 2 - U(q). 
i,k 

The momenta are 

Pi = BLfdqi = 2aik(.9)4k, 

and the energy is 

E = £ 2 aik(4)4iQk+lJ(q). 
i,k 

The last equation gives 

dt = Vt2aik dqk/2(E- U)]\ (44.8) 
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substituting this in 

2/>i dtfi = 2 atk~ dqu 
i i,k at 

we find the abbreviated action: 

•So = J y [ 2{E- U) 2 aik dqi dg*]. (44.9) 

In particular, for a single particle the kinetic energy is T = £ mfdljdt)2 

where m is the mass of the particle and dl an element of its path; the variational 
principle which determines the path is 

8jV[>(5-[/)]d/=0, (44.10) 

where the integral is taken between two given points in space. This form is 
due to Jacobi. 

In free motion of the particle, U = 0, and (44.10) gives the trivial result 

8 j dl - 0, i.e. the particle moves along the shortest path between the two 
given points, i.e. in a straight line. 

Let us return now to the expression (44.3) for the action and vary it with 
respect to the parameter E. We have 

85 = —8 E-(t-t0)8E-E8t; 

substituting in (44.2), we obtain 

cSo/8E = t — t0. (44.11) 

When the abbreviated action has the form (44.9), this gives 

/ V[^aik dqt dqkl2(E-U)] = t-t0, (44.12) 

which is just the integral of equation (44.8). Together with the equation of 
the path, it entirely determines the motion. 

PROBLEM 

Derive the differential equation of the path from the variational principle (44.10). 

Solution. Effecting the variation, we have 

- ’ 2V(E-U) ' 

In the second term we have used the fact that d/2 = dr2 and therefore dldSl = dr- dSr. 

- dl-V(E-U)—. dSr}. 

J 2C .Ierm we nave used the fact that < 
Integrating this term by parts and then equating tc 
we obtain the differential equation of the path: 

-o the coefficient of Sr in the integrand. 

2V(£-r/)~[ V(£-t/)~] = -eu/Br. 
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Expanding the derivative on the left-hand side and putting the force F *= -SC7/Sr gives 

d2r/dZ2 = [F—(F- t)t]/2(E-U), 
where t = dr/d/ is a unit vector tangential to the path. The difference F—(F- t)t is the com¬ 
ponent F„ of the force normal to the path. The derivative d2r/d/2 = dt/dZ is known from 
differential geometry to be n/R, where R is the radius of curvature of the path and n the unit 
vector along the principal normal. Replacing E—U by imv2> we have (mv2/R)n — F„, in 
agreement with the familar expression for the normal acceleration in motion in a curved 

§45. Canonical transformations 

The choice of the generalised co-ordinates q is subject to no restriction; 

they may be any s quantities which uniquely define the position of the system 

in space. The formal appearance of Lagrange’s equations (2.6) does not 

depend on this choice, and in that-sense the equations may be said to be 

invariant with respect to a transformation from the co-ordinates qlt q2,... 

to any other independent quantities Qi, Q2.1 he new co-ordinates Q are 

functions of q, and we shall assume that they may explicitly depend on the 

time, i.e. that the transformation is of the form 

Q* = Qiq, 0 (45.1) 

(sometimes called a point transformation). 
Since Lagrange’s equations are unchanged by the transformation (45.1), 

Hamilton’s equations (40.4) are also unchanged. The latter equations, how¬ 

ever, in fact allow a much wider range of transformations. This is, of course, 

because in the Llamiltonian treatment the momenta p are variables inde¬ 

pendent of and on an equal footing with the co-ordinates q. Hence the trans¬ 

formation may be extended to include all the 2s independent variables p 
and q: 

Qi = Qi{p, q. 0. pi = PiiP’ 9, t). (45.2) 

This enlargement of the class of possible transformations is one of the im¬ 

portant advantages of the Llamiltonian treatment. 
The equations of motion do mot, however, retain their canonical form 

under all transformations of the form (45.2). Let us derive the conditions 

which must be satisfied if the equations of motion in the new variables P, Q 

are to be of the form 

Qi = dH'ldPt, Pi = — dH’/ciQi (45.3) 

with some Hamiltonian H'(P,Q). Among these transformations, there is a 

particularly important class called canonical transformations. 

The formulae for canonical transformations can be obtained as follows. It 

has been shown at the end of §43 that Hamilton’s equations can be derived 

from the principle of least action in the form 

sf (2pidqt-Hdt) = 0, (45.4) 
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in which the variation is applied to all the co-ordinates and momenta inde¬ 

pendently. If the new variables P and Q also satisfy Hamilton’s equations, 
the principle of least action 

S/(Z pi dQt-H'dt) = 0 (45.5) 

must hold. The two forms (45.4) and (45.5) are certainly equivalent if their 

integrands are the same apart from the total differential of some function F 

of co-ordinates, momenta and time. The difference between the two integrals 

is then a constant, namely the difference of the values of F at the limits of 

integration, which does not affect the variation. Thus we will take 

ZPidqi-Hdt = ZPidQi-H' dt + dF. 

Transformations which satisfy this condition are said to be canonical.! Each 

canonical transformation is characterised by a particular function F, called the 
generating function of the transformation. 

Writing this relation as 

dF= % Pt d?<- 2 Pi dQi + (//' -H) dt, (45.6) 

we see that 

pi = clFjdqu Pi=-dFj8Qi, H' = H+BF/dt; (45.7) 

here it is assumed that the generating function is given as a function of the 

old and new co-ordinates and the time: F = F(q, Q, t). When F is known, 

tormulae (45.7) give the relation between p, q and P, Q as well as the new 
Hamiltonian. 

It may be convenient to express the generating function not in terms of the 

variables q and Q but in terms of the old co-ordinates q and the new momenta 

P_To derive the formulae for canonical transformations in this case, we must 

effect the appropriate Legendre’s transformation in (45.6), rewriting it as 

d(F+ 2 PiQi) = + 2 Qt dpi + (H’ - H) dt. 

The argument of the differential on the left-hand side, expressed in terms of 

the variables q and P, is a new generating function <%, P, t), say. ThenJ 

pi = 8<S>f8qu. Qt = dd>jdPu H' = H+8®/dt. ' (45.8) 

We can similarly obtain the formulae for canonical transformations in¬ 

volving generating functions which depend on the variables p and O or 
p and P. * 

andT-Tof cou^se°idpCrt°rdllnateS °"-y ^and n°‘ the momenta)- This is a point transformation. 
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The relation between the two Hamiltonians is always of the same form: 

the difference H’-H is the partial derivative of the generating function with 

respect to time. In particular, if the generating function is independent of 

time, then H' = H, i.e. the new Hamiltonian is obtained by simply substitut¬ 

ing for p, q in H their values in terms of the new variables P, Q. 

The wide range of the canonical transformations in the Hamiltonian treat¬ 

ment deprives the generalised co-ordinates and momenta of a considerable 

part of their original meaning. Since the transformations (45.2) relate each 

of the quantities P, Q to both the co-ordinates q and the momenta p, the 

variables Q are no longer purely spatial co-ordinates, and the distinction 

between Q and P becomes essentially one of nomenclature. This is very 

clearly seen, for example, from the transformation! Qi = pi. Pi = - qu 

which obviously does not affect the canonical form of the equations and 

amounts simply to calling the co-ordinates momenta and vice versa. 

On account of this arbitrariness of nomenclature, the variables p and q in 

the Hamiltonian treatment are often called simply canonically conjugate 

quantities. The conditions relating such quantities can be expressed in terms 

of Poisson brackets. To do this, we shall first prove a general theorem on the 

invariance of Poisson brackets with respect to canonical transformations. 

Let [/, g]PiQ be the Poisson bracket, for two quantities / and g, in which 

the differentiation is with respect to the variables p and q, and [/, that 

in which the differentiation is with respect to P and Q. Then 

[/»g]p.Q = [/> (45-9) 

The truth of this statement can be seen by direct calculation, using the for¬ 

mulae of the canonical transformation. It can also be demonstrated by the 

following argument. 
First of all, it may be noticed that the time appears as a parameter in the 

canonical transformations (45.7) and (45.8). It is therefore sufficient to prove 

(45.9) for quantities which do not depend explicitly on time. Let us now 

formally regard g as the Hamiltonian of some fictitious system. Then, by 

formula (42.1), [/, g]p>Q = -dfldt. The derivative df'dt can depend only on 

the properties of the motion of the fictitious system, and not on the particular 

choice of variables. Hence the Poisson bracket [f,g] is unaltered by the 

passage from one set of canonical variables to another. 

Formulae (42.13) and (45.9) give 

[Qu Qk\v,d = [pi> ftkc = °> [pi’ = Sik' (45'10) 

These are the conditions, written in terms of Poisson brackets, which must 

be satisfied by the new variables if the transformation p, q -> P, Q is canonical. 

It is of interest to observe that the change in the quantities p, q during the 

motion may itself be regarded as a series of canonical transformations. The 

meaning of this statement is as follows. Let qt, pt be the values of the canonical 

t Whose generating function is F= ~ZqtQi- 
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variables at time t, and qt+T, pt+T their values at another time t+r. The latter 

are some functions of the former (and involve r as a parameter): 

9t+r = q{qt, pu t,r), pt+T =.p(qt> pu t,-r). 

If these formulae are regarded as a transformation from the variables qt, pt 

to qt+rt pt+ri then this transformation is canonical. This is evident from the 

expression dS = X(pt+Tdqt+T -ptdqt) -(Ht+T -Plt)dt for the differential of the 

action S(qt+T, qu t, t), taken along the true path, passing through the points q, 

and qt+T at times t and t +r for a given r (cf. (43.7)). A comparison of this 

formula with (45.6) shows that —S is the generating function of the trans¬ 
formation. 

§46. Liouville’s theorem 

For the. geometrical interpretation of mechanical phenomena, use is often 

made of phase space. This is a space of 2s dimensions, whose co-ordinate axes 

correspond to the 5 generalised co-ordinates and 5 momenta of the system 

concerned. Each point in phase space corresponds to a definite state of the 

system. When the system moves, the point representing it describes a curve 
called the phase path. 

The product of differentials dr = d^j ... dqsdp\ ... dps may be regarded 

as an element of volume in phase space. Let us now consider the integral 

J dr taken over some region of phase space, and representing the volume of 

that region. We shall show that this integral is invariant with respect to 

canonical transformations; that is, if the variables p, q are replaced by 

Q by a canonical transformation, then the volumes of the corresponding 
regions of the spaces of p, q and P, Q are equal: 

JJ dg!... dqs dpi... dps = J... J dQ1... dQs dPj... dPs. (46.1) 

The transformation of variables in a multiple integral is effected by the 

formula J... J d Qx... d Qs dPl... dPs = J...J Ddqi... d qs dp1... dps, 

where 

n_ KQl,-,Qs,Pl.Ps) 

%i. qs.pi, —,ps) 
(46.2) 

is the Jacobian of the transformation. The proof of (46.1) therefore amounts 

to proving that the Jacobian of every canonical transformation is unity: 

(46.3) 

We shall use a well-known property of Jacobians whereby they can be 

treated somewhat like fractions. “Dividing numerator and denominator” by 

•••» qs. Pi.Ps), we obtain 

D = dft?1.-» ps) j %i.qs,pi, ...,ps) 

.qs. Pi, Ps) / B(qX.qs. Pi.Ps) 

Another property of Jacobians is that, when the same quantities appear in 
both the partial differentials, the Jacobian reduces to one in fewer variables, 
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in which these repeated quantities are regarded as constant in carrying out 

the differentiations. Hence 

n f - •>&>] / 
( 2(pl, •• ;Ps) 

l 8{qU • i <?s) /inconstant/ 1 8(Pu .. .,Ps) . 

The Jacobian in the numerator is, by definition, a determinant of order s 

whose element in the ith row and kth column is 8Qi\dqk. Representing the 

canonical transformation in terms of the generating function 0(?, P) as in 

(45.8), we have 8Qil8qk = 82®l8qk8Pi. In the same way we find that the 

iTe-element of the determinant in the denominator of (46.4) is 8‘2$>l8ql8Pk. 

This means that the two determinants differ only by the interchange of rows 

and columns; they are therefore equal, so that the ratio (46.4) is equal to 

unity. This completes the proof. 
Let us now suppose that each point in the region of phase space considered 

moves in the course of time in accordance with the equations of motion of the 

mechanical system. The region as a whole therefore moves also, but its volume 

remains unchanged: 

J dT = constant. (46.5) 

This result, known as Liouvilles theorem, follows at once from the invariance 

of the volume in phase space under canonical transformations and from the 

fact that the change in p and q during the motion may, as we showed at the end 

of §45, be regarded as a canonical transformation. 

In an entirely similar manner the integrals 

JJ 2 dqt dpi, JJJJ 2 d?fc dPk’ - ’ 
in which the integration is over manifolds of two, four, etc. dimensions in 

phase space, may be shown to be invariant. 

§47. The Hamilton-Jacobi equation 

In §43 the action has been considered as a function of co-ordinates and 

time, and it has been shown that the partial derivative with respect to time 

of this function S(q, t) is related to the Hamiltonian by 

dSI8t + H{q,p, t) - 0, 

and its partial derivatives with respect to the co-ordinates are the momenta. 

Accordingly replacing the momenta p in the Hamiltonian by the derivatives 

8S/8q, we have the equation 

5 / 8S ss f\ _ n 

r+H(4'. 
(47.1) 

which must be satisfied by the function S(q, t). This first-order partial 
differential equation is called the Hamilton-Jacobi equation. 
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Like Lagrange’s equations and the canonical equations, the Hamilton- 

Jacobi equation is the basis of a general method of integrating the equations 
of motion'. 

Before describing this method, we should recall the fact that every first- 

order partial differential equation has a solution depending on an arbitrary 

function; such a solution is called the general integral of the equation. In 

mechanical applications, the general integral of the Hamilton-Jacobi equation 

is less important than a complete integral, which contains as many independent 

arbitrary constants as there are independent variables. 

The independent variables in the Hamilton-Jacobi equation are the time 

and the co-ordinates. For a system with 5 degrees of freedom, therefore, a 

complete integral of this equation must contain s +1 arbitrary constants. 

Since the function S enters the equation only through its derivatives, one 

of these constants is additive, so that a complete integral of the Hamilton- 
Jacobi equation is 

S = /(*> ?i» •••> ai, .... aS) + A, (47.2) 

where ax.as and A are arbitrary constants.! 

Let us now ascertain the relation between a complete integral of the 

Hamilton-Jacobi equation and the solution of the equations of motion which 

is of interest. To do this, we effect a canonical transformation from the 

variables q, p to new variables, taking the function f{t,q\ a) as the 

generating function, and the quantities oci, oc2,..., <xs as the new momenta. 

Let the new co-ordinates be /?i, /?2, •••, fis- Since the generating function 

depends on the old co-ordinates and the new momenta, we use formulae 

(45.8): pi = Bf/dqi, fa = Bf/Bocj, H' = H+BfjBt. But since the function / 

satisfies the Hamilton-Jacobi equation, we see that the new Hamiltonian is 

zero: H' = H+BfjBt = H+BS/8t = 0. Hence the canonical equations in 
the new variables are a* = 0, /}( = 0, whence 

a4 = constant, fi = constant. (47.3) 

By means of the 5 equations Bf/Bc.i = ptt the * co-ordinates q can be expressed 

in terms of the time and the 2s constants a and ft. This gives the general 
integral of the equations of motion. 

t Although the general integral of the Hamilton-Jacobi equation is not needed here we 
may show how it can be found from a complete integral. To do this, we regard A as an ’arbi¬ 
trary function of the remaining constants: 5 = f{t, 91,.... qr, ah .... a,)+A(ai, a,). Re¬ 
placing the oef by functions of co-ordinates and time given by the r conditions BS/dcu = 0 
we obtain the general integral in terms of the arbitrary function A(ai,«,). For when the 
junction S is obtained in this manner, we have 
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Thus the solution of the problem of the motion of a mechanical system by 

the Hamilton-Jacobi method proceeds as follows. From the Hamiltonian, 

we form the Hamilton-Jacobi equation, and find its complete integral (47.2). 

Differentiating this with respect to the arbitrary constants a and equating 

the derivatives to new constants /9, we obtain s algebraic equations 

dSIdon = ft, (47.4) 

whose solution gives the co-ordinates q as functions of time and of the 2r 

arbitrary constants. The momenta as functions of time may then be found 

from the equations pi = dSjdqi. 

If we have an incomplete integral of the Hamilton-Jacobi equation, depend¬ 

ing on fewer than s arbitrary constants, it cannot give the general integral 

of the equations of motion, but it can be used to simplify the finding of the 

general integral. For example, if a function S involving one arbitrary con¬ 

stant a is known, the relation dS/da = constant gives one equation between 

qi.qs and t. 

The Hamilton-Jacobi equation takes a somewhat simpler form if the func¬ 

tion H does not involve the time explicitly, i.e. if the system is conservative. 

The time-dependence of the action is given by a term —Et: 

S = S0(q)-Et (47.5) 

(see §44), and substitution in (47.1) gives for the abbreviated action So(q) 

the Hamilton-Jacobi equation in the form 

/ dS0 dS0\ 

§48. Separation of the variables 

In a number of important cases, a complete integral of the Hamilton- 

Jacobi equation can be found by “separating the variables”, a name given to 

the following method. 

Let us assume that some co-ordinate, qi say, and the corresponding 

derivative dS/dqi appear in the Hamilton-Jacobi equation only in some 

combination <f>(qi, dSjdqf) which does not involve the other co-ordinates, time, 

or derivatives, i.e. the equation is of the form 

where qt denotes all the co-ordinates except q\. 
We seek a solution in the form of a sum: 

S = S'(qf, t) + S1(q1); (48.2) 
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substituting this in equation (48.1), we obtain 

i 8S’ 8S' I dSA) 
(48.3) 

Let us suppose that the solution (48.2) has been found. Then, when it is 

substituted in equation (48.3), the latter must become an identity, valid (in 

particular) for any value of the co-ordinate q^. When q\ changes, only the 

function <j> is affected, and so, if equation (48.3) is an identity, <f> must be a 

constant. Thus equation (48.3) gives the two equations 

<K<H, dSt/dsi) = «i, (48.4) 

0{9i, t, dS'jdqu 8S'4'a, ai} = 0, (48.5) 

where ai is an arbitrary constant. The first of these is an ordinary differential 

equation, and the function Si(qi) is obtained from it by simple integration. 

The remaining partial differential equation (48.5) involves fewer independent 

variables. 
If we can successively separate in this way all the s co-ordinates and the 

time, the finding of a complete integral of the Hamilton-Jacobi equation is 

reduced to quadratures. For a conservative system we have in practice to 

separate only s variables (the co-ordinates) in equation (47.6), and when this 

separation is complete the required integral is 

5=2 sk(qk\ ai, a2, ..., 0's)- £(ai,,.,., as)t, (48.6) 
k 

where each of the functions 5* depends on only one co-ordinate; the energy 

E, as a function of the arbitrary constants ..., as, is obtained by substituting 

So — S5fc in equation (47.6). 
A particular case is the separation of a cyclic variable. A cyclic co-ordinate 

qi does not appear explicitly in the Hamiltonian, nor therefore in the Hamilton- 

Jacobi equation. The function 4>(qu &S/Bqj) reduces to 8Sj8q1 simply, and 

from equation (48.4) we have simply Si = o.iqi, so that 

S = S'(qi, t) + a.iq\. (48.7) 

The constant oci is just the constant value of the momentum pi = BS/Bqi 

corresponding to the cyclic co-ordinate. 

The appearance of the time in the term — Et for a conservative system 

corresponds to the separation of the “cyclic variable” t. 

Thus all the cases previously considered of the simplification of the integra¬ 

tion of the equations of motion by the use of cyclic variables are embraced 

by the method of separating the variables in the Hamilton-Jacobi equation. 
To those cases are added others in which the variables can be separated even 
though they are not cyclic. The Hamilton-Jacobi treatment is consequently 
the most powerful method of finding the general integral of the equations of 

motion. 
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To make the variables separable in the Hamilton-Jacobi equation the 

co-ordinates must be appropriately chosen. We shall consider some examples 

of separating the variables in different co-ordinates, which may be of 

physical interest in connection with problems of the motion of a particle in 
various external fields. 

(1) Spherical co-ordinates. In these co-ordinates (r, #, f), the Hamiltonian is 

and the variables can be separated if 

r2 sin2#’ 

where a(r), b(6), c(<f>) are arbitrary functions. The last term in this expression 

for U is unlikely to be of physical interest, and we shall therefore take 

U = «(r) + #(#)/r2. (48.8) 

In this case the Hamilton-Jacobi equation for the function So is 

_l_/^Sb\2 

2m Ur / 
■a(r) + 

jLr/asby 
lmr2Wde) 

-2 mblf) 
2mr2 sin2# \ d<f> 

Since the co-ordinate <f> is cyclic, we seek a solution in the form S0 

= p$ + Si(r) + 52(#), obtaining for the functioris Si(r) andS 2(#) the equations 

f dS2 \2 
' ) +2mb(6) + ^r = 0, 
/ dS2 \2 

Id#/ 

1 / d^i \ 2 p 
&(ir)+“<r)+^-£- 

Integration gives finally 

5 = —Et+ p'jff) + JvTjS — 2mb(6) —p^/sin2#] d#+ 

+ fV{2m[E-a(r)]-p/r2} dr. (48'9) 

The arbitrary constants in (48.9) are pft and E; on differentiating with 

respect to these and equating the results to other constants, we have the 

general solution of the equations of motion. 

(2) Parabolic co-ordinates. The passage from cylindrical co-ordinates 

(here denoted by p, <f>, z) to parabolic co-ordinates f, tj, <f> is effected by the 
formulae 

* = Mf-v). P = V(iv)- (48.10) 

The co-ordinates £ and v take values from 0 to oo; the surfaces of constant 
£ and V are easdy seen to be two families of paraboloids of revolution, with 
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the 2-axis as the axis of symmetry. The equations (48.10) can also be written, 

in terms of 

r = V(*2+P2) = *(* + *?) (48-U) 

(i.e. the radius in spherical co-ordinates), as 

| = r+z, -q = r-z. (48.12) 

Let us now derive the Lagrangian of a particle in the co-ordinates g, q, <f>. 

Differentiating the expressions (48.10) with respect to time and substituting 

in the Lagrangian in cylindrical co-ordinates 

L = +p2<j>2 + a2) — U{P, 4>, z), 

we obtain 

L = +hnfrP-Ufa V, $)■ (48-13) 

The momenta are pg = im(^ + v)iltpv = lm{€ + v)ilrh P<t> = and 

the Hamiltonian is 

H = -^+.'HL+lir+ U{t, q, <f>). (48.14) 
m € + r) 2mgr] 

The physically interesting cases of separable variables in these co-ordinates 

correspond to a potential energy of the form 

<M + Kv) = a{r + z) + b{r-z) (48 15) 

Z + 7) 2r 

The equation for So is 

2 r iBS°\2 (BSo\^ 1 (dSo\2 a&+bw 
rntf + rj) 1*1*7 + *\ Stj) } + 2m£ij \ */ £ + v 

= E. 

The cyclic co-ordinate <f> can be separated as a termp^. Multiplying the equa¬ 

tion by w(£ + ij) and rearranging, we then have 

+ ^~mES + ^ + 2l,(^) +mb^-mEri + % = °- 

Putting S0 = p^f> + Si(f) + S2(-q), we obtain the two equations 

+ma®~mE£+^2f = & 
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integration of which gives finally 

+v]dv- (48-i6) 
Here the arbitrary constants are p(J, fi and E. 

(3) Elliptic co-ordinates. These are £, q, <f>t defined by 

P = ctV[(^2-1)(1—92)], * = ofij. (48.17) 

The constant a is a parameter of the transformation. The co-ordinate £ takes 

values from 1 to oo, and q from — 1 to +1. The definitions which are geo¬ 

metrically clearest! are obtained in terms of the distances rx and r2 to points 

Ai and A2 on the 2-axis for which z — ± o'. = y'r^-CT)2 + p2] 

r2 =\/[(-s+ct)2 + P2]- Substitution of (48.17) gives 

n = v(£-y), r2 = ct(£ + q), 

f = (r2 + ri)j2a, q = (r2-n)l2a. (48.18) 

Transforming the Lagrangian from cylindrical to elliptic co-ordinates, we 
find 

+ M£2- 1)(1 -^2- U(£, q, f). (48.19) 

The Hamiltonian is therefore 

+ U(£, q, f). (48.20) 

The physically interesting cases of separable variables correspond to a 
potential energy 

a(£)+Kv) 

£2_q2 (48.21) 

where a(£) and b(q) are arbitrary functions. The result of separating the 

variables in the Hamilton-Jacobi equation is 

s - -B+<,^+jy|wE+/i _p£_ j d{+ 

A% arc the foci; th 
also with foci Ai a. 

+jy[w£- /3 + 2mozb(q) 

i-v2 

V 
(1 -q2)2 

(48.22) 
constant f are the ellipsoids ar2/o2f2 -f p2/o2(f2—1) = 1, of which Ai and 
sm-faces of constant tj are the hyperboloids ar2/o2>^—p2/o2(l —rf) *= 1, 
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PROBLEMS 

Problem 1. Find a complete integral of the Hamilton-Jacobi equation for motion of a 
particle in a field U = ifr — Fz (a combination of a Coulomb field and a uniform field), and 
find a conserved function of the co-ordinates and momenta that is specific to this motion. 

Solution. The field is of the type (48.15), with fl(<= a — \F(?, b(tp) = a + \Frf- 
The complete integral of the Hamilton-Jacobi equation is given by (48.16) with these functions 
«({) and b( tj). To determine the significance of the constant ft we write the equations 

24 »■«({) «if + Jps/f = ft 

2vP'i 4 »'Kv) " -ft 

Subtracting, and expressing the momenta p. = SS/dl; and />,, = SS/Sq in terms of the 
momenta p = Stiffp and p. = SSidz in cylindrical co-ordinates, we ohtain after a simple 

calculation 

P= "[7 4 “ pA=) + A:J] - 

The expression in the brackets is an integral of the motion that is specific to the pure Coulomb 
field (the c-componcnt of the vector (15.17)). 

Problem 2. The same as Problem 1, but for a field U = cq/r, + c<2/r2 (the Coulomb 
field of two fixed points at a distance 2c apart). 

Solution. This field is of the type (48.21), with a(& = (a, + «2)&o,b(n) = (a, - a2)n[a. 
The action S(£, tj, <P, 0 is obtained by substituting these expressions in (48.22). The signifi¬ 
cance of the constant fi is found in a manner similar to that in Problem 1; in this case it 
expresses the conservation of the quantity 

.\F = (r x 

* t'-~~ f pip1 + 2? - 

and and 02 are the angles shown in Fig. 55. 

20- 

Fig. 55 

§49. Adiabatic invariants 

Let us consider a mechanical system executing a finite motion in one dimen¬ 

sion and characterised by some parameter A which specifies the properties of 

the system or of the external field in which it is placed,f and let us suppose that 

A varies slowly (adiabatically) with time as the result of some external action; 

by a “slow” variation we mean one in which A varies only slightly during the 

period T of the motion: 

T dA/df <g A. (49.1) 

t To simplify the formulae, we assume that there is only one such parameter, but all the 
results remain valid for any number of parameters. 
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If k were constant, the system would be closed and would execute a 

strictly periodic motion with a constant energy E and a fixed period T(E). 

When the parameter k is variable, the system is not closed and its energy is 

not conserved. However, since k is assumed to vary only slowly, the rate of 

change E of the energy will also be small. If this rate is averaged over the 

period T and the “rapid” oscillations of its value are thereby smoothed out, 

the resulting value E determines the rate of steady slow variation of the 

energy of the system, and this rate will be proportional to the rate of change k 

of the parameter. In other words, the slowly varying quantity E, taken in 

this sense, will behave as some function of k. The dependence of is on A 

can be expressed as the constancy of some combination of E and k. This 

quantity, which remains constant during the motion of a system with slowly 

varying parameters, is called an adiabatic invariant. 

Let H(q,p; k) be the Hamiltonian of the system, which depends on the 

parameter k. According to formula (40.5), the rate of change of the energy 
of the system is 

AE = dH = dHdk 

dt dt dk At 
(49.2) 

The expression on the right depends not only on the slowly varying quantity 

k but also on the rapidly varying quantities q and p. To ascertain the steady 

variation of the energy we must, according to the above discussion, average 

(49.2) over the period of the motion. Since k and therefore k vary only 
slowly, we can take k outside the averaging: 

AE =AkdH 

At At dk ’ 
(49.3) 

and in the function dH/dk being averaged we can regard only q and p, and 

not k, as variable. In other words, the averaging is taken over the motion 

which would occur if k remained constant. 

The averaging may be explicitly written 

dH 

dk 
if* 
t J e 

According to Hamilton’s equation q = dHjdp, or At = Aq~(8H/dp). The 

integration with respect to time can therefore be replaced by one with respect 
to the co-ordinate, with the period T written as 

= f dt = f Aq ~ (8H/8p); (49.4) 
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here the § sign denotes an integration over the complete range of variation 

(“there and back”) of the co-ordinate during the period.f Thus (49.3) becomes 

dE = dX§(dHI8X)dgl(8Hldp) 

At At § dql(dHjdp) ' 1 

As has already been mentioned, the integrations in this formula must be 

taken over the path for a given constant value of A. Along such a path the 

Hamiltonian has a constant value E, and the momentum is a definite function 

of the variable co-ordinate q and of the two independent constant parameters 

E and A. Putting therefore p = p(q\ E, A) and differentiating with respect 

to A the equation H(q,p, A) = E, we have dH/dA + (8Hjdp){dpldA) = 0, or 

Qffjd,A _ dp 

dHjdp ~ ~W 
Substituting this in the numerator of (49.5) and writing the integrand in the 

denominator as dpfiE, we obtain 

dE AX§(8pldX)dq 

df df § (dpjdE) dq 

or 

H- 

dp dE 

~BE~dt 

dp dA\ 
;) d? = C 

Finally, this may be written as 

dl/At = 0, (49.6) 

Where /'* fpdqfa, (49.7) 

the integral being taken over the path for given E and A. This shows that, in 

the approximation here considered, / remains constant when the parameter A 

varies, i.e. / is an adiabatic invariant. 
The quantity 7 is a function of the energy of the system (and of the para¬ 

meter X). The partial derivative with respect to energy determines the period 

of the motion: from (49.4), 

2n—=i^dq^T (49.8) 
dE J 8E 

t If the motion of the system is a rotation, and the co-ordinate q is an Q 
the integration with respect to * must be taken over a "complete rotat.on , - - 
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SEjdl - 03, (49.9) 

where 03 = 2nlT is the vibration frequency of the system. 

The .integral (49.7) has a geometrical significance in terms of the phase 

path of the system. In the case considered (one degree of freedom), the phase 

space reduces to a two-dimensional space (i.e. a plane) with co-ordinates 

p, q, and the phase path of a system executing a periodic motion is a closed 

curve in the plane. The integral (49.7) taken round this curve is the area 

enclosed. It can be written also as the area integral 

/ = || dp dql2n. (49.10) 

As an example, let us determine the adiabatic invariant for a one-dimen¬ 

sional oscillator. The Hamiltonian is 

H = \p2jm + hmojtq2, (49.11) 

where cu is the eigenfrequency of the oscillator. The equation of the phase 

path is given by the law of conservation of energy H(p, q) = E. The path 

is an ellipse with semi-axes \/(2mE) and \/(2Ejmoj2), and its area, divided 

by2*’iS 7 = F/c, (49.12) 

The adiabatic invariance of 7 signifies that, when the parameters of the 

oscillator vary slowly, the energy is proportional to the frequency. 

§50. Canonical variables 

Now let the parameter A be constant, so that the system in question is 

closed. Let us effect a canonical transformation of the variables q and p, 
taking 7 as the new “momentum”. The generating function is the abbreviated 

action S0, expressed as a function of q and 7. For S0 is defined as the integral 

S0(q, E; A) = \p{q, E\ A) dq, (50.1) 

taken for a given energy E and parameter A. For a closed system, however, 

7 is a function of the energy alone, and so S0 can equally well be written as a 

function S0(q, 7; A), and the partial derivative (dS0/dq)E is the same as the 

derivative (dS0ldq)j for constant 7. Hence 

p = dS0(q, 7; X)!dq, (50-2) 

corresponding to 

tion. The second 

denote by w: 

the first of the formulae (45.8) for a canonical transforma- 

of these formulae gives the new “co-ordinate”, which we 

«; = dS0(q, 7; A)/07. (50-3) 

The variables I and zv are called canonical variables-, I is called the action 
variable and zv the angle variable. 
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Since the generating function S0(q, I; A) does not depend explicitly on 

time, the new Hamiltonian H' is just H expressed in terms of the new 

variables. In other words, H' is the energy E(I), expressed as a function of 

the action variable. Accordingly, Hamilton’s equations in canonical variables 

/ = 0, w= AE(I)[dI. (50.4) 

The first of these shows that / is constant, as it should be; the energy is 

constant, and / is so too. From the second equation we see that the angle 
variable is a linear function of time: 

d E 
^ + constant = a>(I)t + constant; (50.5) 

it is the phase of the oscillations. 

The action S0(q, I) is a many-valued function of the co-ordinates. During 
each period this function increases by 

ASo = 2ttI, (50.6) 

as is evident from (50.1) and the definition of / (49.7). During the same time 
the angle variable increases by 

Aw = A(dS0ldI) = d(AS0)ldI = 2n. (50.7) 

Conversely, if we express q and p, or any one-valued function F(q, p) of 

them, in terms of the canonical variables, then they remain unchanged when 

w increases by 2n (with 1 constant). That is, any one-valued function F(q, p), 
when expressed in terms of the canonical variables, is a periodic function of w 
with period 2-n. 

The equations of motion can also be formulated in canonical variables for 

a system that is not closed, in which the parameter X is time-dependent. 

The transformation to these variables is again effected by formulae (50.2), 

(50.3), with a generating function S0 given by the integral (50.1) and ex¬ 

pressed in terms of the variable / given by the integral (49.7). The indefinite 

integral (50.1) and the definite integral (49.7) are calculated as if the para¬ 

meter X(t) had a given fixed value; that is, S0(q, /; X(t)) is the previous 

function with the constant X finally replaced by the specified function X(t).f 

Since the generating function is now,- like the parameter X, an explicit 

function of the time, the new Hamiltonian H’ is different from the old one, 

which was the energy E(I). According to the general formulae of the canonical 
transformation (45.8), we have 

H' = E(f\ X) + dSjdt 

= E(I; X) + AX, (50.8) 

f It must be emphasised, however, that the function S0 thus deter 
abbreviated action for a system with a time-dependent Hamiltonian. 
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with the notation 

A = mmU (50-9) 

here A must be expressed in terms of / and w by (50.3) after the differentiation 

with respect to X. 

Hamilton’s equations now become 

1=-*2L=J*A\ x, 
dw \dwjji 

(50.10) 

(50.11) 

where co = (dEjdI)A is the oscillation frequency, again calculated as if X were 

constant. 

PROBLEM 
Write down the equations of motion in canonical variables for a harmonic oscillator (whose 

Hamiltonian is (49.11)) with time-dependent frequency. 
Solution. Since all the operations in (50.1)-(50.3) are for constant X (X being in this case 

the frequency co itself), the relation of q and p to zc has the same form as for constant frequency 
with zc = cot: 

9 = ^— sin ■ 2/ . 

V 

p = x (2Ic jm) cos to. 

So = Ip d? = J p(cq cv-')h„, dro = 21 J cos2 to du> 

Equations (50.10) and (50.11) then become 

/ = -I(ojvj) cos 2wt w = oj + (w/2w) sin 2w. 

§51. Accuracy of conservation of the adiabatic invariant 

The equation of motion in the form (50.10) allows a further proof that the 

action variable is an adiabatic invariant. 

The function SQ(q, /; X) is not a single-valued function of q: when the 

co-ordinate returns to its original value, S0 increases by an integral multiple 

of 2nl. The derivative (50.9), however, is single-valued, since the differentia¬ 

tion is at constant / and the increments of S0 disappear. The function A, like 

any single-valued function, is a periodic function when expressed in terms 

of the angle variable w. The mean value, over the period, of the derivative 

dA/dw of a periodic function is zero. Hence, on averaging (50.10) and taking 

1 outside the mean value (when X varies only slowly), we have 

i = -mjdzc), x = o’, (5i.i) 
as was to be proved. 

The equations of motion (50.10) and (50.11) enable us to consider the 
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accuracy with which, the adiabatic invariant is conserved. The question may 

be stated as follows: let the parameter A{t) tend to constant limits and A+ 

as t -> - oo and t + oo; given the initial (t -s* - oo) value /_ of the adiabatic 

invariant, find the change in it, A/ = /+ — /_ as t + oo. 

From (50.10), 

(51.2) 

As shown above, A is a periodic function of w, with period 2n; let us expand 

it as a Fourier series 

A = f,ea"Al. (51.3) 

Since A is real, the expansion coefficients are such that A_t = A*. Hence 

~ = lile^A, 

= 2 reY,ileilw Ah (51.4) 

When A is sufficiently small, w is positive (its sign being the same as that 

of o)\ see (50.11)), i.e. a; is a monotonic function of the time t. When we 

change from integration over t to integration over w in (51.2), the limits are 

unaltered: 

dA dA df . 
--dw. 
dw dfda; 

(51.5) 

Substituting (51.4), we can transform the integral by formally treating w 

as a complex variable. We assume that the integrand has no singularities for 

real w, and displace the path of integration off the real axis into the upper 

half-plane of this complex variable. The contour is then “caught up” at the 

singularities of the integrand, and forms loops round them, as shown 

schematically in Fig. 56. Let be the singularity nearest the real axis, i.e. 
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the one with the smallest (positive) imaginary part. The principal contribu¬ 

tion to the integral (51.5) comes from the neighbourhood of this point, and 

each term in the series (51.4) gives a contribution containing a factor 

exp( — Zim w0). Again retaining only the term with the negative exponent of 

smallest magnitude (i.e. the term with l = 1), we findf 

A / — exp( — imro0). (51.6) 

Let t0 be the (complex) “instant” corresponding to the singularity 

w(tQ) = w0. In general, |#0| has the same order of magnitude as the charac¬ 

teristic time r of variation of the parameters of the system. J The order of 

magnitude of the exponent in (51.6) is 

im w0 ~ ojt ~ rIT. (51.7) 

Since we assume that r > T, this exponent is large. Thus the difference 

I+ — /_ decreases exponentially as the rate of variation of the parameters 

of the system decreases. || 

To determine wp in the first approximation with respect to T/t (i.e. 

retaining only the term ~{Tjr)_1in the exponent), we can omit from (50.11) 

the small term in X: 

dwjdt = «(/, X{t)), (51.8) 

and the argument / of the function «(/, A) is taken to have a constant value, 

say /_. Then 

the lower limit may be taken as any real value of t, since it does not affect the 

required imaginary part of w0.§ 

The integral (51.5) with w from (51.8) (and with one term from the series 

(51.4) as 8A/8w) becomes 

A/~ re [ur-^L. (51.10) J a>(I, X) 

Hence we see that the singularities that are in question as regards the nearest 

to the real axis are the singularities (poles and branch points) of the functions 

t In special cases it may happen that the expansion (51.4) does not include a term with 
/ = 1 (see, for example, Problem I at the end of this section); in every case, we must take 
the term with the lowest value of l present in the series. 

t If the slowness of variation of the parameter X is expressed by its depending on t only 
through a ratio { = t/r with r large, then tB = rfo, where is a singularity of A(£) that is 
independent of r. 

II Note that, if the initial and final values of X(t) are the same (A+ = A_), then not only 
the difference A/ but also the difference AB = E+ — E_ of the final and initial energies are 
exponentially small; from (49.9), AE = co AI in that case. 

§ A ™ore Ct‘'' proor or these statements, and a calculation of the coefficient of the exponential 
in (5'-6). 15 B A- A- Slutskin, Soviet Physics JETP 18, 676, 1964. 
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A(/) and l/tu(/). Here it should be remembered that the conclusion that A7 is 

exponentially small depends on the hypothesis that these functions have no 

real singularities. 

PROBLEMS 
Problem l. Estimate AI for a harmonic oscillator with a frequency that varies 

from ct>_ = cuc for t = — co to ct>+ = yjaa0 for t = co (a > 0, a <^cu0).t 

slowly according to 

Solution. Taking as the parameter A the frequency co itself, we have 

This function has poles for e at = —1 and e at = —a. Calculating the integral jcu dl, 
we find that the smallest value of im tc0 comes from one of the poles at„ = —log (—a), 

For a harmonic oscillator, A ~ sin 2zv (see §50, Problem), so that the series (51.3) reduces 
to two terms (with / = + 2). Thus, for a harmonic oscillator, 

fc/Xexp f 
Problem 2. A particle oscillates in a potential well. Determine how its energy varies under a 

frictional force fh= —ax with a small coefficient a (x being a Cartesian co-ordinate). 
Solution. We average (25.13) over the oscillation period, neglecting damping in the first 

approximation. Then 

dE__ - 

dt a' 

where 1(E) is the adiabatic inva 
T in terms of / by (49.8) gives 

Integrating, we have 

: and m the mass of the particle. Expressing the oscillation period 

dl 

d E 

d E 

dl 
= -<X lim. 

/(£) = / f£0) exp( - calm), (1) 

This formula implicitly determines £(<). For a harmonic oscillator, it becomes (25.5). The solution 
is valid if aT/m« 1. 

§52. Conditionally periodic motion 

Let us consider a system with any number of degrees of freedom, executing 

a motion finite in all the co-ordinates, and assume that the variables can be 

completely separated in the Hamilton-Jacobi treatment. This means that, 

t The harmonic nature of the oscillator is shown by the fact that the oscillation frequency 
is independent of the energy. 
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when the co-ordinates are appropriately chosen, the abbreviated action 

can be written in the form 

So = 2 Stte). (52.1) 

as a sum of functions each depending on only one co-ordinate. 

Since the generalised momenta are pi = BSo/dqf = dSj/d^i, each function 

Si can be written 

St^jptdqt. (52.2) 

These are many-valued functions. Since the motion is finite, each co-ordinate 

can take values only in a finite range. When qi varies “there and back” in this 

range, the action increases by 

AS0 = A Si = 2 -nli, (52.3) 

where 

Ii = |pi dqijlu, (52.4) 

the integral being taken over the variation of qt just mentioned f 

Let us now effect a canonical transformation similar to that used in §50, 

for the case of a single degree of freedom. The new variables are “action vari¬ 

ables” /{ and “angle variables” 

wi = SS0(q, I)jt'I4 = 2 (52-5) 
k 

where the generating function is again the action expressed as a function of 

the co-ordinates and the /{. The equations of motion in these variables are 

/, = 0, zb; = dE(I)ji)tp which give 

Ii = constant, (52.6) 

wt = [dE{I)ldIi\t + constant. (52.7) 

We also find, analogously to (50.7), that a variation “there and back” of 

the co-ordinate qi corresponds to a change of 2tt in wi: 

= 2tr. (52.8) 

In other words, the quantities u>i(q, I) are many-valued functions of the co¬ 

ordinates: when the latter vary and return to their original values, the Wi 

t It should be emphasised, however, that this refers to the formal variation of the co¬ 
ordinate g, over the whole possible range of values, not to its variation during the period of 
the actual motion as in the case of motion in one dimension. An actual finite motion of a 
system with several degrees of freedom not only is not in general periodic as a whole, but 
does not even involve a periodic time variation of each co-ordinate separately (see below). 
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may vary by any integral multiple of 2tt. This property may also be formulated 

as a property of the function Wi(p, q), expressed in terms of the co-ordinates 

and momenta, in the phase space of the system. Since the It, expressed in 

terms of p and q, are one-valued functions, substitution of It(p, q) in Wi{q, I) 
gives a function ze;(/>, q) which may vary by any integral multiple of 27t 

(including zero) on passing round any closed path in phase space. 

Hence it follows that any one-valued function-)- F(p, q) of the state of the 

system, if expressed in terms of the canonical variables, is a periodic function 

of the angle variables, and its period in each variable is 2tt. It can be expanded 

as a multiple Fourier series: 

Ahw-i'exPif(^+... +hws)}, 

where li, h, Is are integers. Substituting the angle variables as functions 

of time, we find that the time dependence of F is given by a sum of the form 

® » ( / 8E 8F\) 

F='4t^+ ~ +Ss)i (52-9) 
Each term in this sum is a periodic function of time, with frequency 

htox + ... + lPh, (52.10) 

which is a sum of integral multiples of the fundamental frequencies 

oj, = dEldU (52.11) 

Since the frequencies (52.10) are not in general commensurable, the sum 

itself is not a periodic function, nor, in particular, are the co-ordinates q and 

momenta p of the system. 

Thus the motion of the system is in general not strictly periodic either as a 

whole or in any co-ordinate. This means that, having passed through a given 

state, the system does not return to that state in a finite time. We can say, 

however, that in the course of a sufficient time the system passes arbitrarily 

close to the given state. For this reason such a motion is said to be conditionally 

periodic. 

In certain particular cases, two or more of the fundamental frequencies 

<y, are commensurable for arbitrary values of the This is called degeneracy, 

and if all s frequencies are commensurable, the motion of the system is said 

to be completely degenerate. In the latter case the motion is evidently periodic, 

and the path of every particle is closed. 

t Rotational co-ordinates <j> (see the second footnote to §49) are not in one-to-one relation 
with the state of the system, since the position of the latter is the same for all values of <j> 
differing by an integral multiple of 2jt. If the co-ordinates q include such angles, therefore, 
these can appear in the function F(p, q) only in such expressions as cos </> and sin which 
are in one-to-one relation with the state of the system. 



§52 Conditionally periodic motion 165 

The existence of degeneracy leads, first of all, to a reduction in the number 

of independent quantities It on which the energy of the system depends. 

If two frequencies o>i and 102 are such that 

mdE/dh = n2dE!dh, (52.12) 

where n\ and M2 are integers, then it follows that 7i and I2 appear in the energy 

only as the sum n%l\ + mh- 
A very important property of degenerate motion is the increase in the 

number of one-valued integrals of the motion over their number for a general 

non-degenerate system with the same number of degrees of freedom. In the 

latter case, of the 2r-1 integrals of the motion, only s functions of the state 

of the system are one-valued; these may be, for example, the s quantities It. 

The remaining s— 1 integrals may be written as differences 

WidEldIk-wkdEldh. (52.13) 

The constancy of these quantities follows immediately from formula (52.7), 

but they are not one-valued functions of the state of the system, because the 

angle variables are not one-valued. 
When there is degeneracy, the situation is different. For example, the rela¬ 

tion (52.12) shows that, although the integral 

Wjti 2 - a>2ni (52.14) 

is not one-valued, it is so except for the addition of an arbitrary integral 

multiple of 2tt. Hence we need only take a trigonometrical function of this 

quantity to obtain a further one-valued integral of the motion. 

An example of degeneracy is motion in a field U = - a/r (see Problem). 

There is consequently a further one-valued integral of the motion (15.17) 

peculiar to this field, besides the two (since the motion is two-dimensional) 

ordinary one-valued integrals, the angular momentum M and the energy E, 

which hold for motion in any central field. 
It may also be noted that the existence of further one-valued integrals 

leads in turn to another property of degenerate motions: they allow a complete 

separation of the variables for several (and not only one|) choices of the co¬ 

ordinates. For the quantities h are one-valued integrals of the motion m 

co-ordinates which allow separation of the variables. When degeneracy occurs, 

the number of one-valued integrals exceeds *, and so the choice of those 

which are the desired It is no longer unique. 
As an example, we may again mention Keplerian motion, which allows 

separation of the variables in both spherical and parabolic co-ordinates. 

■f We igr in the co-ordinates as qi — qi'(qi), Qi‘ — Cs'fe). 
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In §49 it has been shown that, for finite motion in one dimension, the 

action variable is an adiabatic invariant. This statement holds also for systems 

with more than one degree of freedom. It can be proved, ih the general case, 

by a direct generalisation of the method given at the beginning of §51. 

For a multi-dimensional system with a variable parameter A(t), the equa¬ 

tions of motion in canonical variables give for the rate of variation of each 

action variable /, an expression analogous to (50.10): 

where, as before, A = (dS0 [dX)r. This equation is to be averaged over a time 

interval large compared with the fundamental periods of the system but 

small compared with the time of variation of A(t). The quantity X is again 

taken outside the mean value, and the derivatives dA/dwi are averaged as 

if the motion took place at constant A, as a conditionally periodic motion. 

Then A is a unique periodic function of the angle variables zvit and the mean 

values of its derivatives dA/dWj are zero. 

Finally, we may briefly discuss the properties of finite motion of closed 

systems with s degrees of freedom in the most general case, where the vari¬ 

ables in the Hamilton—Jacobi equation are not assumed to be separable. 

The fundamental property of systems with separable variables is that the 

integrals of the motion Iit whose number is equal to the number of degrees 

of freedom, are one-valued. In the general case where the variables are not 

separable, however, the one-valued integrals of the motion include only 

those whose constancy is derived from the homogeneity and isotropy of space 

and time, namely energy, momentum and angular momentum. 

The phase path of the system traverses those regions of phase space which 

are defined by the given constant values of the one-valued integrals of the 

motion. For a system with separable variables and s one-valued integrals, 

these conditions define an ^dimensional manifold in phase space. During a 

sufficient time, the path of the system passes arbitrarily close to every point 

on this hypersurface. 

In a system where the variables are not separable, however, the number 

of one-valued integrals is less than r, and the phase path occupies, completely 

or partly, a manifold of more than s dimensions in phase space. 

In degenerate systems, on the other hand, which have more than s integrals 

of the motion, the phase path occupies a manifold of fewer than s dimensions. 

If the Hamiltonian of the system differs only by small terms from one which 

allows separation of the variables, then the properties of the motion are close 

to those of a conditionally periodic motion, and the difference between the 

two is of a much higher order of smallness than that of the additional terms in 
the Hamiltonian. 
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PROBLEM 

Calculate the action variables for elliptic motion in a field U = —air. 

Solution. In polar co-ordinates r, <j> in the plane of the motion we have 

U = ^ J Pi = M< 

= -M+aV(tnl2\E\). 

Hence the energy, expressed in terms of the action variables, is E — — ma2/2(/r +/$)2. It 
depends only on the sum 1, +/^, and the motion is therefore degenerate; the two funda¬ 
mental frequencies (in r and in 4>) coincide. 

The parameters p and e of the orbit (see (15.4)) are related to IT and 1^ by 

Since Ir and 1^ are adiabatic invariants, when the coefficient a or the mass m varies slowb 
the eccentricity of the orbit remains unchanged, while its dimensions vary in inverse propor- 
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